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ABSTRACT
Dill (Anethum graveolens L.) is an aromatic herb widely used in the food industry,
with several commercial cultivars available with different qualitative characteristics.
Commercial cultivars are usually preferred over landraces due to their higher yield
and also the lack of improved landraces than can be commercialized. In Greece,
however, traditional dill landraces are cultivated by local communities. Many are
conserved in the Greek Gene Bank and the aim here was to investigate and compare
the morphological, genetic, and chemical biodiversity of twenty-two Greek landraces
and nine modern/commercial cultivars. Multivariate analysis of the morphological
descriptors, molecular markers, and essential oil and polyphenol composition
revealed that the Greek landraces were clearly distinguished compared with modern
cultivars at the level of phenological, molecular and chemical traits. Landraces were
typically taller, with larger umbels, denser foliage, and larger leaves. Plant height,
density of foliage, density of feathering as well as aroma characteristics were desirable
traits observed for some landraces, such as T538/06 and GRC-1348/04, which were
similar or superior to those of some commercial cultivars. Polymorphic loci for
inter-simple sequence repeat (ISSR) and start codon targeted (SCoT) molecular
markers were 76.47% and 72.41% for landraces, and 68.24% and 43.10% for the
modern cultivars, respectively. Genetic divergence was shown, but not complete
isolation, indicating that some gene flow may have occurred between landraces and
cultivars. The major constituent in all dill leaf essential oils was a-phellandrene
(54.42–70.25%). Landraces had a higher a-phellandrene and dill ether content than
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cultivars. Two dill landraces were rich in chlorogenic acid, the main polyphenolic
compound determined. The study highlighted for the first-time Greek landraces with
desirable characteristics regarding quality, yield, and harvest time suitable for
breeding programs to develop new dill cultivars with superior features.

Subjects Agricultural Science, Biodiversity, Plant Science
Keywords Dill, Anethum graveolens, Essential oil, Polyphenolics, Genetic diversity, Greek Gene
Bank

INTRODUCTION
Dill (Anethum graveolens L.) is an annual or biennial, herbaceous, seed-propagated plant
that belongs to the family Apiaceae (Umbelliferae), and is the sole species in the genus
Anethum. It is an upright, aromatic herb with feathery, segmented leaves with sheathed
petioles. Flowers are yellow and located in umbels, which contain several peduncles. There
is one main umbel and several smaller lateral umbels on branches from the main stem.
Seeds are oval and flat with three longitudinal grooves and two wings (Jana & Shekhawat,
2012; Singh et al., 2020). Dill is a typical out-crossing species (Snell & Aarssen, 2005) and it
is diploid (2n = 22) (Ma, Qin & Xing, 1984). This aromatic and medicinal plant is widely
cultivated in Europe, the United States, and India (Suresh et al., 2013), while it is native to
south-west Asia or south-east Europe (Bailer et al., 2001).

Leaves and seeds of dill are used for flavoring in culinary processes. As such, it is
cultivated for the fresh or dried herb market, but high variability in morphological, aroma,
and flavor characteristics are observed between cultivars. The green tissues and the fruits
(seeds) contain essential oils, fatty oils, moisture, proteins, carbohydrates, fiber, ash, and
mineral elements such as calcium, potassium, magnesium, phosphorous, sodium, vitamin
A and niacin (Esmail Al-Snafi, 2014). Dill also contains other important phytonutrients,
including furanocoumarin, 5-(4″-hydroxy-3″methyl-2″-butenyloxy)-6, 7-furocoumarin,
oxypeucedanin, oxypeucedanin hydrate, falcarindiol and flavonoids (Ishikawa, Kudo &
Kitajima, 2002; Radulescu, Popescu & Ilies, 2010; Stavri & Gibbons, 2005; Yazdanparast &
Bahramikia, 2008). Dill leaf essential oil is rich in volatile compounds with a-phellandrene
being the major compound, followed by a-pinene, β-phellandrene, dill ether, myristicin,
dill apiole and apiole (Biesiada et al., 2019; Charles, Simon &Widrlechner, 1995; El-Zaeddi
et al., 2020, 2017, 2016; Mohebodini & Kalalagh, 2021; Vokk et al., 2011). Leaf essential oil
composition differs from that of seed essential oil which contains mainly carvone, but also
dihydro-carvone and limonene (Charles, Simon & Widrlechner, 1995; Vokk et al., 2011).
The biological properties of dill essential oil include antibacterial, antifungal, insecticidal,
analgesic, and antioxidant activities, many of which are useful in food preservation
(Biesiada et al., 2019; Kaur, Kaur & Bhardwaj, 2021; Vokk et al., 2011).

Several commercial dill cultivars for example, Ambrozja, Kronos, and Lukullus, are
available with varying characteristics, such as, density and color of foliage, time of
flowering, nutritional value, and intensity of aroma (UPOV, 1999; Biesiada et al., 2019).
However, in Greece, traditional dill landraces are cultivated by local communities, being
selected and adapted to the prevailing climatic and environmental conditions in which
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they are grown. Many of these landraces are conserved in the Greek Gene Bank but these
have not yet been fully evaluated. Earlier studies on the phenological characterization of
some Greek dill landraces demonstrated that morphological traits can efficiently group
genotypes according to their geographical origin (Ninou et al., 2017). As a farther step,
herein, the integration of phenotypic assessment and secondary metabolite diversity within
Greek dill landraces could provide useful information for future breeding efforts.
Molecular methods have been widely used to identify, and evaluate the genetic diversity
within and among species of different aromatic and pharmaceutical plants (Solouki et al.,
2008). DNA based markers are efficient tools which can be used to evaluate the genetic
diversity and population structure of crop germplasm (Suresh et al., 2013). As far as we
know, there is no survey in the literature coupling phenotypic, genetic and chemical
diversity of dill landraces. However, few studies have been conducted so far, on either the
phenotypic and the genetic, or the chemical fingerprint diversity of dill landraces and
cultivars, primarily focusing on national dill collections (Charles, Simon & Widrlechner,
1995; Solouki et al., 2012; Suresh et al., 2013; Ninou et al., 2017; Sinhasane et al., 2022).

The aim of this study was to investigate and compare simultaneously the phenotypic,
genetic, and chemical biodiversity of twenty-two Greek dill (A. graveolens) landraces from
the Greek Gene Bank collection and nine modern cultivars for plants grown under
identical conditions. Phenotypic diversity was determined for the main morphological
characteristics using the UPOV descriptor list (UPOV, 1999), while inter-simple sequence
repeat (ISSR) and start codon targeted (SCoT) molecular markers were used for assessing
genetic diversity. The chemical diversity was evaluated using leaf essential oil composition
and polyphenolic content with the aim of identifying qualitative target traits. To the best of
our knowledge, this study represents the first comprehensive report of the genetic diversity
of Greek dill landraces based on the morphological descriptors, molecular markers, and
metabolites, and aims to identify promising dill germplasm which could be used in future
breeding programs for the selection of superior and divergent genotypes.

MATERIALS AND METHODS
Plant material
In total, thirty-one dill genotypes were examined: twenty-two landraces obtained from the
Greek Gene Bank (Hellenic Agricultural Organization-Dimitra, Thessaloniki) and nine
modern cultivars which were obtained commercially from Chiltern seeds (http://www.
chilternseeds.co.uk) and gardenseedsmarket (https://gardenseedsmarket.com). Early in
January 2021, in a greenhouse at the Institute of Plant Breeding and Genetic Resources,
Thermi-Thessaloniki (40�32′08.7″N, 23�00′06.4″E), seeds of each genotype were sown in
polystyrene containers using a mixture of peat and perlite as rooting media. Later, at the
five to seven leaf-stage, thirty individual plants of each genotype were transplanted in net
greenhouse isolation cages (40 cm within the row and 1 m inter-row distance). Each
genotype was transplanted into a separate net greenhouse cage to prevent cross-
pollination. Dill landrace (1–22) and modern cultivar plantlets (23–31) are shown in Fig. 1,
whereas further relative information is given in Table S1.
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Figure 1 Comparative representation of indicative phenotypes of the thirty-one genotypes of dill
(A. graveolens) studied. Landraces: 1. ‘T-518/06’, 2. ‘HL-232/07’, 3. ‘T-208/06’, 4. ‘T-538/06’, 5. ‘T-
370/06’, 6. ‘T-349/06’, 7. ‘GRC-209/08’, 8. ‘GRC-1348/04’, 9. ‘IS-127/07’, 10. ‘T-326/06’, 11. ‘T-315/06’,
12. ‘T-309/06’, 13. ‘T-269/06’, 14. ‘KD-178/07’, 15. ‘CHA-035/07’, 16. ‘T-382/06’, 17. ‘ROX-064/07’, 18.
‘ANP-015/07’, 19. ‘T-399/06’, 20. ‘KD-235/07’, 21. ‘SAS-049/07’, 22. ‘K-133/06’; Cultivars: 23. ‘Szmaragd’,
24. ‘Diana’, 25. ‘Mariska’, 26. ‘Tetra’, 27. ‘Dukat’, 28. ‘Kronos’, 29. ‘Ambrozja’, 30. ‘Lukullus’, 31.
‘Amat’. Full-size DOI: 10.7717/peerj.15043/fig-1

Kadoglidou et al. (2023), PeerJ, DOI 10.7717/peerj.15043 4/24

http://dx.doi.org/10.7717/peerj.15043/fig-1
http://dx.doi.org/10.7717/peerj.15043
https://peerj.com/


Phenotypic characterization and multivariate analysis
Phenotypic characterization was carried out based on twenty-two morphological
descriptors, involving nominal and ordinal measurements according to UPOV (1999)
(Data S1). The traits recorded for young plants were the anthocyanin coloration (YPAC)
and the attitude of leaves (YPAL). For the whole plant, the recorded traits were the density
of foliage (PDF), the number of primary branches (PNPB), the height (PH) and the length
of the main stem (PLMS). For the stem, the diameter (SD), the blue hue (SBH), the
intensity of green color (SIG) and the waxiness (SW) were recorded. With respect to the
leaves, the shape (LS), the density of feathering (LDF), the width of segments (LWS), the
length (LL) and the width (LW), the blue hue (LBH), the intensity of green color (LIG) and
the waxiness (LW) were recorded. Finally, observations on the umbel included the
diameter (UD), the number of peduncles (UNP), the time of appearance of main umbel
(UTAMU) and the time of the beginning of flowering (UTBF). Tests and methods were
applied and conducted according to the UPOV guidelines.

Non-parametric Spearman correlations were used for the determination of the relations
between the morphological traits (Mellidou et al., 2020). Principal component analysis
(PCA), which provides the multivariate statistical analysis of a dataset, was used to identify
the main traits included in the dataset obtained. Multivariate PCA in the XLSTAT software
(2019) was used to categorize genotypes based on both nominal and ordinal morphological
features (2019). PCA and agglomerative hierarchical clustering (AHC) were generated
using the web tool for visualizing clustering of multivariate data ‘ClustVis’ (https://biit.cs.
ut.ee/clustvis), while the construction of two-dimensional (2-D) plots was based on the
first two principal components (PCs). The AHC analysis was performed using Euclidean
distance and Ward’s method for agglomeration to systematically analyze combined
evaluated morphological traits per dill genotype.

Genetic characterization using inter-simple sequence repeat (ISSR)
and start codon targeted (SCoT) molecular markers
DNA was isolated from young leaves using the NucleoSpin� Plant II Kit (Macherey-
Nagel, Nordrhein-Westfalen, Germany) according to the manufacturer’s instructions.
DNA concentration and quality were estimated spectrophotometrically at 260 and 280 nm
using an Eppendorf BioPhotometer (Eppendorf, Hamburg, Germany). The integrity of the
DNA was determined using gel electrophoresis on a 0.8% (w/v) agarose gel.

After preliminary screening of 20 ISSR (University of British Columbia—UBC) and
ScoT primers (Collard & Mackill, 2009), 12 unambiguously scorable and reproducible
markers were selected (six ISSRs and six SCoTs) based on Rp, MI and PIC values.
Oligonucleotide primers complementary to simple sequence repeats (UBC807, UBC810,
UBC811, UBC834, UBC840, UBC860) and others complementary to codon targeted
polymorphisms (SCoT1, SCoT13, SCoT33, SCoT34, SCoT51, SCoT61) were used for PCR
amplification. The reaction mixture (total volume 25 mL) contained the following reagents:
0.5 mL dNTPs (10 mM), 2.5 mL 10×-buffer, 1 mL primer (10 mM), 0.5 mL template DNA,
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0.1 mL Taq polymerase (5 U/mL) and 20.3 mL sterile dd H2O. PCR amplifications were
carried out according to Stathi et al. (2020), using an Eppendorf Mastercycler EP Thermal
Cycler Range (Eppendorf, Hamburg, Germany): DNA denaturation was initiated at 95 �C
for 5 min, followed by 35 cycles at 95 �C of 30 s, for DNA annealing T at 48–56 �C (all at
52 �C except for UBC811 at 48 �C), for 90 s for annealing of the primers and at 72 �C for
90 s for chain extension. The temperature was held at 72 �C for 5 min after the 35 cycles
were completed.

The amplification products of the ISSR and SCoTs markers were separated by
electrophoresis on a 1.5% (w/v) agarose gel and stained with ethidium bromide. The size
marker was a 2-log DNA ladder (New England Biolabs, Ipswich, MA, USA). Gels were
exposed to UV light in a UVItec Transilluminator (UVItec Limited, Cambridge, UK), and
UVIDoc software UVIDocMw version 99.04 (UVItec Limited, Cambridge, UK) was used
for analysis.

Using the Genemapper v4.0 software and an internal standard (GS 500 LIZ; Applied
Biosystems, Waltham, MA, USA), the size of the detected fragments was determined.
To reduce the impact of potential size homoplasy, fragments ranging in size from 150 to
500 bases were counted and analyzed further. ISSRs and SCoTs alleles were scored based
on whether specific fragments were present (1) or absent (0). The phenotypic data matrices
for genetic (ISSR + SCoT) information were also generated. All matrices were subsequently
analyzed identically. The performance of the primers was measured by calculating
different parameters including polymorphic information content (PIC), resolving power
(RP), and marker index (MI) for each primer by the program iMEC (Amiryousefi,
Hyvönen & Poczai, 2018). These parameters described by Prevost & Wilkinson (1999),
Munda et al. (2022) and Lal et al. (2022). Nei’s coefficient (Lynch & Milligan, 1994) was
determined to assess the genetic variance within the groups of genotypes, while Nei’s
formula was used to determine genetic distance (Nei, 1978). PCA was used as a graphical
representation of a matrix to show how closely related the landraces and cultivars were.
Analyses were carried out using GenAlex 6.5 (Peakall & Smouse, 2012) and Microsoft�
Excel 2010/XLSTAT©-Pro software (Version 2013.4.07; Addinsoft Inc., Brooklyn, NY,
USA).

The Dice similarity coefficient (Dice, 1945) as implemented in the ade4 1.7–15 R
package (Dray & Dufour, 2007) was used along with the UPGMA clustering algorithm to
perform cluster analysis in R 4.0.2 (R Core Team, 2020). The ape 5.4–1 package was used to
compute bootstrap support (1,000 bootstraps), and the phytools 0.7–47 package was used
to display the resulting dendrograms (Revell, 2012). The ‘admixture’ and ‘independent
allele frequencies’ models were used to run STRUCTURE 2.3.4 (Pritchard, Stephens &
Donnelly, 2000). With a burn-in of 500,000 iterations and 1,000,000 MCMC repetitions for
each run, 20 replicates from K = 1 to K = 6 were used. K was inferred using Evanno’s
method (Evanno, Regnaut & Goudet, 2005), which was run in the pophelper 2.3.0 R
package (Francis, 2017). The software Structure threader (Pina-Martins et al., 2017) was
used to parallelize distinct runs of K.
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Extraction of polyphenolic compounds and ultra performance liquid
chromatography-mass spectrometry (LC-MS/MS, MRM analyses)
Fresh, green leaf tissues from each dill genotype were collected in the vegetative stage and
freeze-dried at −24 �C (Freeze-dryer Alpha 1–2 LD plus; Christ, Osterode, Germany).
Samples were ground to a fine powder using a laboratory grinder mill, IKA A11 (IKA-
Werke, Staufen, Germany). The extraction of polyphenolic compounds and LC-MS/MS
analysis was accomplished as previously reported Boutsika et al. (2021). Three
independent replicates were employed for each dill genotype.

Targeted UPLC analysis was performed on a Waters Acquity UPLC system (Milford,
MA, USA) and separation of the phenolic compounds was carried out using a Waters
Acquity HSS T3 column (1.8 mm, 100 mm × 2.1 mm), at 40 �C. Phenolic compounds were
analyzed as described by Vrhovsek et al. (2012) using water and acetonitrile as mobile
phases for the gradient. A Waters Xevo TQMS system equipped with an electrospray (ESI)
source was used for mass spectrometry detection. Data was processed using the Mass Lynx
Target Lynx Application Manager (Waters).

Essential oil isolation and analyses
Fresh leaves with stems (petioles) were cut at the base of plants of each dill genotype in the
vegetative stage, in early March. Samples of 100–120 g fresh weight (FW) were cut coarsely
with care into sections with a length of 2–5 cm and were then hydro-distilled for 3 h using
a Clevenger-type apparatus. The essential oil recovered was measured (v) and stored at
−10 �C in the dark. The essential oil yield (mL 100 g−1 FW) was expressed as % (v/w).

Essential oil analysis was carried out using a gas chromatography system as previously
described with the relative chromatographic conditions in Boutsika et al. (2021).
Specifically, a TRACETM Gas Chromatograph (GC) with a combination of either a flame
ionization detector (FID) or a mass spectrometer (MS) (PolarisQ; Thermo Scientific,
Waltham, MA, USA, formerly Thermo Finnigan, San Jose, CA, USA) was used.

Additionally, equipment control, data acquisition and chromatogram analysis were
performed as previously described in Boutsika et al. (2021) by using the software packages
ChromQuest V4.0 and the XcaliburTM (Thermo Scientific, Waltham, MA, USA) for
GC-FID and GC-MS, respectively. Specifically, comparisons of experimental and known
mass spectra were conducted (Adams, 2007; Mass Spectrometry Data Center, NIST, n.d.,
https://chemdata.nist.gov/; McLafferty, 2008). According to Adams (2007), the retention
times of the essential oil constituents and a homologous series of C8–C26 n-alkane
standards were used for the determination of the arithmetic indices (AI) and Kovats
indices (KI) (Chiron AS, Trondheim, Norway).

Correlation network of secondary metabolites
The correlation of the essential oil components and the polyphenolic compounds was
assessed based on the Pearson coefficient. Firstly, a correlation analysis was performed for
all pairwise comparisons. Next, a network analysis was used, in which the essential oil
components and polyphenols were represented by nodes, and all statistically significant
correlations between the nodes were represented by edges.
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RESULTS
Phenotypic characterization and diversity between landraces and
cultivars
The study of plant morphological traits represents a quick and useful tool for the
preliminary evaluation of the extent of genetic diversity related to the phenotype (Solouki
et al., 2012). Among the most common statistical indicators to assess the genetic diversity
of traits related to the phenotype are the mean, the standard deviation, and the coefficient
of variance (CV%). The set of twenty-two morphological descriptors used to evaluate the
twenty-two landraces from the Greek Gene Bank collection and the nine cultivars are given
in Data S1.

Most of the selected descriptors were polymorphic exhibiting more than two
phenotypes, except for YPAC, SBH and LBH, which had only two categories (absent and
present, Data S1). Among the polymorphic traits, YPAL, LS, LW, LWAX, UTAMU and
UTBF exhibited the highest CV%, with 67.48%, 32.50%, 29.41%, 34.78%, 30.40% and
35.19%, respectively (data not shown). On the contrary, the traits UD, UNPI and SIG
presented the lowest CV% (below 12%), indicating that these are less informative, at least
for the genotypes studied herein. Spearman correlation analysis was used to evaluate the
relationship between the morphological descriptors (Data S2). Significant, positive
correlations (p ≤ 0.001) were observed between some traits, indicating that when selection
or breeding is applied for one of these traits, an indirect improvement could also be
observed in other traits (Irakli et al., 2021). Indicatively, PH was strongly correlated with
PLMS (0.778) and UTAMU with UTBF (0.748), whereas PNPB was moderately correlated
with SD (0.564), PLMS with LS (0.534) and SIG with LBH (0.525). Nevertheless, LBH was
strongly, negatively correlated with PH (−0.631) and PLMS (−0.631) and moderately,
negatively correlated with PNPB (−0.533) and LS (−0.594). Also, LS and YPAL were
moderately, negatively correlated (−0.512).

PCA allowed the identification of the most important morphological traits which
discriminated the genotypes studied herein. The distribution of genotypes based on PC1
and PC2, showed part of the underlying phenotypic variation among them (37.35%)
(Fig. 2A). Kaiser’s criterion (Eigenvalue >1) (Kaiser, 1958) was satisfied by five components
(total variation accounted for 61.36%, Table S2). The first component, accounting for
22.35% of the total variation, included the traits PNPB, PH, PLMS, SIG, LS, LBH and
LWAX, while the second component included YPAC, LS, LWS, LW and LIG. Traits such
as SD and UDwere the most important ones contributing to the third component, whereas
YPAL and LDF were the major determinants of components four and five, respectively.

Interestingly, most of the native Greek dill genotypes were distinctly ordinated to the
negative side of PC1 in both the upper and lower quadrants of PC2 (Fig. 2A). On the
contrary, six of the nine modern cultivars were separated from the Greek genotypes and
were grouped on the positive side of PC1 in the upper and lower quadrants of PC2. Thus,
the Greek landraces were separated from the modern cultivars ‘Kronos’, ‘Lukullus’, ‘Amat’,
‘Ambrozja’, ‘Dukat’ and ‘Szmaragd’ based on their morphological characteristics.
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Agglomerative hierarchical clustering (AHC, dendrogram) analysis was used to enable
grouping of genotypes into clusters of similar responses based on calculations of Euclidean
distance, to acquire a thorough overview of the distribution of dill genotypes based on the
morphological traits (Fig. 2B). The output dendrogram obtained after applying Ward’s
method for agglomeration, revealed three distinct groups: group I comprised of 21 of the
22 Greek landraces, whereas groups II and III consisted of the modern cultivars and the
Greek landrace ‘KD-235/07’. More specifically, AHC analysis grouped in Cluster I all the
genotypes from the Greek Gene Bank, except for ‘KD-235/07’. Cluster I was distinctly
separated from the modern cultivars, which were distributed in clusters II and III.
Specifically, four modern cultivars, ‘Ambrozja’, ‘Kronos’, ‘Lukullus’ and ‘Amat’, grouped in
cluster III, were very distant from the Greek landraces revealing differences in most traits
evaluated in this study.

Genetic characterization and diversity between landraces and
cultivars
Agarose gel of the PCR reactions using UBC834, UBC811 and SCOT33 primers are
depicted in Fig. S1. The PIC values of the ISSR primers ranged from 0.281 (UBC811) to
0.345 (UBC834), with an average of 0.306. The MI and Rp values ranged from 0.289
(UBC811) to 0.396 (UBC834), and from 4.932 (UBC811) to 7.832 (UBC834), with average
values of 0.344 and 6.349 per ISSR primer, respectively. Additionally, for SCoT primers,
the PIC values ranged from 0.092 (ScoT51) to 0.331 (ScoT13) (Table S3). MI and Rp were
0.339 and 7.654, respectively, for ScoT13 primer, while the lowest MI and Rp were
exhibited by SCoT51 primer (0.101 and 4.747, respectively). The average MI and Rp for all
primers were 0.227 and 6.071, respectively.

Figure 2 Multivariate analysis based on twenty-two morphological traits evaluated for thirty-one dill (A. graveolens) accessions studied.
(A) Two-D PCA plot of the first two components obtained from principal component analysis (PCA) and (B) dendrogram from agglomerative
hierarchical clustering (AHC) analysis. Full-size DOI: 10.7717/peerj.15043/fig-2
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Using ISSR molecular markers, a total of 85 fragments in the length range of
450–4,000 bp were detected, with similar numbers detected for landraces (78 bands, with
10 private bands) and cultivars (75 bands, with seven private bands). Landraces had a
larger percentage of polymorphic loci (76.47%) than cultivars (68.24%). In contrast, the
value of Nei’s gene diversity was higher for the cultivars (0.262) than the landraces
(0.256), while Shannon’s Index (I) was 0.386 for landraces and 0.385 for cultivars
(Table S4).

Using SCoT molecular markers, a total of 58 fragments in the length range of
450–4,000 bp were detected with higher numbers detected for landraces (57 bands, with
nine private bands) than in cultivars (49 bands, with one private band). Landraces had a
larger percentage of polymorphic loci (72.41%) than cultivars (43.10%). The value of
Nei’s gene diversity was also higher for the landraces (0.199) than the cultivars (0.167),
and Shannon’s Index (I) was 0.313 for landraces and 0.245 for cultivars (Table S4).

Nei’s genetic distance exhibited a moderate value of 0.111 along with ΦST = 0.169
(p ≤ 0.001, 999 permutations) for the ISSR markers, whereas lower differentiation levels
were observed for SCoT markers, with a Nei’s genetic distance of 0.057 and ΦST = 0.128
(p ≤ 0.001, 999 permutations).

For the ISSR molecular marker data set, the PCA analysis results were consistent with
the cluster analysis, and the first two axes accounted for 27.78% of the total variation
(Fig. 3A). The cultivars ‘Kronos’, ‘Ambrozja’, ‘Lukullus’ and ‘Amat’ were in the upper left
quadrant of the figure, whereas the majority of genotypes were found in the lower and
upper right quadrants. The landraces ‘T-315/06’, ‘SAS-49/07’, ‘KD-235/07’ and ‘T-399/06’,
and the cultivars ‘Szmaragd’ and ‘Diana’, formed a distinct group in the center of the plot.
For the PCA analysis of the SCoT molecular marker data set, the first two axes accounted
for 26.73% of the total variation, and the samples were generally distributed throughout
the figure, with only ‘Amat’ and ‘T-518/06’ forming a separate cluster (Fig. 3B).

Dice distance based UPGMA dendrograms were constructed for both ISSR and SCoT
molecular markers (Fig. 4A) and in both cases, three clusters were identified. For the ISSR
data set, Cluster I contained the landrace ‘ROX-64/07’, Cluster II contained the cultivars
‘Tetra’, ‘Kronos’, ‘Ambrosia’, ‘Lukullus’, ‘Amat’, while Cluster III contained the remaining
genotypes. For the SCoT data set, a slightly different pattern was observed, Cluster I
contained the landrace ‘IS-127/07’, Cluster II contained the landrace ‘T-518/06’ and the
cultivar ‘Amat’, while Cluster III contained the remaining genotypes.

Additionally, an in-depth STRUCTURE analysis was carried out. For the ISSR
molecular marker’s dataset a value of K = 2 was optimal for Evanno’s ΔK statistic (Evanno,
Regnaut & Goudet, 2005). Except for cultivars ‘Kronos’, ‘Ambrozja’, ‘Lukullus’ and ‘Amat’,
all genotypes were grouped together (Fig. 4B). For the SCoT molecular marker’s dataset,
Evanno’s ad-hoc statistic K also suggested a solution of K = 2 even though the ΔK values
were significantly lower than for ISSRs, indicating a faint signal. Except for ‘Amat’ and
‘T-518/06’, all genotypes were loosely clustered in one group for K = 2 (Fig. 4C).
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Polyphenolic content
The hydro-methanolic extracts of the green, leaf tissues of dill samples were analyzed using
a targeted UHPLC-MS/MS method to identify the quantitative polyphenolic profile of the
31 genotypes (local landraces and modern cultivars). The analysis identified the presence
of three main phenolic metabolites: chlorogenic acid (syn. 3-O-caffeoylquinic acid),
neo-chlorogenic acid (syn. 5-O-caffeoylquinic acid) and quercetin-3-O-glucuronide. These
findings are consistent with previous reports on A. graveolens leaf extracts (El-Zaeddi et al.,
2017; Wasli et al., 2018). Chlorogenic acid was the main polyphenolic compound which
ranged from 2.035 mg 100 g−1 FW (‘KD-178/07’) to 10.350 mg 100 g−1 FW (‘Tetra’),
followed by quercetin-3-O-glucuronide which ranged from 0.0035 mg 100 g−1 FW
(‘T-208/06’) to 0.4351 mg 100 g−1 FW (‘Tetra’), and neo-chlorogenic acid which was only
detected in trace amounts (0.00–0.0032 mg 100 g−1 FW) in the studied genotypes
(Table S5). It is noteworthy that the Greek local landraces ‘T-538/06’ and ‘GRC-1348/04’
had high amounts of chlorogenic acid (7.972 and 7.997 mg 100 g−1 FW, respectively),
similar to those of the modern cultivars ‘Szmaragd’, ‘Ambrozja’, ‘Diana’ and ‘Mariska’
(6.748–8.673 mg 100 g−1 FW) (Table S5).

Essential oil content and composition
The essential oil yield of fresh dill leaves (leaves and petioles) ranged from 0.012% (‘GRC-
209/08’) to 0.057% (‘HL-232/07’) for the twenty-two Greek landraces, whereas it ranged
from 0.02% (‘Dukat’) to 0.041% (‘Diana’) for five of the modern cultivars (Table S5).
The essential oil yields of four landraces (0.045% for ‘SAS-049/07’; 0.04% for ‘ROX-064/
07’; 0.049% for ‘T-382/06’; 0.057% for ‘HL-232/07’) were equal to or greater than the
highest yielding commercial cultivar ‘Diana’.

A total of twenty-one constituents, with a percentage composition of more than 0.1% in
at least one dill essential oil, were identified in the thirty-one-dill leaf essential oils
examined (Table S5). The main constituents in these thirty-one essential oils were

Figure 3 Principal component analysis (PCA) for thirty-one dill (A. graveolens) genotypes (22 Greek landraces and nine cultivars) using
datasets for (A) ISSR and (B) SCoT molecular markers. Full-size DOI: 10.7717/peerj.15043/fig-3
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a–pinene (0.99–2.33%), a-phellandrene (54.42–70.25%), β-phellandrene (9.38–12.35%),
dill ether (0.62–22.22%), myristicin (0–18.56%), and dill apiole (0–11.12%) (Table S5).
These constituents were present in most of the 31 dill leaf essential oils, but the percentage
composition differed between dill genotypes, particularly with respect to the content of dill
ether, myristicin and dill apiole.

Of the 22 gene bank landraces, nineteen had very similar essential oil composition,
that is, a-pinene (1.07–1.38%), a-phellandrene (61.16–70.25%), β-phellandrene
(10.62–12.35%), dill ether (4.8–22.22%), myristicin (0–7.81%), and dill apiole
(0.01–5.88%) (Table S5), while the other three landraces ‘ROX-064/07’, ‘ANP-015/07’, and
‘SAS-049/07’ had a content of a-pinene (1.35–1.38%), a-phellandrene (64.43–67.27%),

Figure 4 Cluster analysis and Bayesian assignment into groups of thirty-one dill (A. graveolens) genotypes (22 Greek landraces and nine
cultivars) based on results for the molecular markers: ISSR data set (left) and SCoT data set (right). (A) UPGMA dendrogram based on
Dice distance. (B) Group assignment for K = 2 up to K = 4. (C) Evanno’s ΔK statistic. Full-size DOI: 10.7717/peerj.15043/fig-4
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β-phellandrene (10.7–11.46%), dill ether (4.48–7.93%), myristicin (7.11–10.82%), and dill
apiole (0–3.86%), differing with respect to a lower dill ether content and higher myristicin
content, and were intermediary between the 19 landraces and the modern cultivars.

In contrast, the essential oil composition of five modern cultivars (‘Diana’, ‘Dukat’,
‘Mariska’, ‘Szmaragd’, ‘Tetra’) ranged from 0.99% to 1.21% for a-pinene, from 54.42% to
62.31% for a-phellandrene, from 9.38% to 10.95% for β-phellandrene, from 0.62% to
2.69% for dill ether, from 13.6% to18.56% for myristicin, and from 2.44% to 11.12% for dill
apiole. Interestingly, modern cultivars had lower a-phellandrene and dill ether contents, as
well as higher myristicin and dill apiole contents compared to the landraces. This is
supported by the strongly, negative, correlation value (−0.895) observed for the pairwise
comparison of dill ether and myristicin, using Pearson’s correlation analysis. The other
four modern cultivars (‘Amat’, ‘Ambrozja’, ‘Kronos’, ‘Lukullus’) had essential oil
compositions in a range of 2.22–2.33% fora-pinene, 59.95–63.86% for a-phellandrene,
11.88–12.08% for β-phellandrene, 4.61–12.13% for dill ether, 4.2–14.39% for myristicin,
and 0.15–2.23% for dill apiole. In this regard, they had higher a-pinene and dill ether
contents, as well as lower myristicin and dill apiole contents, compared to the other
modern cultivars.

Principal component analysis based on twenty-one essential oil constituents and three
polyphenolic compounds present in the collection, resulted in the identification of two
main groups: one containing the gene bank landraces and the other the modern cultivars
(Fig. 5A). The gene bank landraces were quite homogeneous in essential oil composition
and polyphenolic compounds except for three landraces (‘ROX-064/07’, ‘ANP-015/07’,
‘SAS-049/07’). The cultivars ‘Mariska’ and ‘Dukat’ had almost identical essential oil
composition, while there appeared to be two subsets within the cultivar group. The PC axis
1 accounted for 37.3% of the variation and axis 2 for 28.1%, with a combined variance of
65.4%. Similar clustering (three main clusters) based on essential oil and polyphenolic
composition of the 31 landraces and cultivars was observed in the heatmap analysis with
the three landraces ‘ROX-064/07’, ‘ANP-015/07’, ‘SAS-049/07’ clustering more closely
with the cultivars ‘Diana’, ‘Dukat’, ‘Mariska’, ‘Szmaragd’, and ‘Tetra’ (Fig. 5B; Table S5).

Correlation network analysis
The Pearson correlation analysis (Fig. 6A) referred to all pairwise comparisons of essential
oil components and the main polyphenolic compounds resulted in 276 pairwise
comparisons in total, of which 138 (50%) were positive correlations and 138 (50%) were
negative correlations. The maximum positive correlation was 0.997 and was observed for
the comparison of ‘a-pinene’ and ‘a-thujene’. The minimum negative correlation observed
was −0.895 corresponding to the comparison between ‘myristicin’ and ‘dill ether’. Of the
138 positive and 138 negative correlations, 72 (52.17%) and 67 (48.55%), respectively, were
statistically significant at 5% level of significance. Except for neo-chlorogenic acid, all other
compounds exhibited both positive and negative statistically significant correlations with
the remaining metabolites. Neo-chlorogenic acid did not exhibit any statistically
significant correlation, suggesting that its metabolic pathway is not tightly co-regulated
along with the other flavonoids.
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Figure 5 Multivariate analysis based on the leaf essential oil composition (21 volatile compounds) and three polyphenolic compounds of the
31 dill (A. graveolens) accessions studied. (A) Two-D PCA plot of the first two components obtained from principal component analysis (PCA)
showing discriminated genotypes. (B) Heatmap representing the qualitative and quantitative essential oil and polyphenolic profile of each dill
accession. Mean log values of the essential oil volatile compounds and the polyphenolic compounds are displayed using a color scale from green
(minimum) to purple (maximum). The pre-defined populations are landraces (blue), and cultivars (red).

Full-size DOI: 10.7717/peerj.15043/fig-5

Figure 6 (A) Correlation analysis (Pearson coefficient) of all pairwise comparisons between 21 essential oil components and three
polyphenolic compounds determined in leaves of the 31 dill (A. graveolens) accessions studied. The magnitude of the correlation is depicted
in both the color and size of the spheres. Correlations which were not statistically significant (p value > 0.05) are marked with an ‘x’. (B) Correlation
network of 21 essential oil components and three polyphenolic compounds (orange and yellow, respectively). The edges connecting the nodes are
displayed only when the nodes are statistically significantly correlated (Pearson coefficient, p value = 0.05). Solid lines correspond to positive
correlations and dotted lines correspond to negative correlations. The thickness of the lines reflects the magnitude of the correlation (absolute
values). The size of the node indicates the degree of centrality (number of edges drawn from the node). Full-size DOI: 10.7717/peerj.15043/fig-6
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In the corresponding correlation network (Fig. 6B), the edges between nodes
correspond to statistically significant correlations, and their thickness represents the
absolute value of the correlation. The size of the node indicates the number of edges drawn
from the node (degree of centrality). The mean degree of centrality was found to be overall
11.58 (12.14 and 7.67 for essential oil compounds and polyphenols, respectively), with the
maximum value 16 observed three times (‘β-phellandrene’, ‘(E)-β-ocimene’, and ‘dill
apiole’). The minimum degree of centrality was observed in the case of ‘neo-chlorogenic
acid’ with a minimum value of zero.

DISCUSSION
Phenotypic diversity between landraces and cultivars
Overall, it was found that the main characteristics that distinguished between the landraces
and cultivars were plant height, the presence of pigmentation, the shape and size of the
leaves, the timing of the appearance of the main umbel, and the timing of the start of
flowering (Data S1). Almost all landraces (more than 19 of 22) were classified as ‘tall’, with
a ‘long’ main stem, ‘large’ main umbel diameter, ‘many’ peduncles in the umbel, and
mainly ‘rhomboidal’ leaf shape. Additionally, most landraces (more than 14 out of 22
genotypes) had an erect attitude of leaves, medium to dense density of foliage (15 of 22)
and density of leaf feathering (20 of 22), medium to broad leaf length (20 of 22) and width
(19 of 22), as well medium to broad width of leaf segments (22 of 22) (Data S1). Most of the
aforementioned morphological characteristics of Greek dill landraces are very important
as they have a direct effect on the yield (fresh weight) (Said-Al Ahl & Omer, 2016;
Karkleliene et al., 2014). Further, the Greek dill landraces ‘T-349/06’ and ‘T-326/06’ were
distinguished by ‘large’ main umbel diameter, ‘early’ time of appearance of main umbel
and ‘early’ time of beginning of flowering, which is in accordance with a previous study by
Ninou et al. (2017). These morphological traits are desirable and–in contrast with the
modern cultivars–they were observed only in the Greek landraces, suggesting their great
potential in crop improvement. Specifically, the traits ‘early time of appearance of main
umbel’ and ‘early time of beginning of flowering’ can contribute to the earlier harvesting
potential.

Genetic diversity between landraces and cultivars
Understanding molecular diversity (identification of individuals, populations, varieties, or
breeds) is essential for the preservation of germplasm (Duran et al., 2009). Molecular
methods can be used to locate alleles that may affect an organism’s capacity to endure in
various environments. Many molecular markers have been used to detect DNA
polymorphism and estimate the genetic relationships within and between species (Marsjan
& Oldenbroek, 2007). The main advantage of molecular markers is their absence of bias,
which means that they are unaffected by factors such as age and environment (Rahimi
et al., 2018; Samantaray, Dhagat & Maiti, 2010).

Several studies have been carried out for the identification and classification of different
species using molecular markers. For members of the Apiaceae family, random amplified
polymorphic DNA (RAPD) and inter simple sequence repeats (ISSR) have been
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successfully used in the recent years for Changium smyrnioides (Fu, Qiu & Kong, 2003),
Achillea millefolium (Farajpour et al., 2012), dill (Solouki et al., 2012; Suresh et al., 2013),
cumin (Choudhary et al., 2015), coriander (Choudhary et al., 2019), carrot (Sekerci et al.,
2021), and other species of Apiaceae.

The genetic variation of the 31 dill genotypes was examined using both ISSR and SCoT
molecular markers, since each marker has a unique aptitude. The effective number of
alleles (Ne), I index, and Nei’s unbiased gene diversity mean values were compared,
revealing that there were no appreciable differences between the pre-defined populations
of landraces and cultivars. According to the I index, there was moderate diversity for both
ISSR and SCoT markers (landraces: 0.386, 0.313, cultivars: 0.385, 0.245). Nei’s unbiased
haploid gene diversity estimates (uh) were consistent with the observations for the I index,
for both markers.

High genetic variation increases the likelihood that populations will be able to adapt to
shifting environments. Allelic frequencies are influenced by the survival and progeny rates
of various populations. Genetic diversity is reduced through inbreeding, genetic drift,
restricted gene flow, and small population size. Accordingly, the polymorphism rates for
both molecular markers were high in landraces (76.47% for ISSR and 72.41% for SCoT),
and low in cultivars (68.24% for ISSR and 43.1% for SCoT). Thus, the ISSR molecular
markers produced more polymorphic bands than SCoT markers, indicating that the ISSRs
were more effective in examining molecular diversity in dill genotypes and could be used to
create stable heterotic groups between landraces and cultivars. Considering that SCoT
markers are known to be linked to functional genes, they may be valuable in tracing
patterns of the domestication process, and this could explain the low polymorphism levels
observed for SCot markers. If this is true, then the combined analysis of the two marker
systems indicates that domesticated genotypes (cultivars) have undergone less selective
breeding than landraces but still maintain a high level of genome-wide heterozygosity.
Moreover, the PCA analysis for ISSR markers clearly separated some of the cultivars
(‘Ambrozja’, ‘Lukullus’, ‘Amat’ and ‘Kronos’) from the landraces (Fig. 3A). Therefore, the
use of ISSR markers offers great potential for characterizing closely related dill cultivars,
and for assessing the genetic diversity between landraces and modern cultivars.

Polyphenolic content
Green dill tissues are exploited by the food industry as dried drogue, or raw fresh packed
biomass, and/or as biomass supplement in several food products (e.g., pickled vegetables,
sauces, sour cream, spreadable cheese and dressings). In this respect, it would be beneficial
for the food industry to use germplasm with a higher nutritive and medicinal value
resulting from the presence of antioxidants, such as polyphenols. It was notable that the
Greek local landraces ‘T-538/06’ and ‘GRC-1348/04’ had high amounts of chlorogenic acid
(7.972 and 7.997 mg 100 g−1 FW, respectively), similar to the those of the modern cultivars
‘Szmaragd’, ‘Ambrozja’, ‘Diana’ and ‘Mariska’ (6.748–8.673 mg 100 g−1 FW), indicating
the potential of these landraces to be exploited in further breeding programs. Previously, it
has been reported that the polyphenol content in the green tissues of dill was dependent on
plant height and varied among the plant tissues as follows: leaf blade > petioles > stems
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(Lisiewska, Kmiecik & Korus, 2006). Based on the morphological traits determined for the
dill germplasm in this study, it was observed that ‘T-538/06’ and ‘GRC-1348/04’ scored as
‘tall’ landraces with ‘medium’ to ‘dense’ density of foliage and density of feathering,
therefore these morphological descriptors could also be correlated with their higher
content in chlorogenic acid. Metabolite levels probably differ in the tissues of different dill
plant organs, but such measurements were outside of the scope of this study. Generally,
however, it is the fresh, whole plant that is utilized in industrial applications.

Essential oil content and composition
Variation in essential oil yield was observed for the dill genotypes studied. The yield of the
twenty-two Greek landraces ranged from 0.012% to 0.057%, while that of five of the
commercial cultivars, ranged from 0.02% to 0.041% (Table S5). Parameters such as,
cultivar, seeding date, harvesting stage, and planting density have been shown to affect dill
essential oil yield (Biesiada et al., 2019; Bowes et al., 2004; Callan et al., 2007; Kaur, Kaur &
Bhardwaj, 2021; Vokk et al., 2011). The leaf essential oil yields of the winter, greenhouse
grown dill plants in this study were generally lower than those reported in the literature for
dill plants grown in warmer seasons. In a study of fifty-six dill accessions from the US
National Plant Germplasm collection, originating from ten different countries, the leaf
essential oil contents ranged from 0.1% to 0.3% (mL 100 g−1 FW) for plants grown in the
spring and harvested in July (Charles, Simon &Widrlechner, 1995). In other studies where
yield was expressed as dry weight, leaf essential oil yields of 0.1–0.46% have been reported
for four Iranian dill ecotypes harvested in July (Mohebodini & Kalalagh, 2021), of 0.56%
for winter-grown and of 0.65% for the leaves of summer-grown dill in Estonia (Vokk et al.,
2011).

The main essential oil constituents identified in the dill leaves (and petioles) in this
study are in agreement with those reported in the literature for dill herb (leaves and stems):
a-pinene (0.02–0.12%), a-phellandrene (44.44–64.65%), β-phellandrene (5.48–19.08%),
dill ether (0.94–30.18%), myristicin (0.02–28.18%), dill apiole (0–4.09%) and apiole
(1.05–6.92%) (Biesiada et al., 2019; Charles, Simon & Widrlechner, 1995; El-Zaeddi et al.,
2020, 2017, 2016;Mohebodini & Kalalagh, 2021; Vokk et al., 2011). However, the content of
a-phellandrene (61.16–70.25%) in the landrace essential oils was generally higher than
values reported in the literature (44.44–64.65%) for leaf essential oil (Biesiada et al., 2019;
Charles, Simon & Widrlechner, 1995; El-Zaeddi et al., 2020, 2017, 2016; Mohebodini &
Kalalagh, 2021; Vokk et al., 2011).

Dill herb essential oil quality (relative percentage composition of constituents) has been
shown to vary with cultivar, seeding date, harvesting stage, irrigation dose, and plant
density (Biesiada et al., 2019; Bowes et al., 2004; Callan et al., 2007; El-Zaeddi et al., 2017,
2016; Kaur, Kaur & Bhardwaj, 2021; Vokk et al., 2011). In addition, it differs from that of
dill seed, which is characterized by carvone, dihydro-carvone and limonene, and the
absence of dill ether (Charles, Simon & Widrlechner, 1995; Vokk et al., 2011). It has been
reported that as dill plants mature and flower the content of dill ether in the dill weed
(leaves and flowering tops) essential oil decreases, while that of carvone increases (Porter
et al., 1983; Bowes et al., 2004; Callan et al., 2007; Vokk et al., 2011).
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The aroma of dill leaf and stem essential oil has been mainly attributed to the major
constituents, a-phellandrene with sensual descriptor ‘dill-like’ ‘fragrant, fresh’ odor and
dill ether with sensual descriptor ‘floral, fragrant odor’ with additional ‘green grass’ and
‘citrus’ notes (Blank, Sen & Grosch, 1992; El-Zaeddi et al., 2017, 2016; Pino et al., 1995).
Recently however, it has been reported that amino acids and organic acids are also
associated with ‘dill’ and ‘sour taste’ (Castro-Alves et al., 2021). Thus, Greek landraces rich
in a-phellandrene (>68%; ‘T-399/06’, ‘T-208/06’, and ‘T-326/06’) and dill ether (>17.4%;
‘IS-127/07’, ‘KD-235/07’, and ‘T-309/06’) from the current study, could be used in
breeding programs for the development of new cultivars with novel aroma quality traits
(El-Zaeddi et al., 2017; Lisiewska, Kmiecik & Korus, 2006; Wasli et al., 2018).

CONCLUSIONS
The multivariate analysis of the morphological traits, molecular markers, and secondary
metabolites of twenty-two landraces of dill from the Greek Gene Bank collection and nine
modern cultivars was successful in evaluating genetic variation among genotypes and in
separating various individuals from different populations. In most analyses, even though
based on the different evaluator data sets, three main clusters were observed for the 31
genotypes, depicting a clear separation between landraces and modern cultivars. Individual
landraces only occasionally clustered with the cultivars in the hierarchical analysis. Some
phenotypic variation was evident within the landrace group, but this was more noticeable
between the landraces and the cultivars, with the majority of Greek landraces (19 of 22)
being classified as ‘tall’, with ‘long’ main stem, ‘large’ main umbel diameter, with ‘many’
peduncles in the umbel, and mainly ‘rhomboidal’ leaf shape.

The ISSR and SCoT molecular markers were effective in describing the genetic diversity
between A. graveolens genotypes and genetic differences were statistically significant.
The pre-defined populations (landraces and modern cultivars) exhibited genetic
divergence, but were not entirely isolated from one another, indicating that some amount
of gene flow may have occurred between them. Therefore, individuals from pre-defined
populations should also be taken into consideration as starting material in genetic
improvement programs.

The dill leaf chemical profiles (essential oil and polyphenolic composition) were also
effective in discriminating between A. graveolens genotypes and in identifying genotypes
with ‘particular’ odor and nutritional characteristics. Although some phytochemical
variation was determined between the landraces, this was more noticeable between the
landraces and the cultivars where, most of the Greek landraces had higher a-phellandrene
and dill ether contents, associated with the characteristic dill odor, whereas cultivars had
higher myristicin and lower dill ether contents. Similarly, polyphenolic composition
indicated that some of the landraces (‘T-538/06’ and ‘GRC-1348/04’) were rich in
chlorogenic acid, the main polyphenolic compound identified.

In conclusion, this study evaluated simultaneously, and for the first time, the
morphological traits, genetic diversity, and chemical profile of dill landraces from a Greek
Gene Bank collection, compared to some commercial cultivars. The observed diversity
indicated that some landraces could be beneficially used in breeding programs for the
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development of cultivars, with a particular aroma or nutritional quality, with higher
biomass yields, or with earlier harvesting potential, compared to current commercial
cultivars. It was also underlined that all the traits, either phytochemical, morphological,
agronomic, or genetic, were valuable parameters that should be considered all together in
breeding programs.
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