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A B S T R A C T   

Complex matrices such as soil have a range of measurable characteristics, and thus data to describe them can be 
considered multidimensional. These characteristics can be strongly influenced by factors that introduce con
founding effects that hinder analyses. Traditional statistical approaches lack the flexibility and granularity 
required to adequately evaluate such matrices, particularly those with large dataset of varying data types (i.e. 
quantitative non-compositional, quantitative compositional). We present a statistical workflow designed to 
effectively analyse complex, multidimensional systems, even in the presence of confounding variables. The 
developed methodology involves exploratory analysis to identify the presence of confounding variables, followed 
by data decomposition (including strategies for both compositional and non-compositional quantitative data) to 
minimise the influence of these confounding factors such as sampling site/location. These data processing 
methods then allow for common patterns to be highlighted in the data, including the identification of biomarkers 
and determination of non-trivial associations between variables. We demonstrate the utility of this statistical 
workflow by jointly analysing the chemical composition and fungal biodiversity of New Zealand vineyard soils 
that have been managed with either organic low-input or conventional input approaches. By applying this 
pipeline, we were able to identify biomarkers that distinguish viticultural soil from both approaches and also 
unearth links and associations between the chemical and metagenomic profiles. While soil is an example of a 
system that can require this type of statistical methodology, there are a range of biological and ecological systems 
that are challenging to analyse due to the complex interplay of global and local effects. Utilising our developed 
pipeline will greatly enhance the way that these systems can be studied and the quality and impact of insight 
gained from their analysis.   

1. Introduction 

Analysis of complex, multifaceted systems are a constant challenge 
in the natural sciences. One example of such a multidimensional system 
is soil. Soils underpin productivity in agricultural ecosystems as they 
provide and control the cycling of essential nutrients, govern water 
availability and play roles in carbon sequestration [1,2], with these 
functions driven by soil microorganisms [3–5]. Two main soil compo
nents that are interdependent but comprise complex multivariate 

measures are microbial and chemical composition. Modern DNA meta
genomics sequencing and analytical chemistry approaches are now able 
to reveal extremely complex and detailed multivariate information on 
soils, providing multilevel characterisation of this system. 

One central area that requires a better understanding is the effect of 
different agricultural management approaches on soils, particularly the 
use of synthetic pesticides. The health of agricultural soils has been 
degraded by intensive farming methods over the last few decades, and 
changes in practices that increase soil health but still produce sufficient 
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yields are urgently required [6]. However, we are still unaware of the 
long-term sustainability of organic and low-input farming as well as the 
other challenges and limitations that its use may present. Soils harbour 
one quarter of the world’s biodiversity and approximately 40% of the 
globe’s land-area is dedicated to agriculture. The effects of agrochemi
cals on the vast array of microbes and how this modulates nutrient 
availability to affect productivity is poorly characterised generally [1, 
7–10]. We are aware of no studies or methods that integrate the effects 
of agrochemicals on soil biology and chemistry simultaneously, and we 
address that here. 

The lack of these integrated analyses of soil is due to a number of 
challenges, for example, chemical and metagenomic data have inher
ently different properties. While chemical data is quantitative, a meta
genomic dataset is compositional and this disparity in structure leads to 
difficulties in relating and integrating these datasets. Additionally, soil, 
like many matrices, are strongly influenced by a vast array of factors, 
including climate, topography, weathering and land-use that potentially 
represent confounding effects, complicating even straightforward “one- 
layer” analyses. Lastly, if one wants to conduct “multi-layer” analyses to 
investigate the interplay between both chemical and microbial data, 
flexible measures of association other than traditionally-used ap
proaches, such as deriving and analysing Pearson correlation coefficient 
or the Spearman rank coefficient, are required. Unfortunately these 
alternative measures tend to be sensitive to these aforementioned con
founding variables. 

In order to improve our analyses and understanding of complex, 
multilevel systems such as soil, and to answer questions such as the 
impact of viticultural management practice, new statistical approaches 
need to be developed. We propose a statistical workflow that enables the 
appropriate manipulation and analysis of chemical and metagenomic 
data. This approach removes the effect of confounding variables for 
subsequent analysis that highlights trends and common patterns in 
different datasets, investigates and identifies biomarkers in each of the 
datasets with regard to soil management, and reveals non-trivial asso
ciations between variables that goes beyond linear/monotonic 
associations. 

Here we analyse the chemical concentration of elements, assessed 
through inductively coupled plasma mass spectrometry (ICP-MS) anal
ysis, and fungal biodiversity by ITS barcode metagenomic information 
to derive fungal Operational Taxonomic Units (OTUs) of New Zealand 
vineyards soils that have been managed with either organic low-input or 
conventional input approaches. We use these data to demonstrate our 
proposed statistical strategy to more holistically analyse complex 
multidimensional systems. 

2. Materials and methods 

2.1. Soil samples 

Samples were grouped by viticulture practice (conventional and 
organic) and subregion of Marlborough, New Zealand (see Table 1 for 
the number of vineyards matching each criteria). For all subregions 
there was at least one vineyard following each viticulture practice. It 
should be noted that commercially established vineyards with shared 
characteristics (i.e. irrigation regime, soil type, number of years certified 
organic (for the organic vineyards), method of pest control, etc.) were 

chosen so as to minimise influences of these factors on the analysis. 

2.2. Sampling collection, handling and preparation 

Soils were sampled from 14 vineyards from 15th February to 20th 
March 2013 (Table 1). At each vineyard, three roughly-equal rectan
gular blocks (sub-sections) were assigned based on soil type and/or 
topographical lay. After the three subsections were marked, five vines 
were randomly chosen and samples from under-vine and in the middle 
of the randomly chosen bay were selected, in each subsection, totalling 
fifteen soil sample sites per vineyard, five per sub-section. As traditional 
hand-held soil augers are unable to extract samples on some of the 
stonier sites in Marlborough, a stainless-steel crowbar and hammer were 
used to drive the crowbar down to a depth of 40 cm. At this point the 
crowbar was dug another 1–2 cm and the hole emptied to prevent 
contamination from soil deriving from shallower depths. The crowbar 
was then used to loosen some soil and approximately 100 g of non- 
sieved soil was collected and placed in a bag in a cooler that was lined 
with ice packs to slow down any biochemical reactions. At the end of the 
day the samples were frozen at − 20 ◦C until soil preparation for 
analyses. 

Prior to analysis, the soil samples were thawed, dried in an oven at 
60 ◦C for three days and then sieved to 2 mm particles. The stainless- 
steel sieve was air-blown with compressed air between samples to pre
vent cross-contamination. The five samples from each subsection were 
homogenised north to south, thus incorporating the general soil varia
tion in Marlborough, leaving three soil samples per vineyard. The 
weight of 2 mm soil ranged from 13.96 g to 64.87 g due to varied gravel 
content across soil types. The samples were then stored at 4 ◦C until 
analysis. 

2.3. Soil pH analyses 

Soil pH was analysed using two methods, one using 0.01 M calcium 
chloride solution and the other in water. A 1:5 ratio of soil to either (i) 
CaCl2 (0.01 M) or (ii) ultrapure water (18.2 M Ω/cm, Millipore, Bedford, 
MA, USA) was used [11], using a modification of the reported method 
[12], but with a changed solution ratio due to limited soil, and only 1 g 
of soil as opposed to 10 g. Additionally, samples were stirred for 1 h 
[13], with 10 min rest prior to measurement. 

2.4. ICP-MS analysis 

Ultrapure water (18.2 M Ω/cm, Millipore, Bedford, MA, USA), nitric 
acid (67–69%; Superpure for trace analysis; Carlo Erba Reagents, Cor
naredo, Italy), hydrochloric acid (37%), hydrogen peroxide (30%) and 
glutamic acid 99.5% (Merck, Darmstadt, Germany) were used. ICP 
Multielement or mono-element standard solutions were used for ICPMS 
calibration. In detail, ICP Multielement Standard Solution VI and mono- 
element standard solution of P, S, Cu and Mn (1 mg/mL) were purchased 
from Merck; Multielement Calibration Standard 1 and 3, Tuning solu
tion (Li, Y, Ce, Tl 10 mg/L) and mono-element standard solution of Hg 
(10 mg/L) from Agilent Technologies (Santa Clara, CA, USA); ICP 
Multielement Standard Solution 4 and mono-element standard solutions 
of Rh, Sc, Tb (1 mg/mL) were from Aristar BDH (Poole, UK); mono- 
element standard solution of Cs (1 mg/mL) was from Ultra Scientific 
(Bologna, Italy), Fe 10 mg/mL from CPI international (Santa Rosa, CA, 
USA). All standard solutions were prepared in 1% HNO3 and 0.2% HCl 
solution. All the materials used were previously washed with nitric acid 
(5%) and rinsed twice with ultrapure water. The soil used as reference 
material was provided by the “Wageningen evaluating programs for 
analytical laboratories” [14]. 

An aliquot (0.5 g) of air dried, sieved <2 mm and ground <0.2 mm 
soil was added with 1.5 mL of H2O2, 4.5 ml of HCl and 1.5 mL of HNO3 
and acid digested in a microwave system (MARS EXPRESS, CEM, Mat
thews, USA; max temperature 175 ◦C) using PTFE vessel. The aqua regia 

Table 1 
Vineyard classification by subregion and viticulture practice.   

Viticulture practice 

Subregion Conventional Organic 
Rapaura 3 1 
Upper Wairau 3 3 
Central Wairau 1 1 
Southern Valleys 1 1  
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extracted samples were diluted 50 times and analysed with an ICP-MS 
(Agilent 7500ce, Agilent Technologies, Tokyo, Japan) equipped with a 
collision/reaction chamber for the quantification of 57 mineral ele
ments. In detail, 7Li, 9Be, 11B, 27Al, 31P, 49Ti, 55Mn, 74Ge, 85Rb, 88Sr, 
89Y,98Mo, 108Pd, 109Ag, 111Cd, 115In, 118Sn, 121Sb, 126Te, 133Cs, 137Ba, 
139La, 140Ce, 141Pr, 143Nd, 147Sm, 157Gd, 163Dy, 165Ho, 166Er, 169Tm, 
171Yb, 178Hf, 185Re, 193Ir, 197Au, 201Hg, 205Tl, 206+207+208Pb, 209Bi, 232Th 
and 238U were quantified in “no gas” mode; 23Na, 26Mg, 39K, 51V, 52Cr, 
59Co 56Fe, 30Ni, 63Cu, 66Zn, 75As and 151Eu in He mode and 40Ca, 71Ga 
and 78Se in H2 mode. In order to overcome possible drift during 
analytical sequence, an internal standard solution made of Sc, Rh and Tb 
1 mg/L was added on-line. Instrumental parameters were optimised 
daily following the manufacturer’s specifications with a Li, Y, Ce and Tl 
solution in order to maximise sensitivity and resolution and in
terferences due to double-charged and oxide ions. 

The accuracy was verified using a soil provided by the “Wageningen 
evaluating programs for analytical laboratories” proficiency test. This 
soil was acid digested and analysed in each sample batch obtaining al
ways Z-score results between ±3 (see Table S1 in the Supporting In
formation). Repeatability was verified preparing and analysing samples 
5 times and obtaining average standard deviation % always below 10% 
for quantifiable elements except for trace elements Ge, Te, Pd, In and Hf 
below 20%. All analysed elements were quantifiable in all samples 
except for Re (<0.001 mg/kg in 2 samples) and Hg (<0.02 in 2 samples), 
whereas Au (<0.01 mg/kg) and Ir (<0.005 mg/kg) were always under 
the detection limit. The Limit of Quantification (LOQ) and %RSD for 
these analyses are provided in Table S2. 

The dry combustion method was applied for total Carbon and Ni
trogen quantification using a CN elemental analyser (Macro Vario CN, 
Elementar, Langenselbold Germany) and glutamic acid as reference 
material and weighting about 200 mg of sample. Method validation 
metrics, the Limit of Quantification (LOQ) and %RSD, for the analysis of 
these elements are provided in Table S3. 

Prior to statistical analysis the chemical data was checked and 
cleaned, with elements in the chemical data that showed consistently- 
low counts, i.e. the lanthanides, removed. 

2.5. DNA extraction, library preparation, and sequencing 

DNA was extracted using the Zymo Research Soil Microbe DNA 
MiniPrepTM kits (Zymo Research, Irvine, CA, USA). Fungal commu
nities were characterised and enumerated by 454-sequencing of the D1/ 
D2 region of 26S ribosomal RNA, and amplified using NL1 and NL4 
primers described with unique multiplex identifiers added as appro
priate [15]. Sequencing this locus provides an effective method for 
taxonomic identification down to at least genus level as well as the 
quantification of the relative richness and abundances of fungal com
munities [16,17]. All PCR products were cleaned using AmpureXP beads 
(Beckman Coulter, Inc., Brea, CA, USA) and their quality checked by 
Agilent DNA1000 chips kit (Agilent Technologies, La Jolla, CA, USA). 
Sequencing was performed on a 454-junior instrument by New Zealand 
Genomics Limited, New Zealand. Negative controls were always 
included in the initial PCR steps to ensure no contamination. 

2.6. Amplicon sequences analysis 

Raw data FASTQ files were analysed using the software pipeline 
MICCA v. 1.2.0 [18]. After trimming forward and reverse primers, reads 
shorter than 300 bp and with an expected error rate higher than 0.5% 
were removed. Sequences longer than 300 bp were truncated. Filtered 
sequences were clustered into operational taxonomic units (OTUs) at 
97% identity using the denovo greedy algorithm available in MICCA. 
OTUs were taxonomically classified using the Ribosomal Database 
Project (RDP) Classifier v2.11 [19]. Multiple sequence alignment (MSA) 
was performed on the denoised reads applying the Nearest Alignment 
Space Termination algorithm and the phylogenetic tree was inferred 

using FastTree [20,21]. To compensate for different sequencing depths, 
samples were rarefied to an even depth of 1150 (without replacement). 
Samples with less than 1150 reads were removed. 

2.7. Statistical methodology 

When data are collected there are potentially influential, local vari
ables that may confound statistical analysis. Often, these variables add 
noise to the data and may confound any signal of the effects of interest. 
To mitigate the impacts of these confounding variables, various strate
gies can be used [22], but those utilised are often dictated by the nature 
of the data, and difficulties arise with certain types of data that are 
studied, including metagenomic data, which is intrinsically composi
tional [23–25]. Compositional data exists in a sub-space, the simplex, 
rather than real Euclidean space, and as such commonly-used metrics, 
including the aforementioned measures, are not appropriate nor valid 
[26,27]. This is because, in compositional data, the distance between 
variables is sensitive and dependent on the presence and absence of 
other components/variables [26]. As a result, correlation analysis can 
yield false positive results and multivariate analysis can provide erro
neous and incorrect conclusions [27,28]. New strategies are required 
that appropriately transform data, remove the impact of confounding 
variables to unveil the impact of global effects in situations where 
confounding, local effects, are unavoidable. 

The statistical strategy described here was designed to be applied to 
these situations to appropriately analyse complex multidimensional 
systems. We have developed a data analysis scheme that allows for the 
removal of influential confounding variables from multilevel chemical 
and metagenomic data that limit the analysis of factors of interest and in 
many cases, would otherwise render any efforts to analyse underlying 
data, futile. By controlling for these potentially confounding variables, 
the data can then be analysed to identify any patterns and biomarkers 
that highlight variable associations present with the effect of interest 
despite any interference from confounding variables. Details of the 
statistical pipeline are as follows (Fig. 1).  

i) Unsupervised exploratory analysis: conducted to observe notable 
trends, outliers and indicate any confounding variables. 

ii) Data decomposition: data are then decomposed to remove the in
fluence of this confounding factor. If the data is quantitative and 
non-compositional in nature, this involves deduction of the me
dian value for each level of the factor for each variable. For 
quantitative compositional data, first the data is offset by 1 and a 
total sum of squares (TSS) normalisation is carried out. The data 
is then filtered in order to focus on the OTUs present in a large 
fraction of the samples (discarding the OTUs which are present in 
<30% of samples) [29] and a centred log ratio (CLR) trans
formation [26] is applied. Once transformed, the data can then 
undergo the decomposition process as described for the 
non-compositional data.  

iii) Biomarker identification: build classifying models that provide 
information on variable importance being strongly desired as 
these can be identified as biomarkers.  

iv) Variable association: the biomarkers can be investigated for their 
any correlations/interrelationships. 

v) Trend identification: mutual information can identify any vari
ables that have a global association, regardless of their impor
tance for classification. 

The proposed statistical methodology allows for the analysis of 
general trends in the data, the discovery of associations and correlations 
and the analysis of global effects, in the presence of confounding factors 
in the original samples. The general approach of this method involves 
the creation of subgroups according to characteristics that are influ
enced by local factors. Once these subgroups have been created, the 
effects of these local factors are able to be removed, allowing for any 
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remaining differences to be attributed to the global effect of interest. 
While soil is an example of a complex system that requires this type 

of statistical methodology, there are a range of biological and ecological 
systems, including applications in soil, air, water and multiomic anal
ysis, that have properties that are challenging to analyse due to the 
complex interplay of global and local effects and would also benefit from 
such an approach. The utility, benefit and validity of using this statistical 
pipeline is exemplified herein. 

3. Results and discussion 

To evaluate the utility of the proposed novel analytical approach we 
analysed soil chemistry and microbiome data to assess the effect of 
conventional and organic viticultural management practices on soils and 
test if there are any correlations between the responses of soil chemistry 
and biology to management approach. A priori we were aware of the 
possibility potentially complicating this analysis: soil was sampled from 
different geographical subregions within the Marlborough region in 
New Zealand, and there are reports that the influence of subregion may 

be a confounding factor for both soil chemistry and biology that could 
mask the underlying impact of viticultural management practice [3,4,7, 
16]. 

3.1. Unsupervised exploratory analysis 

Exploratory analysis of the data was first carried out in the form of 
principal coordinate analysis, PCoA, using a binary dissimilarity index 
and principal component analysis, PCA, for the metagenomic and 
chemical data, respectively (Fig. 2). This unsupervised exploratory 
analysis was performed to allow for visualisation of the two data sets, 
particularly to ascertain the major factors which contribute to the 
dataset variability. 

The variability of the metagenomic data was distributed over a large 
number of components (two of which are shown in Fig. 2A; A1 ac
counting for 6% of the variability in the data and A3 accounting for 4% 
of the variability), while the chemical data was largely represented by 
two principal components (principal component 1 and 2 respectively 
accounted for 40% and 24% of the total variability in the data; Fig. 2B). 

Fig. 1. Depiction of the developed methodology. In the first instance, the collected data will undergo unsupervised exploratory analysis to assess any overall trends, 
outliers and any observable impacts of a confounding variable. If a confounding variable is identified, its influence can be removed using a data decomposition step, 
depending on if it is quantitative compositional or non-compositional data. Once the data has been transformed, models can be built to identify variables of 
importance, biomarkers which can be explored further through association analysis. Mutual information can also be used to identify variables that have a global 
association. 

Fig. 2. Results of the exploratory analysis for the metagenomic (PCoA, A) and chemical (PCA, B) data.  
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While the variability in the metagenomic data is much more complex 
than the chemical data, it is visually apparent that there were in
dications of correlations with viticultural management practice in both 
data sets (particularly for the metagenomic data). However, as sus
pected, it appears that subregion (symbol in Fig. 2) has an influence in 
both biology and chemistry data sets, as there is a very clear clustering 
by sampling location. 

3.2. Data decomposition 

The next stage in the workflow was to decompose the data sets to 
remove the influence of this confounding sub-region factor evident in 
the exploratory analysis. 

For the chemical data, the median of each sub-region was deducted 
for each variable, following the idea underlying ASCA (Analysis of 
variance – Simultaneous Component Analysis) [30]. For the quantitative 
and compositional metagenomic data, first the data was offset by 1 and a 
total sum of squares (TSS) normalisation performed. Subsequent to 
filtering, a centred log ratio (CLR) transformation [26] was applied. By 
calculating the TSS, the compositional data are restricted to a space 
where, in the case of metagenomic data, the sum of all OTU proportions 
for a given sample equals to 1 – this approach accommodates varying 
sampling and sequencing depth [31]. As this normalisation approach is 
representative of relative information and provides a bounded rather 
than Euclidean space, a CLR transformation enables subsequent multi
variate methods to be applied [26,32,33]. Once transformed, the data 
was then decomposed as described for the chemical data. Following the 
removal of the subregion effect, the transformed data underwent 
exploratory analysis using PCA which indicated the subregional effect 
was removed (Figure S1). 

3.3. Biomarker identification 

In order to test if soils could be effectively classified by viticultural 
management based upon the untransformed (Fig. 3, red and blue) and 
transformed data (Fig. 3, green and purple) data, random forest [34] 
classifier models were employed. While not part of the proposed 
workflow, analysis of the untransformed data was included in this 
instance to demonstrate the effect of removing the confounding factor, 

particularly on biomarker identification. 
Analysis of the performance of 100 such models for each data set, 

with correct labels (red, green) and random labels (blue, purple) are 
shown using the Matthew’s correlation coefficient (mcc, Fig. 3) [35]. 
Models exhibited a distinctly enhanced classification efficiency 
compared to when groups were randomly assigned (median ≈ 0, i.e. 
random prediction, blue and purple; p-value ≈0 for Wilcoxon 
signed-rank tests). This indicates that the random forest models are 
effective in classifying management practice and that there are sufficient 
differences in the chemical and metagenomic data between viticultural 
management practices that can be exploited to build these models. 
Overall, the classification models constructed using the transformed 
metagenomic data (Fig. 3 right, green, median ≈ 0.8) were better than 
their counterpart based on the transformed chemical data (Fig. 3, left, 
green, median ≈ 0.3), suggesting that the differences between man
agement practices in the soil fungal communities was more pronounced 
and greater than the chemical profiles. 

While the random forest models based on the untransformed meta
genomic data did perform well (Fig. 3, right, red, median ≈ 0.7), 
transforming the data to remove the influence of the subregion con
founding factor resulted in a larger classification efficiency for viticul
tural management practice. Interestingly, this was not seen for the 
chemical data, where the classification model constructed using the 
transformed data (Fig. 3, left, green, median ≈ 0.3) has a slightly lower 
classification ability than the untransformed data (Fig. 3, left, red, me
dian ≈ 0.5). This may be due to the fact that in transforming the data - 
removing the subregion median from each value, for each variable - 
variability in the data is being removed. While this does result in a slight 
drop in performance of this classification model, the model is still able to 
make predictions and transforming the data means that conflicting data 
is removed or minimised in the analysis, something that is of great 
benefit when identifying biomarkers and variables of interest. 

Random forest model performance for the classifiers based on the 
transformed and untransformed data is, overall, not markedly different. 
However, it can be seen that through removal of subregion trans
formation, the classifier becomes slightly less efficient, suggesting that 
the inclusion of the subregion confounding factor was biasing the 
analysis. 

Random forest models allow specific chemical and metagenomic 

Fig. 3. Mathews correlation coefficients of the 100 random forest classifier models built using the chemical data (left) and metagenomic data (right) with correct 
viticultural practice labels (red for untransformed data, green for transformed data) and random labels (as the control, blue for untransformed data, purple for 
transformed data). Matthews correlation coefficient is a measure of classification efficiency, with a value of +1 indicating perfect prediction, 0 indicating random/an 
ineffectual model and − 1 indicating complete disagreement between the observed and predicted class. 
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variables that differ according to viticultural management practice to be 
identified, and those with the greatest differences for the transformed 
data are shown in Figs. 4A and 5A. The benefit and influence of trans
forming the data is apparent when identifying and analysing the vari
ables deemed most important for the random forest models to classify 
viticultural practices: the biomarkers (Figs. 4 and 5). While some of the 
most important variables from the untransformed data (see Figures S2 
and S3) are the same for the transformed data (i.e. Se, Sr, Mn, 
Soil_pH_H20, DENOVO021, DENOVO010, DENOVO053), other influ
ential variables come to light following data transformation (i.e. Mo, Li, 
DENOVO037, DENOVO001, DENOVO003). 

It can also be noted that the variables that had particularly varied 
and incoherent trends in the untransformed data (i.e. Soil_pH_CaCl, 
DENOVO03) were not found to be important variables in the classifi
cation models built using the transformed data. This indicates that this 
methodology was useful for identifying true “global” biomarkers with 
similar trends across the levels of the confounding variable. 

Furthermore, the trends between organic and conventional practices 
for the important variables are shown to be more similar and coherent 
across the subregions following transformation. This provides confi
dence in the statistical approach to identify these variables as bio
markers. This is particularly true for the metagenomic data, with all of 
the important variables except for DENOVO032 showing consistency in 
trend across all subregions (Fig. 5B), although it is also apparent that the 
trends are far more conserved for the transformed chemical data 
(Fig. 4B) than the untransformed chemical data (Figure S2B). 

3.4. Variable association 

In addition to identifying biomarkers that distinguish viticultural soil 
from organic and conventional practices, another goal of this analysis 
was to unearth any links and associations between the chemical and 
metagenomic profiles of the soil. 

Using our workflow, one of the ways in which this can be done is to 
identify the most important variables in the classification model (i.e. 
Figs. 4A and 5A) and compare them to identify any potential 

correlations in a pairwise fashion. An example from this analysis is 
shown (Fig. 6) where the most influential chemical Se, was investigated 
for its correlation with some of the most discerning metagenomic vari
ables (i.e. DENOVO021 and DENOVO138) and their potential to 
distinguish viticultural management practices were correlated. It can be 
noted that between Se and DENOVO021 there is an overall trend, with 
two observable clusters present, grouped by viticultural management 
practice (Fig. 6 left). Results of this investigation suggest a relationship 
between selenium and this metagenomic marker. This, coupled with 
naturally low levels of selenium in New Zealand soils [36], is an inter
esting observation, indicating that changes in selenium levels in New 
Zealand soil may be manipulated by viticultural practice, and that this is 
correlated with a change in the fungal composition of soils in vineyards. 
This is but one example of what can be achieved following this approach 
to identify links between chemical and biological variables. 

That being said, it would not be expected that such a strong associ
ation between all pairs of important variables be apparent, as can be 
seen in relating Se and DENOVO138 (Fig. 6, right). 

3.5. Trend identification 

The above strategy of investigating links between biomarkers pre
cludes that the variables are biomarkers that are important for the 
classification of soil as being from either organic or conventional man
agement practices that provides information on what differentiates 
these two groups. It is also of interest to discover underlying trends and 
associations between chemical and metagenomic data that hold across 
all of the samples, regardless of viticultural practice. A greater under
standing of this complex system can be attained by having this added 
capability in the analysis. 

Another method to formally identify if there are common associa
tions between any of the metagenomic and chemical measures when the 
subregion is removed, is by conducting an association analysis using 
mutual information. A methodology to identify such associations and 
determine the strength of the relationships was recently reported using 
the Python-based open-source software, MICtools [37]. 

Fig. 4. (A) Median (red) and confidence intervals (blue, 95%) for the ranks of the most important transformed chemical variables in the 100 random forest models, 
and (B) values for each of the most important transformed chemical variables (according to the random forest models) for the different viticultural management 
practices, separated by subregion. 
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Applying this analysis to the soil data demonstrated that this 
approach was able to identify previously-unknown relationships be
tween variables from the chemical and metagenomic profiles of the soil. 
An example of variables that had a high value of global association in all 
samples was C and N and DENOVO02, where one can see a clear 
decreasing trend between DENOVO002 and C and N levels (Fig. 7A). 
This trend, however, would have been masked had the effect of subre
gion not been removed (Fig. 7B). This clearly exhibits how confounding 
effects, i.e. subregion, can nullify the outcomes of association analysis. 
This also demonstrates that this analysis strategy allows one to analyse 
data without the influence of the confounding variables to reveal any 
links and associations between variables. To otherwise identify and 
model such a multi-level relationship would require the use of a multi- 

level analysis (i.e. use of a mixed effect model). 
The variables C, N and DENOVO02 are not biomarkers (i.e. their 

levels are not clearly distinguished between soils of the two manage
ment practices). Using mutual information enables discovery of vari
ables with high levels of association, despite not being organic/ 
conventional biomarkers. 

4. Conclusion 

Here we present an effective statistical pipeline to analyse and study 
complex systems that are strongly influenced by confounding variables 
that would otherwise render classification inference very difficult. In 
this work, we have applied this statistical workflow to soil data from 

Fig. 5. (A) Median (red) and confidence intervals (blue, 95%) for the ranks of the most important transformed metagenomic variables in the 100 random forest 
models, and (B) values for each of the most important transformed metagenomic variables (according to the random forest models) for the different viticultural 
management practices, separated by subregion. 

Fig. 6. Exploration of the relationship between the most important chemical- and metagenomic-related variable(s), selenium and DENOVO021 (Fungi; Ascomycota; 
Dothideomycetes; Pleosporales; Montagnulaceae, left) and DENOVO138 (Fungi; Basidiomycota; Agaricomycetes; Geastrales; Geastraceae; Geastrum, right), 
respectively, and the impact of conventional (circle) and organic (filled) management practices on their relationship. 
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vineyards that follow either organic or conventional viticultural man
agement practices. The workflow involves exploratory analysis to 
identify confounding variables followed by data decomposition 
(including strategies for both compositional and non-compositional 
quantitative data) to remove influence of this confounding factor. 
These data processing methods then allow for common patterns to be 
highlighted in these datasets, identification of biomarkers and deter
mination of non-trivial associations between variables. While soil is an 
example of a multidimensional system that requires this type of statis
tical methodology, there are a range of similar natural science systems 
that have properties that are challenging to analyse due to the complex 
interplay of global and local effects and would also benefit from such an 
approach. 
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