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Abstract: The need to guarantee the geographical origin of food samples has become imperative in
recent years due to the increasing amount of food fraud. Stable isotope ratio analysis permits the
characterization and origin control of foodstuffs, thanks to its capability to discriminate between
products having different geographical origins and derived from different production systems.
The Framework 6 EU-project “TRACE” generated hydrogen (2H/1H), carbon (13C/12C), nitrogen
(15N/14N), and sulphur (34S/32S) isotope ratio data from 227 authentic beef samples. These samples
were collected from a total of 13 sites in eight countries. The stable isotope analysis was completed by
combining IRMS with a thermal conversion elemental analyzer (TC/EA) for the analysis of δ(2H) and
an elemental analyzer (EA) for the determination of δ(13C), δ(15N), and δ(34S). The results show the
potential of this technique to detect clustering of samples due to specific environmental conditions
in the areas where the beef cattle were reared. Stable isotope measurements highlighted statistical
differences between coastal and inland regions, production sites at different latitudes, regions with
different geology, and different farming systems related to the diet the animals were consuming
(primarily C3- or C4-based or a mixed one).

Keywords: geographical origin; authenticity; food fraud; beef; meat; stable isotope ratio analysis

1. Introduction

Frequent problems with food safety and quality can result in a loss of consumer confi-
dence and multi-million euro losses for sectors such as the meat industry [1]. Governments
have highlighted the need for stricter controls on food safety, authenticity, and geographical
origin. The use of traceability systems to go back through a supply chain from ‘fork to farm’
represents a significant challenge to allow the identification of sources of contamination,
breaches in quality, and fraudulent or accidental misdescription [1].
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Documents and labeling may become unreliable when the origin is intentionally
mislabeled. In this case, an investigation of the product itself is required to identify and
control the real production origin. Stable isotope ratio analysis (SIRA) is arguably one of
the most powerful tools for this purpose. This technique is already routinely applied for
the control of authenticity of wine produced in EU countries [2,3] and has been proven to
be successful for many other kinds of foodstuff [4,5]. Several studies on meat [6], such as
lamb [7,8], pork [9,10], and chicken [11] have already been reported.

It has already been demonstrated that beef cattle reared in Europe can be distinguished
from beef produced in North and South America [12,13]. Similarly, Korean and Japanese
beef can be differentiated from American and Australian beef [14–16]. The isotope ratios
δ(13C), δ(15N), δ(34S), δ(2H), and δ(18O) analyzed by Zhang et al. in samples from Argentina,
Brazil, Canada, China, New Zealand, and Uruguay enabled satisfactory classification
using discriminatory analysis with an original classification accuracy of 96.6% and a cross-
validation accuracy of 95.9% [17]. However, to the best of our knowledge, only a few
studies have considered European samples coming from neighboring countries [18,19],
leaving a gap concerning the applicability of this method to verify the origin of meat from
beef cattle reared within the European region.

The carbon (δ(13C)), nitrogen (δ(15N)), and sulphur (δ(34S)) isotope ratios of the meat
are mainly related to the feed the animals have been consuming [6]. The δ(13C) depends
on the photosynthetic cycle of the plants included in the animal diet [20]. Whilst the
δ(15N) and δ(34S) are influenced by factors like the agricultural practices that have been
applied to the soil on which the animals have been grazing or where the plants that are
incorporated into composite feed or fodder grew (e.g., the use of fertilizers). Furthermore,
the inclusion of particular fodder ingredients can influence the isotopic ratios of the feed
(e.g., δ(15N) effected by leguminous plants, seaweed, fishmeal, and amino acids) [6]. The
δ(34S) values are also related to the geology of the soil and are therefore useful parameters to
be considered in the geographical characterization of animal products [21]. The hydrogen
(δ(2H)) isotope ratio of the animal tissues reflects the isotopic composition of the water that
an animal consumed, whether directly or through moisture in the feed. As the isotopic
composition of water varies regionally due to fractionation in the global hydrological cycle,
these variations are also incorporated into the meat [12,22].

This investigation has been undertaken within the European project Tracing Food
Commodities in Europe (TRACE) (FP6–2003–FOOD–2–A), which has already demonstrated
how SIRA of light elements can be applied to control different products: lamb meat [7],
mineral water [23], olive oil [24], honey [25], and wheat [26] (the latter also including
87Sr/86Sr data). In this paper, we present the isotope values (δ(13C), δ(15N), δ(34S), and
δ(2H)) of beef coming from cattle reared at 13 sites spread throughout 8 European countries,
considering the useful outcomes, as well as the limitations, of stable isotope analysis to
determine and control the declared geographical origin. The measurement of the strontium
isotope ratios (87Sr/86Sr) of most of the beef samples in the present work has been reported
previously by Rummel et al. [27].

2. Results and Discussion

The mean isotopic ratios and standard deviation of δ(13C), δ(15N), δ(34S), and δ(2H) for
the 8 countries involved in the study and for each of the 13 sampling points are reported in
Table 1.



Molecules 2023, 28, 2856 3 of 13

Table 1. Mean δ(13C), δ(15N), δ(34S), and δ(2H) of bovine muscle protein and standard deviations for
the 13 European sites considered. The dataset has been divided in three groups: C_LL_C4 (animals
from coastal areas, sited at relatively low latitudes, given a C4-based diet); I_LL_MIX (animals coming
from inland areas sited at relatively low latitudes, given a mixed diet); C_ML_C3 (animals from
coastal areas sited at higher latitudes compared to the other groups, given a C3-based diet).

Group Country Site
(N. Samples)

δ(2H)
(‰, Vs. V–SMOW)

δ(13C)
(‰, Vs. V–PDB)

δ(15N)
(‰, Vs. Air)

δ(34S)
(‰, Vs. V–CDT)

C_LL_C4

Greece Chalkidiki (4) −99.0 ± 8.0 −20.3 ± 2.1 4.3 ± 1.6 6.1 ± 0.6

Spain Barcelona (15) −97.0 ± 3.6 −18.4 ± 1.1 6.8 ± 0.5 7.1 ± 0.4

Italy Florence (20) −91.1 ± 2.7 −18.9 ± 1.4 5.2 ± 0.6 4.4 ± 0.9
Sicily (20) −87.0 ± 3.5 −20.2 ± 1.3 4.4 ± 0.6 3.3 ± 1.6

I_LL_MIX

Trento (33) −101.5 ± 4.3 −22.0 ± 1.8 4.8 ± 0.8 5.6 ± 0.5

Austria Mühlviertel (4) −110.3 ± 5.0 −24.1 ± 2.6 4.7 ± 0.4 3.9 ± 0.1

France Limousin (20) −98.9 ± 6.0 −21.3 ± 3.2 5.6 ± 0.6 6.6 ± 0.7

Germany Frankonia (20) −108.8 ± 4.7 −22.9 ± 2.8 6.0 ± 1.0 4.1 ± 1.7
Allgäu (20) −116.3 ± 4.1 −25.0 ± 1.8 6.0 ± 1.2 3.3 ± 1.4

Gäuboden (20) −107.1 ± 3.7 −22.3 ± 3.6 6.2 ± 0.9 5.3 ± 0.5

C_ML_C3

UK Cornwall (20) −90.0 ± 1.9 −26.0 ± 1.1 7.7 ± 1.0 8.1 ± 1.6
Orkney (23) −96.9 ± 2.5 −26.8 ± 0.4 7.9 ± 0.6 10.0 ± 3.1

Ireland Bohernagore (8) −102.1 ± 2.6 −26.7 ± 0.3 6.4 ± 1.0 8.8 ± 1.6

2.1. Carbon Stable Isotopic Ratio

The carbon isotope composition of beef is mainly influenced by the cattle’s feed,
which is composed of plants and, in some cases, concentrates and supplements. The δ(13C)
of the beef muscle tissue, which has come into equilibrium with the diet, is therefore
ultimately influenced by the photosynthetic pathway that the cattle-diet plants utilize
for CO2 fixation [20]. On this basis, plants can be categorized into three groups: C3,
C4, and CAM plants [28]. The C3 plants, representing about 85% of the plant species
on the planet, fix carbon via the Calvin cycle through the Rubisco enzyme (ribulose-1,5-
biphosphate carboxylase oxygenase) [29]. These plants have values ranging between
−33 and −23‰ [28]. On the other hand, both C4 and CAM plants follow alternative
photosynthetic pathways to fix CO2, adapted to improve the efficiency of photosynthesis
in hot and arid environments and reduce water loss through stomatal evapotranspiration.
The C4 plants fix the CO2 through a non-Rubisco enzyme, producing a 4-carbon organic
acid (oxaloacetic acid), from which their name derives [29]. Their δ(13C) values range
between −14 and −12‰ [28]. Finally, CAM plants, which possess δ(13C) values ranging
between C3 and C4 values, use a different water-saving pathway called crassulacean acid
metabolism (CAM), based on the temporal separation of CO2 fixation and the subsequent
sugar synthesis [29].

Forages and feed concentrates included in the animals’ diets may be derived from
both C3 and C4 plants. However, in Europe, C4-derived values in bovine muscle tissue
δ(13C) are synonymous with the feeding of maize (Zea mays or corn), as this is the only C4
fodder crop of commercial importance in the countries where the test samples originated.

In this study, the δ(13C) values of the bovine muscle protein (defatted dry mass) ranged
from −15.5‰ to −27.6‰. As a result of the ANOVA, the three groups considered in Table 1
were statistically different (p < 0.05). The C_LL_C4 group (δ(13C) = −19.3 ± 1.5‰) includes
Mediterranean countries (Greece, Italy, and Spain), in which the substantial use of C4
plant-based concentrated feed in the rearing practices is widespread. However, the mean
value, together with the standard deviation, evidence different feeding practices, which at
least partially might be related to intensive (in a stable, use of feed with C4-plant (maize)
dominance) or extensive (rearing on meadows, with only minor maize feed additions to
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grazing, if at all) rearing of cattle. Our results are consistent with the δ(13C) values obtained
by Osorio et al. for Italian and Spanish samples [18,19].

On the other hand, northern coastal regions seem to have predominantly grazing
systems based on C3 pasture plants, with the C_ML_C3 group having a mean δ(13C) of
−26.5 ± 0.8‰. These findings are consistent with published δ(13C) data from sampling
points located in the United Kingdom and Ireland [18,19].

For the remaining group I_LL_MIX, including alpine and mountainous areas, there
is a wide variety of grazing systems with intermediate δ(13C) results and a relatively
higher standard deviation (δ(13C) = −22.7 ± 2.9‰). The results are consistent with other
studies carried out on beef samples coming from France, Austria, and Germany [18,19].
Nevertheless, in this group, areas that seem to be based mainly on a C3 diet, such as
Mühlviertel (A) and the Allgäu (DE), can be readily identified. However, the high standard
deviation in δ(13C) for almost all the regions in this group demonstrates the use of highly
variable rearing practices.

Carbon Isotopic Ratio of the Beef Fat

The δ(13C) of the fat and the protein fraction of meat are known to be correlated, as
reported in the literature [30–32]. Nevertheless, to exclude the lack of additional information
derived from the analysis of the δ(13C) of the fat fraction, a subset of beef muscle samples
was measured to assess this parameter.

The δ(13C)FAT of all Italian samples (Sicily, Trentino, and Tuscany) was isolated and
compared to the δ(13C)PROTEIN. A mean depletion of 4.1 ± 1.1‰ in fat compared to the
protein samples was calculated, in line with the findings of other authors in other animal
species [33–35]. As expected, δ(13C)FAT and δ(13C)PROTEIN are correlated with a linear fit
(δ(13C)FAT = −0.14 + 1.19 δ(13C)PROTEIN, r2 = 0.88, p < 0.001). For the purpose of this study,
as the analysis of the fat provides no additional information regarding its origin, it will be
excluded from further discussion.

2.2. Nitrogen Stable Isotopic Ratio

The δ(15N) of beef is mainly affected by the species of forage plants eaten by the
cattle and the nitrogen pool in the soil where the forage plants or pasture grow. Legumi-
nous plants (e.g., pea, clover, soybean) can incorporate nitrogen directly from their rhizo-
symbionts that metabolize the atmospheric nitrogen, resulting in relatively low isotopic
ratios (around 0‰) [8]. For non-nitrogen-fixing plants, their δ(15N) is mainly influenced
by the nitrogen isotope composition of the water-soluble soil nitrate and fertilizers [36]. In
particular, synthetic fertilizers, produced from atmospheric nitrogen via the Haber process,
have δ15N values between −4‰ and +4‰, while organic fertilizers are characterized by
values between +0.6‰ and +36.7‰ [37,38]. Moreover, highly elevated δ(15N) values may
be indicative of the inclusion of marine plants and fishmeal, enriched in 15N, in the feed or
as fertilizer ingredients [39].

In this study, δ(15N) of the beef protein fraction ranged from 3.0‰ up to 9.6‰. The
results we obtained are consistent with δ(15N) obtained for beef samples coming from various
European countries [18,19]. Coastal areas such as Barcelona (ES) (δ(15N) = 6.8 ± 0.5‰), Orkney
(UK) (δ(15N) = 7.7 ± 1.0‰), and Cornwall (UK) (δ(15N) = 6.0 ± 1.2‰) showed relatively
higher and more consistent δ(15N) than the rest of the dataset, which possessed a low standard
deviation (δ(15N) = 5.4 ± 1.1‰). As previously mentioned, this may be due to the use of
organic fertilizers or products of the marine ecosystem in the agricultural practices of the
area. For Orkney, Ireland, and Cornwall, a further explanation might be the rearing practice:
extensive rearing of the cattle on meadows for (almost) the entire year might have led to an
enrichment in the δ15N of the soil and thus the meadows the cattle foraged on due to the
cattle manure, in contrast to cattle reared in stables and fed on corn and cereals fertilized with
synthetic fertilizers. This also might explain the δ15N values of the German and Austrian
beef samples because, even if the cattle there graze on meadows in the summer, they are kept
in a stable and fed on dry feed (that at least partially might have been produced with the
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application of synthetic fertilizers) during the rest of the year. Particularly low results such as
those of Chalkidiki (GR) (δ(15N) = 4.3 ± 1.6‰) and Sicily (IT) (δ(15N) = 4.3 ± 1.6‰) may be
due to the dominant use of feed produced with synthetic fertilizers and/or to an increased
amount of Leguminosae among concentrated feed or foraged plants.

2.3. Sulphur Stable Isotopic Ratio

The δ(34S) of beef muscle protein tends to reflect the values of the plants the cattle
were fed on. In turn, the δ(34S) values of the plants are mainly influenced by the geology
of the soil the plant grew on (for instance, the presence of sulfates or sulfides in the soil
and the type of underlying local bedrock). Other factors of influence, such as fertilization
practices that include sulphur amendment [21,40,41] and proximity to the sea (the sea-spray
effect) [21,40], as present-day seawater has a δ(34S) value of approximately 21–22‰ [42],
also have to be considered.

In the present study, δ(34S) ranged from −1.7 up to 14.5‰. In general, coastal regions
show relatively elevated δ(34S) values compared to the rest of the dataset. This may be the
result, as previously mentioned, of the sea-spray effect on pastures where cattle are grazing,
or in the fertilization practices of products coming from the marine ecosystem, or of the
use of fertilizers rich in sulphur and having high δ(34S) values, which may be produced
from salt deposits of earlier geological times (evaporites) [43]. The influence of sea-spray
may be very variable between different sites; e.g., Mizota and Sasaki [42] reported notably
lower δ(34S) values only 16km inland from the sea in Japan. Thus, we assume a dominant
sea-spray effect for the samples from Orkney, where all pasture areas are within 16km of the
coast. For the Irish samples, a minor influence of sea-spray can be assumed, as the lowest
δ(34S) values measured in Irish sheep wool [44] (reporting sheep δ(34S) values from various
localities on the island) are around 6–7‰ and maximum values of ca. 17‰ at the western
and below 11‰ at the eastern coast. Bearing in mind these maximum values, the δ(34S)
data of Orkney beef samples are surprisingly low, even more so as the average elevation of
Orkney is around 100 m (or slightly less). This suggests that the bedrock geology might
have a notable influence.

Nevertheless, Florence and Sicily represent an exception, having δ(34S) values
(4.4 ± 0.9‰ and 3.3 ± 1.6‰, respectively) lower than the rest of the previously men-
tioned coastal regions. This may be due to the volcanic nature of the soil, which charac-
terizes the Italian regions of Tuscany and Sicily, resulting in relatively low δ(34S) [45].
However, volcanism as an explanation for low or high δ(34S) values [46] has been chal-
lenged, and the geological map of Tuscany shows just very small volcanic areas, so
the oxidation of sedimentary sulfides is a more plausible explanation for the observed
low δ(34S) values [42]. Particularly low values are also reported by Osorio et al. [47] for
beef samples coming from Italy (δ(34S) = 1.5 ± 2.3‰) and by Camin et al. [7] for lamb
samples coming from Sicily (δ(34S) = 2.5 ± 1.7‰) and Tuscany (δ(34S) = 3.8 ± 0.6‰ for
lambs given a mixed diet; δ(34S) = 1.9 ± 0.7‰ for milk-fed lambs).

As for the I_LL_MIX group, relatively low values (δ(34S) = 5.0 ± 1.5%) can be attributed
to the δ(34S) of the bedrock geology, confirming that the geology is the most relevant factor
in determining the δ(34S) of most terrestrial animal food products. The sites of Frankonia,
Allgäu (DE), and Mühlviertel (A) agree with this interpretation, having relatively low
values (δ(34S) = 4.1 ± 1.7‰, δ(34S) = 3.3 ± 1.4‰, and δ(34S) = 3.9 ± 0.1‰, respectively). The
just-mentioned results for the German sites are consistent with previous values reported by
Auerswald et al. for the hair of cattle reared in Grünschwaige (DE) [48]. Particularly low
values for samples coming from different parts of Austria are reported in the literature [47].
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2.4. Hydrogen Stable Isotopic Ratio

The isotopic composition of animal meat is related to the feed and water that the
animal ingests [7,18]. The feed has previously been shown to be the main source of animal
muscle protein hydrogen [49,50]. Nevertheless, Perini et al. proved that even though only
around 30% of hydrogen body protein derives from drinking water [49,50], the H isotopic
composition of defatted dry mass records the deuterium signature of meteoric water [8].

The isotopic ratio of the water (H− and O−isotopes) depends on the water source
the cattle are drinking, whether groundwater (tap water), surface water, or water in the
feed (e.g., water in pasture grass). The precipitation hydrogen and oxygen δ(18O) isotopic
ratios are highly variable because of two factors: the temperature effect (the cooler the
air temperatures, the lower the isotopic composition of precipitation) and the continental
effect (a greater distance from the sea causes a depletion in the isotopic composition of the
precipitation) [51,52] through the “rain-out” of the heavier isotopologues of water as clouds
move inland. In this way, lowlands close to the sea and warm regions are characterized by
water enriched in the heavy isotopes of hydrogen and oxygen (2H and 18O). On the other
hand, regions far from the sea, at high altitudes, and with low temperatures have water
with relatively depleted δ(2H) isotope values. Moreover, due to plant evapotranspiration,
the water in the fresh cattle feed is significantly enriched in its isotopic composition with
respect to the water the plant takes up from the soil [53].

In this study, the δ(2H) values of the bovine protein ranged from −78.2‰ to −126.0‰.
According to the ANOVA, the δ(2H) of the three groups considered in this study were
statistically different (p < 0.05). The C_LL_C4 group, including samples coming from coastal
regions sited at low latitudes, has the highest values in the datasets (δ(2H) = −91.7 ± 5.6‰).
In particular, samples coming from Sicily (IT) (δ(2H) = −87.0 ± 3.5‰) possessed the highest
δ(2H) values in the dataset (Table 1). Despite being coastal, as the previously mentioned
group, C_ML_C3 samples are characterized by higher latitudes than C_LL_C4, resulting
in relatively lower values (δ(2H) = −95.1 ± 5.0‰). Finally, the lowest values have been
found in the I_LL_MIX group, including samples coming from inland sites, mostly alpine or
hilly/mountainous locations. This can be explained by the long distance of the cattle-rearing
sites from the sea. In this group, samples from Allgäu (DE) were the lowest of all the datasets
(δ(2H) = −106.5 ± 7.5‰).

As previously stated, the factor that mainly influences the δ(2H) isotopic ratio of the
plants, and thus of the animal proteins, is water, whose primary source is the rainfall.
Therefore, the correlation between the average δ(2H) values of beef protein and the annual
average isotopic signature of rainfall has been evaluated at the 13 different sampling
locations and is represented in Figure 1. In the absence of direct measurement of the δ(2H) of
the rainwater, water isotope data from the WaterIsotope database administered by Gabriel
Bowen have been used. The data available in the http://wateriso.utah.edu (accessed on 1
March 2023) database are monthly weighted average precipitation values for sites all over
the world. When possible, the GPS coordinates of the beef cattle rearing locations have been
used to calculate the predicted δ(2H) value of the water at that sampling site. The complete
dataset used to perform the correlation represented in Figure 1 is reported in Table S2 of
the supplementary material. As expected, δ(2H) of the beef protein and precipitation are
positively correlated (linear correlation, r2 = 0.77, p < 0.001).

http://wateriso.utah.edu
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2.5. Principal Component Analysis

The results of the PCA carried out on the variables are summarized in Figure 2, which
displays the objects and the variables simultaneously projected in the space of the first
two PCs. Even though no information on the sample provenance or the animal diets is
incorporated into the PCA, the biplot reveals a clustering of the three groups: C_LL_C4,
C_ML_MIX, and I_LL_C3.

The δ(15N) and δ(34S) values of the beef protein are almost parallel to the direction
along which the C_ML_C3 group is separated from the rest of the dataset and contribute
to the identification of this group with respect to the others. This observation agrees
with the previously discussed interpretation of the stable isotope results. Indeed, higher
δ(15N) and δ(34S) values have been found for the C_ML_C3 group with respect to the
others. This is likely due to the closeness to the sea of the sampling points included in the
group (Bohernagore (IE), Orkney, and Cornwall (GB)) and the respective bedrock geology,
assuming a dominant influence for the latter. On the other hand, despite being coastal,
samples of group C_LL_C4 are characterized by relatively low δ(34S) due to the volcanic
origin of two of the sites belonging to this group (Sicily, IT) and a peculiar geology (Tuscany,
IT), while samples of group I_LL_MIX resulted in relatively low both δ(15N) and δ(34S),
due to their geology and, with respect to δ(15N) values, probably the feeding practice.

The separation between the C_ML_C3 group and the rest of the dataset occurs almost
parallel to PC1, and δ(2H) seems to be the parameter that most contributes to this discrimi-
nation. Indeed, while group C_ML_C3 includes middle latitude samples, the other groups
include low latitude samples, and δ(2H) is known to depend on this parameter.

Finally, as for the discrimination based on the diet that the animals have been given,
the separation among the three groups seems to occur along the bisector of PC1 and PC2
axes, and all the isotopes measured appear to make a contribution. Indeed, as previously
mentioned, all isotopes under study are influenced by the diet that the animals have been
exposed to, whether through feeding or through drinking water, reinforcing the maxim
that “you are what you eat (isotopically)” [54].
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Figure 2. Plot showing the first two principal components (PC1 and PC2) determined from the
analysis of beef protein δ(2H), δ(13C), δ(15N), and δ(34S) values. The three groups considered are
identified by different colors: C_LL_C4 (animals from coastal areas, sited at relatively low latitudes,
given a C4-based diet (Barcelona, Chalkidiki, Sicily, and Tuscany)) in blue; C_ML_C3 (animals
from coastal areas sited at higher latitudes compared to the other groups, given a C3-based diet
(Cornwall, Orkney and Bohernagore)) in orange; I_LL_MIX (animals coming from inland areas sited
at relatively low latitudes, given a mixed diet (Limousin, Frankonia, Allgäu, Gäuboden, Mühlviertel,
and Trentino)) in grey.

3. Materials and Methods
3.1. Samples

Beef samples have been taken directly at the cattle farms or in slaughterhouses. A total
of 227 samples, coming from 13 sites spread across 8 different European countries, have
been considered: Bohernagore (Republic of Ireland, IE), Orkney and Cornwall (United
Kingdom), Limousin (France, FR), Barcelona (Spain, ES), Frankonia, Allgäu, and Gäuboden
(Germany, DE), Mühlviertel (Austria, A), Trentino, Tuscany, and Sicily (Italy, IT), and
Chalkidiki (Greece, GR). Whenever possible, the GPS coordinates and elevation above sea
level of each sampling point were recorded.

In discussing the results, the samples have been grouped according to the geographical
origin and the diet of the animals. In particular, the first group is named I_LL_MIX, as
it includes samples coming from inland areas (I) sited at relatively low latitudes (LL),
where the animals have been given a mixed diet (Limousin, Frankonia, Allgäu, Gäuboden,
Mühlviertel, and Trentino); similarly, group C_LL_C4 includes the samples coming from
coastal areas (C) sited at relatively low latitudes (LL), where the animals have been given a
C4-based diet (Barcelona, Chalkidiki, Sicily, and Tuscany); finally, group C_ML_C3 includes
the samples coming from coastal areas (C) sited at higher latitudes (ML) compared to the
other groups, where the animals have been given a C3-based diet (Cornwall, Orkney and
Bohernagore).
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3.2. Preparative and Analysis Procedures

The samples were frozen or cooled during transport to the respective isotope laborato-
ries. The meat was cut, minced, and lyophilized. Afterwards, the samples were freeze-dried
and defatted with a soxhlet apparatus using petroleum ether [7,55]. The fat-free residue
(or dry mass), considered below as predominantly the protein fraction, was collected and
saved for the C, N, S, and H analyses, while the fat fraction of a sub-set of samples was
considered in paragraph 3.1.1 to make a comparison between δ(13C)FAT and δ(13C)PROTEIN.

3.3. Stable Isotope Ratio Analysis

All samples were weighed into silver and tin capsules for H− and CNS−isotope
measurements, respectively. The capsules were introduced into a thermal conversion
elemental analyzer (TC/EA) for the analysis of δ(2H) and an elemental analyzer (EA) for
the determination of δ(13C), δ(15N), and δ(34S). As the samples have been processed and
measured in several laboratories, different isotope ratio mass spectrometers (IRMS) and
peripheral devices have been used (see [7,25,55]).

In agreement with the IUPAC protocol, the isotopic values are expressed in ‘delta
notation’ in relation to the international standards V–PDB (Vienna–Pee Dee Belemnite) for
δ(13C), V–SMOW (Vienna–Standard Mean Ocean Water) for δ(2H), V–CDT (Vienna–Canyon
Diablo Troilite) for δ(34S), and Air (atmospheric N2) for δ(15N), following equation (1):

δre f (
iE/jE, sample) =

[
R(iE/jE, sample)

R(iE/jE, re f )

]
− 1 (1)

where ref is the international measurement standard, sample is the analyzed sample, and
iE/jE is the isotope ratio between heavier and lighter isotopes [20]. The delta values are
multiplied by 1000 and expressed commonly in units “per mil” (‰) or, according to the
International System of Units (SI), in units milliurey (mUr) [56].

The isotopic values were calculated against two standards through the creation of a
linear equation. The standards that have been used in the isotopic analyses were interna-
tional reference materials or in-house working standards that have been calibrated against
them. In particular, the international standards that have been used are: for 13C/12C, fuel
oil NBS–22 (δ(13C) = −30.03 ± 0.05‰), sucrose IAEA–CH–6 (δ(13C) = −10.45 ± 0.04‰)
(IAEA–International Atomic Energy Agency, Vienna, Austria), and L–glutamic acid USGS
40 (δ(13C) = −26.39 ± 0.04‰) (U.S. Geological Survey, Reston, VA, USA); for 15N/14N,
L–glutamic acid USGS 40 (δ(15N) = −4.52 ± 0.06‰) (U.S. Geological Survey, Reston,
VA, USA), ammonium sulfate salts IAEA–N–1 (δ(15N) = +0.43 ± 0.07‰) and IAEA–N–2
(δ(15N) = +20.41 ± 0.12‰) and potassium nitrate IAEA–NO3 (δ(15N) = +4.7 ± 0.2‰); for
34S/32S, USGS 42 (δ(34S) = +7.84 ± 0.25‰), USGS 43 (δ(34S) = +10.46 ± 0.22‰), Barium
sulphate IAEA–SO–5 (δ(34S) = +0.5 ± 0.2‰) and NBS 127 (δ(34S) = +20.3 ± 0.4‰); for
2H/1H fuel oil NBS–22 δ(2H) = −119.6 ± 0.6‰) and Keratins CBS (Caribou Hoof Standard
δ(2H) = −157 ± 2‰) and KHS (Kudu Horn Standard δ(2H) = −35 ± 1‰) from U.S. Geo-
logical Survey.

Each reference material was measured in duplicate at the start and end of each daily
group of analyses of samples (each sample was also analyzed in duplicate). A control
sample was also included in the analyses of each group of samples to check the efficiency
of the measure. The maximum standard deviations of repeatability accepted were 0.3‰ for
δ(13C) and δ(15N), of 0.4‰ for δ(34S), and of 3‰ for δ(2H).

Additional interlaboratory comparisons on meat samples have been done at the
beginning of the project and throughout its duration to evaluate its accuracy and protect
against bias among the seven laboratories involved in the project.

The laboratories involved and the standard deviations between labs calculated for
δ(13C), δ(15N), δ(34S), and δ(2H) are reported in Supplementary Table S1.
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3.4. Statistical Analysis

Statistical analysis was carried out using Statistica 14.0.1.25. A one–way ANOVA was
used to test the effect of the geographical origin and the animal diet on the isotopic ratios,
applying Tukey’s test for post-hoc analysis. The p-value cutoff was set at <0.05, indicating
significant statistical differences. The linear correlations reported in Sections 2.1 and 2.4 were
performed by considering the Pearson’s coefficient and setting a p-value cutoff of <0.001.

To first explore the dataset and graphically represent all the data, a PCA (principal
component analysis) was performed. The objective of data reduction methods like principal
component analysis is the reduction of the number of variables and the detection of
structure in the relationships between variables [57]. Patterns in a data matrix can be
emphasized by projecting objects and variables into the space of a few significant PCs with
minimal loss of information. The dataset of five isotope parameters has been reduced to
four factors, and the first two, PC1 and PC2, explain a total of 77.5% of the data variation.

4. Conclusions

In this study, a total of 227 defatted muscle tissue samples derived from beef cattle
reared at 13 geographical locations spread across the European continent have been collected
and isotopically analyzed. The dataset has been divided into three main groups (C_LL_C4,
C_ML_C3, and I_LL_MIX) having similar characteristics (based on geographical features
and breeding practices) to easily characterize similar groups of samples. The SIRA of δ(13C),
δ(15N), δ(34S), and δ(2H) has been applied to detect statistical differences in the dataset.

Both δ(13C) and δ(2H) gave statistically significant differences between the three
groups, whether due to the different feeding regimes of the animals or to the different
latitudes and climatic conditions of the sampling points, respectively. Particularly high
δ(15N) values have been found in some coastal sampling points, while the rest of the dataset
showed homogeneous values. Regarding δ(34S), higher values were found for coastal areas
with respect to inland regions. The Italian regions of Sicily and Tuscany were an exception,
probably due to the volcanic nature of their soil. To better highlight clusters in the dataset,
a PCA was performed. The biplot displaying the first two PCs, explaining in total 77.5%
of the data variation, reveals a clustering of the three groups C_LL_C4, C_ML_MIX, and
I_LL_C3, confirming the underlying biogeoclimatic hypotheses.

In this work, stable isotope analysis was confirmed to be a powerful tool to discrim-
inate among beef samples coming from neighboring European countries, to distinguish
coastal and inland regions, and areas having different latitudes and breeding systems. In
the future, it would be worth producing other chemometric models based on supervised
pattern recognition, such as linear discriminant analysis (LDA), aiming to assess the origin
of unknown beef samples. The present results might also help in the future construction of
an isotopic databank built for each country and aiming to assess the authenticity of beef
samples and potentially protect and promote PDO and PGI products, e.g., Orkney beef.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28062856/s1, Table S1: Inter-laboratory reproducibility
for the beef muscle powder (NIST 8414) and the beef liver powder (NIST 1577b) Inter-Comparison
Materials (SR = standard deviation of reproducibility); Table S2: Mean measured δ(2H) for each
sampling point and estimated δ(2H) of water at beef sampling location according to the WaterIsotope
database (http://wateriso.utah.edu, accessed on 25 January 2023). Coordinates were provided for
all sampling points. In case of lack of information regarding the altitude of the sampling points, the
coordinates were used as a reference on a topographic map.
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