

Abstract Book

QUEEN ELIZABETH II CONFERENCE CENTRE, LONDON

CONTENTS

Oral Presentations	3
Epidemiology	
Cardiometabolic diseases and mechanisms	
Bioavailability, absorption and metabolism	7
Mode of action	10
Gut (Microbiome)	12
Brain and cognition	14
Early Career Symposium	16

Poster Presentations	20
Analytical sciences - measurement of polyphenols	21
Bioavailability, absorption and metabolism	43
Brain and cognition	70
Cancer	80
Cardiovascular disease	90
Clinical trials	100
Epidemiology	113
Infectious diseases	118
Gut microbiota	
Mechanisms in action	
Other	

thor Index156

Oral Presentations

Bioavailability, absorption and metabolism

OC4

Circulating (poly)phenol metabolites blood-brain barrier transport and brain availability

Rafael Carecho^{1,2}, Daniela Marques¹, Diogo Carregosa^{1,3}, Domenico Masuero⁴, Mar Garcia-Aloy⁴, Federica Tramer⁵, Sabina Passamonti⁵, Urska Vrhovsek⁴, Rita Ventura², Maria Alexandra Brito^{6,7}, Cláudia N. Santos^{1,3,2}, <u>Inês Figueira¹</u>

¹CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal. ²Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, Oeiras, Portugal. ³iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Apartado 12, Oeiras, Portugal. ⁴Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige, Italy. ⁵Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Trieste, Italy. ⁶iMed.ULisboa—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa, Portugal. ⁷Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa, Portugal

Objectives/Background: (Poly)phenols have been extensively studied considering their beneficial brain-health effects, particularly regarding neurodegenerative disorders. Circulating metabolites resultant from colonic metabolism of dietary (poly)phenols are highly abundant in the bloodstream, though still marginally underexplored, particularly regarding their brain accessibility. Our goal is to disclose circulating (poly)phenol metabolites' capability of reaching the brain, *in silico, in vitro,* and *in vivo*.

Materials/Methods: For three selected (poly)phenol metabolites, in silico relevant molecular descriptors were obtained using Qikprop software. Metabolites' blood-brain barrier (BBB) transport and further metabolism were assessed in human brain microvascular endothelial cells (HBMEC) in transwells. Their fate towards brain, liver, kidney, urine, and blood, was also assessed in Wistar rats upon injection. Both UPLC-MS/MS and untargeted analysis were employed.

Results/Findings: The results from computational analysis indicate that all the studied metabolites can passively cross the BBB. Transport kinetics along time using HBMEC highlighted different BBB permeability rates of the (poly)phenol metabolites, with novel end-route metabolites appearing at the brain site. From *in vivo* experiments, we found that all the injected metabolites can almost immediately cross the BBB and reach the brain, though at distinct extents, presenting different tissue distribution rates.

Conclusion: Overall, we proved the ability of three circulating (poly)phenol metabolites to reach the brain, in circulating concentrations, with the ultimate potential to tackle neurodegeneration.

Acknowledgments: To European Research Council (ERC) - Grant No. 804229; to iNOVA4Health Research Unit (LISBOA-01-0145-FEDER-007344), co-funded by Fundação para a Ciência e Tecnologia (FCT)/Ministério da Ciência e do Ensino Superior (MCTES), through national funds, and by FEDER under the PT2020 Partnership Agreement; to iNOVA4Health - UIDB/04462/2020, by FCT/ Ministério da Educação e Ciência (MEC). The authors would like to acknowledge FCT for financial support of R.C. (PD/BD/135492/2018), D.C. (2020.04630.BD), and D.M. (2021.05505.BD).

Keywords

blood-brain barrier, circulating (poly)phenol metabolites, brain uptake