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Abstract
The gut microbiome may be involved in the occurrence of dementia primarily through the molecular mechanisms of pro-
ducing bioactive molecules and promoting inflammation. Epidemiological evidence linking gut microbiome molecules 
and inflammatory markers to dementia risk has been mixed, and the intricate interplay between these groups of biomarkers 
suggests that their joint investigation in the context of dementia is warranted. We aimed to simultaneously investigate the 
association of circulating levels of selected gut microbiome molecules and inflammatory markers with dementia risk. This 
case–cohort epidemiological study included 805 individuals (83 years, 66% women) free of dementia at baseline. Plasma 
levels of 19 selected gut microbiome molecules comprising lipopolysaccharide, short-chain fatty acids, and indole-containing 
tryptophan metabolites as well as four inflammatory markers measured at baseline were linked to incident all-cause (ACD) 
and Alzheimer’s disease dementia (AD) in binary outcomes and time-to-dementia analyses. Independent of several covariates, 
seven gut microbiome molecules, 5-hydroxyindole-3-acetic acid, indole-3-butyric acid, indole-3-acryloylglycine, indole-
3-lactic acid, indole-3-acetic acid methyl ester, isobutyric acid, and 2-methylbutyric acid, but no inflammatory markers 
discriminated incident dementia cases from non-cases. Furthermore, 5-hydroxyindole-3-acetic acid (hazard ratio: 0.58; 
0.36–0.94, P = 0.025) was associated with time-to-ACD. These molecules underpin gut microbiome-host interactions in the 
development of dementia and they may be crucial in its prevention and intervention strategies. Future larger epidemiologi-
cal studies are needed to confirm our findings, specifically in exploring the repeatedly measured circulating levels of these 
molecules and investigating their causal relationship with dementia risk.
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IBA  indole-3-butyric acid
ILA  indole-3-lactic acid
ICARB  indole-3-carboxaldehyde
IAG  indole-3-acryloylglycine
DSM  Diagnostic and Statistical Manual of Mental 
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SIDAM  Structured Interview for Diagnosis of 

Dementia of Alzheimer type, Multi-infarct 
Dementia and Dementia of other etiology 
according to DSM-IV and ICD-10

DAG  directed acyclic graph
MMSE  Mini-Mental State Examination
APOE  apolipoprotein E
TBI  traumatic brain injury
MCAR   missing completely at random
MAR  missing at random
Cox PH  cox proportional hazards
aLASSO  adaptive Least Absolute Shrinkage and 

Selection Operator
RF-Boruta  random forest–based Boruta algorithm
RFE-NB  recursive feature elimination implemented 

using Naïve Bayes algorithm
AFT  accelerated failure time
SD  standard deviation
HR  hazard ratio
CI  confidence interval
RR  risk ratio

Introduction

Dementia is a neurodegenerative disease characterized 
by cognitive impairment that affects memory, cognitive 
abilities, and behavior, and significantly interferes with a 
person’s ability to perform daily activities [1]. The cogni-
tive functional deterioration in dementia is beyond what is 
expected as the natural consequence of biological ageing [1]. 
Dementia has uncertain etiology, inherently complex patho-
physiology, and heterogeneous manifestations [2]. Alzhei-
mer’s disease dementia (AD) is the most frequent subtype, 
accounting for 60–80% of dementia as a whole, all-cause 
dementia (ACD) [3]. AD is driven by the brain accumulation 
of beta-amyloid plaques and tau protein tangles, but other 
mechanisms that include neuronal loss, synaptic dysfunc-
tion, neurodegeneration, and metabolic and inflammatory 
alterations might play earlier or more central role [4]. The 
global burden of dementia, influenced by the increasing life 
expectancy, demographics, and risk factors, was recently 
projected to increase in some countries such as the USA 
and Germany [5]. Indeed, a deeper insight into dementia’s 
well-known and emerging modifiable risk factors could have 
a major impact on its rising burden through targeted preven-
tion and intervention strategies.

Interestingly, there is a growing recognition that the gut 
microbiome may play a role in the occurrence of demen-
tia [6–8]. The major putative molecular mechanisms 
underlying this link are the production of gut microbiome 
bioactive molecules [6–9] and gut microbiome-induced 
systemic inflammation [6, 7, 10]. These gut microbiome 
bioactive molecules comprising those produced solely by 
the gut microbiome and those resulting from the host–gut 
microbiome co-metabolism are primarily bacterial endo-
toxins such as lipopolysaccharide (LPS), short-chain fatty 
acids (SCFA), and indole-containing tryptophan metabo-
lites [6, 9, 11]. Crucially, some of these molecules are 
detectable in the systemic circulation [6, 9, 12] reaching 
concentrations up to and above those achieved by a typical 
drug dose [12] and they have been reported to cross the 
blood–brain barrier (BBB) [8, 9, 13, 14].

Remarkably, epidemiological studies have reported 
associations of gut microbiome molecules, specifically 
acetic acid (AA) and propionic acid (PA) [15], isobutyric 
acid and isovaleric acid [16] and indoxyl sulfate (IS) [17], 
LPS [18], LPS-binding protein (LBP) [19], AA [20], PA 
[21, 22], 2-methylbutyric acid, isovaleric acid, valeric 
acid, indole-3-pyruvic acid [22], and 5-hydroxyindole-
3-acetic acid (5OH-IAA) [23, 24] with either ACD or AD 
risk but others did not observe associations with AA [16, 
25], PA [16], and indole [16], LPS [22], indole-3-acetic 
acid (IAA) [23], indoleacrylic acid (IACR) [22], and 5OH-
IAA [26]. Similarly, a few studies reported association of 
inflammatory markers, C-reactive protein (CRP), IL-1β, 
IL-6, and tumor necrosis factor-alpha (TNF-α) with either 
ACD or AD risk [27, 28], whereas others indicated no 
association with CRP [29–31], IL-1β [31], IL-6 [19, 31], 
and TNF-α [31]. These mixed findings may be partly due 
to the generally modest sample size of the aforementioned 
studies. Thus, larger studies are warranted. Furthermore, 
the levels of some gut microbiome molecules and sys-
temic inflammatory markers as well as dementia risk are 
influenced by a myriad of factors such as body composi-
tion, smoking, alcohol consumption, and chronic diseases 
[2, 32–34]. These factors were not sufficiently accounted 
for in previous studies. Most important, the extensively 
reported association of some gut microbiome molecules 
and inflammatory markers [32, 33, 35–38] suggests that 
there is an intricate pathophysiological interplay between 
these molecules and inflammation. However, a joint inves-
tigation of these molecules and inflammatory markers in 
the context of dementia occurrence, which seems crucially 
important, has received limited attention.

To this end, the present epidemiological investigation 
sought to explore the circulating levels of selected gut 
microbiome molecules and inflammatory markers simulta-
neously and examine their association with the risk of ACD 
and AD while accounting for these important risk factors.
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Methods

Study Population

The present study is embedded within the German study on 
Ageing, Cognition, and Dementia in Primary Care Patients 
(AgeCoDe) study. The AgeCoDe is a unique study in that it 
is a prospective cohort of elderly (≥75 years) general prac-
titioner (GP) patients. Other inclusion criteria include being 
a native German language speaker or speaking German flu-
ently, absence of severe hearing or vision impairments, and 
residency at home. The participants were recruited from six 
German cities, Bonn, Düsseldorf, Hamburg, Leipzig, Man-
nheim, and Munich. The study commenced between 2003 
and 2004, and detailed clinical information that includes 
standardized cognitive testing was conducted. Follow-up 
assessments were performed every 18 months and every 10 
months after follow-up seven. At follow-up three (hence-
forth, baseline) which commenced in 2007, participants 
provided blood samples at the GP’s office, from where the 
samples were transported to the central laboratory for stor-
age. For the current study, we considered incident dementia, 
that is, dementia diagnosis between baseline and follow-up 
nine (henceforth, end of follow-up), which was completed 
in 2016. The ethical approval for the AgeCoDe study was 
obtained from the Ethics Commission of the University 
of Bonn 050/02, 258/07; the Ethics Commission of the 
Medical Faculty of the Heinrich Heine University Düssel-
dorf 2079/2002, 2999/2008; the Ethics Commission of the 
Medical Association Hamburg OB/08/02, 2817/2007; the 
Ethics Commission at the Medical Center of the Univer-
sity of Leipzig 143/2002, 309/2007. The ethical approval 
for the present biomarker analysis was obtained from the 
Ethics Commission of the University of Bonn 245/22. All 
participants gave written informed consent. Details of the 
recruitment of participants and assessment of dementia in 
the AgeCoDe have been reported previously [39].

Study Design

The eligible individuals were those free of dementia at 
baseline and with information on classical risk factors of 
dementia, namely age, sex, and body mass index (BMI) at 
baseline. Consequently, the total size of this current full 
cohort was N = 1323, of which 281 (21%) developed inci-
dent ACD. Incident dementia was defined as cases from 
the full cohort occurring between baseline and end. Person 
time (time-to-event) was calculated from the baseline date 
to the date of diagnosis of dementia, or the end of study, 
whichever occurred first. We censored individuals at the 
end of the study on 29 November 2016.

From these N = 1323 eligible individuals, we designed 
a classical case–cohort study that comprise 50% (N = 662) 
subcohort selected via a simple random sampling without 
replacement and all the ACD cases outside the subcohort. 
The sampling fraction and method were chosen for their 
reported efficiency [40]. Consequently, the case–cohort sam-
ple for ACD analyses was N = 805 (N = 143 non-subcohort 
cases, N = 138 subcohort cases, and N = 524 subcohort 
non-cases). Secondarily, we selected AD cases outside the 
subcohort to form an AD case–cohort sample of N = 740 
(N = 78 non-subcohort cases, N = 73 subcohort cases, and 
N = 589 subcohort non-cases).

Measurement of Gut Microbiome Molecules 
and Inflammatory Markers

All biomarkers were measured from EDTA plasma collected 
at baseline. All laboratory analyses were blinded to the par-
ticipants’ dementia status and any characteristics.

Lipopolysaccharide and Lipopolysaccharide‑Binding Protein

LPS was measured by a quantitative sandwich enzyme 
immunoassay technique (MBS702450; MyBiosource, San 
Diego, CA, USA) and LBP by a solid-phase, two-site chemi-
luminescent immunometric assay (IMMULITE®1000, 
Siemens Healthcare GmbH, Erlangen, Germany). Further 
processing of the samples was carried out according to the 
specifications from the kit instructions or according to the 
specifications of the laboratories. For both LPS and LBP, 
the intra-assay coefficient of variation (CV) was <8% and 
inter-assay CV was <10%.

Indole‑Containing Tryptophan Metabolites

Targeted metabolomics quantification of the concentrations 
9 indole-containing tryptophan metabolites, IAA, indole-
3-acetic acid methyl ester (IAA ME), 5OH-IAA, indole-
3-propionic acid (IPA), indole-3-butyric acid (IBA), indole-
3-lactic acid (ILA), indole-3-carboxaldehyde (ICARB), 
indole-3-acryloylglycine (IAG), IS was determined by ultra 
high performance liquid chromatography-electrospray ioni-
zation-triple quadrupole-mass spectrometry, as reported pre-
viously [41]. Other metabolites, which include tryptophan, 
methionine, tyrosine, serotonin, and N-acetyl-tryptophan, 
were also quantified in this targeted assay. The intra-day CV 
for all metabolites in the present analysis was less than 15%.

Short‑Chain Fatty Acids

The measurement of the SCFA was according to previously 
reported targeted metabolomics analysis [42]. We measured 
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eight SCFA namely AA, PA, isobutyric acid, butyric acid 
(BA), 2-methylbutyric acid, isovaleric acid, valeric acid 
(VA), and hexanoic acid (HA). The intra-day CV for all 
SCFAs was less than 20%.

Inflammatory Markers

The multiplexing analysis of IL-1β, IL-6, and TNFα was 
performed using the Luminex™ 200 system (Luminex, Aus-
tin, TX, USA). The intra-assay CV for all three markers 
was less than 10%. The inter-assay CV for IL-1β and IL-6 
was less than 15% while TNF-α was less than 20%. High-
sensitivity CRP was measured at the central laboratory of 
the University Hospital in Bonn.

Assessment of Covariates: Sociodemographic, 
Anthropometry, Lifestyle Factors, and Prevalent 
Diseases

All covariates were assessed at baseline. Standardized 
questionnaires were used to obtain information on age, 
sex, weight, height, education, last employment status, 
smoking status, alcohol consumption, physical activity, 
social status (marital status and living alone), and the 
presence of prevalent disease (hypertension, type 2 dia-
betes, coronary heart disease, stroke, depression, hear-
ing and visual impairment, and traumatic brain injury). 
BMI was calculated as weight in kilograms divided by 
the squared height in meters. Educational level was cat-
egorized into low (inadequately completed or elementary 
schooling), middle (secondary), and high (tertiary). Par-
ticipants whose last employment status was manual jobs, 
salaried jobs, civil service jobs, and self-employed were 
categorized as employed and others were categorized as 
unemployed. Smoking was assessed as the current smok-
ing of cigarettes, a pipe, cigars, or other tobacco products. 
Individuals who were current non-smokers but smoked 
for any number of years of smoking were categorized as 
ex-smokers. Alcohol consumption was determined from 
the frequency and quantity of consumption and converted 
to a uniform measure of grams per day. Physically active 
individuals were those who had more than one per week 
cycling, hiking or long walks, swimming, gymnastics, and 
other sports such as golf. Marital status was categorized 
into four groups, widowed, divorced, married, and sin-
gle. The Mini-Mental State Examination (MMSE) score 
was used to assess global cognitive function at baseline. 
Depression was assessed based on the 15-item version 
of the Geriatric Depression Scale dichotomized into <6 
points (no evidence of depressive symptoms) and ≥6 
points (evidence of depressive symptoms). Medication use 
was obtained from questionnaire. Plasma hemoglobin A1c 

(HbA1c) was measured using the Roche/Hitachi-Modu-
larSystems (Roche) according to the manufacturer’s proto-
cols. Apolipoprotein E (APOE)-ɛ4) status was determined 
from leucocyte DNA.

Outcomes

Dementia diagnoses were based on a validated, structured 
interview for the diagnosis of dementia of the Alzheimer 
type, multi-infarct (or vascular) dementia, and dementias 
of other etiology according to the Diagnostic and Statisti-
cal Manual of Mental Disorders (DSM)-III-R, DSM-IV, and 
ICD-10 (Structured Interview for Diagnosis of Dementia 
of Alzheimer type, Multi-infarct Dementia and Demen-
tia of other etiology according to DSM-IV and ICD-10 
(SIDAM) [43]), implemented by trained research assistants. 
The SIDAM consists of a cognitive test battery (55 items 
including the Mini-Mental State Examination and cover-
ing the cognitive domains of orientation, memory, abstract 
reasoning, verbal ability and calculation, constructional 
ability, aphasia and apraxia) and a section for clinical diag-
nostic impression and rating of psychosocial impairment 
with a scale for the assessment of activities of daily liv-
ing. Dementia was diagnosed according to the criteria of 
the DSM-IV, which comprise a diagnostic algorithm in the 
SIDAM including cognitive impairment on the SISCO score 
and impairment in ADL (score of ≥2 on the SIDAM ADL 
Scale). The diagnosis of dementia in AD was established 
according to the National Institute of Neurological and Com-
municative Disorders and Stroke–Alzheimer’s Disease and 
Related Disorders Association criteria for probable AD [44]. 
Vascular dementia diagnosis was guided by the National 
Institute of Neurological Disorders and Stroke–Associa-
tion Internationale pour la Recherché et l’Enseignement 
en Neurosciences criteria [45] (i.e., evidence of a cerebro-
vascular event [Hashinski-Rosen Scale and medical his-
tory] and temporal association of the cerebrovascular event 
with cognitive decline). Mixed dementia was diagnosed in 
the absence of temporal association of the cerebrovascular 
event with cognitive decline. For all analyses, individuals 
with mixed dementia and dementia in AD were combined. 
Dementia diagnosis in individuals who were not personally 
interviewed was based on the Global Deterioration Scale and 
the Blessed Dementia Scale subscales. A score of at least 4 
on the Global Deterioration Scale represented a diagnosis 
of dementia. The diagnosis was established in these cases 
if the causal information provided was sufficient for judg-
ment using the aforementioned criteria. All diagnoses were 
made in consensus conferences that included the interviewer 
and experienced geriatric psychiatrists or geriatricians. The 
primary and secondary outcomes for the present study were 
ACD and AD, respectively.
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Statistical Analysis

Descriptive Analysis

Analysis was performed for ACD (n = 805) and AD (n = 
740) case–cohorts separately. Continuous and categorical 
variables were summarized as median (25% and 75% per-
centile), and count (percentage), respectively. Difference 
in continuous and categorical predictors across dementia 
status were tested with the Kruskal–Wallis rank-sum test 
and either Pearson’s Chi-squared or Fisher’s exact test, 
respectively.

Multivariable Modeling of the Association of Gut 
Microbiome Molecules and Inflammatory Markers 
with Dementia Risk

Selection of Covariates

We identified covariates for the causal inference between 
gut microbiome molecules and inflammatory markers with 
dementia risk using a directed acyclic graph (DAG). Based 
on a priori knowledge and biological plausibility, we used 
a DAG to draw the directions of the paths between the 
gut microbiome molecules or inflammatory markers and 
covariates, between covariates and dementia, and between 
covariates. A minimal sufficient adjustment set of con-
founders was selected and used as covariates.

From the DAG, our covariates were as follows: age 
(years), sex (men and women: reference), BMI (kg/m2), 
APOE-ɛ4 (homozygous, heterozygous, absent: reference), 
smoking status (smokers, ex-smokers, non-smokers: ref-
erence), alcohol intake (g/day), educational level (high, 
middle low: reference), employment (employed and unem-
ployed: reference), physical activity (active and inactive: 
reference), marital status (widowed, divorced, married, 
single: reference), living alone (yes and no: reference), 
family history of dementia (yes and no: reference), preva-
lent hypertension, diabetes mellitus, coronary heart dis-
ease, stroke, depression, traumatic brain injury (TBI) 
(yes and no: reference), hearing impairment (significant 
hearing loss, mild hearing loss, and no impairment: refer-
ence), visual impairment (most severe visual impairment, 
considerable visual impairment, difficult vision, and no 
impairment: reference), mediation (yes and no: refer-
ence), study center (Leipzig, Hamburg, Düsseldorf, Man-
nheim Munich, Bonn: reference), MMSE score, HbA1c, 
and habitual diet. Due to unavailability of self-reported 
dietary intake data in this study and since plasma concen-
trations of tryptophan, methionine, and tyrosine have been 
reported to differentiate habitual diet groups, fish-eaters 
and vegetarians, meat-eaters, and vegans [46], we used 

them as proxies for habitual diet. We additionally adjusted 
for serotonin and N-acetyl-tryptophan. The 23 primary 
predictors (molecules and inflammatory markers) were 
LPS (pg/ml), LBP (μg/ml), IAA, IAA ME, 5OH-IAA, IPA, 
IBA, ILA, ICARB, IAG, IS, AA, PA, isobutyric acid, BA, 
2-methylbutyric acid, isovaleric acid, VA, and HA (μM), 
CRP (mg/ml), and IL-1β, IL-6, and TNF-α (pg/ml). We 
checked the bivariate association between the primary pre-
dictors and covariates using the Spearman correlation and 
Kruskal–Wallis rank-sum test.

Handling of Missingness

We examined the proportion of missingness across the 
variables. Globally, we evaluated the missing completely 
at random (MCAR) assumption with Little’s MCAR test. 
Afterwards, we tested the missing data mechanism of each 
variable with a regression-based approach. We imputed the 
missing values when MCAR or missing at random (MAR) 
assumption is reasonable.

Statistical Power Analysis

There is no well-established power calculation for 
case–cohort studies with continuous predictors and non-rare 
events. Therefore, we used the standard power method for 
case–control studies. For this method, we used type I error 
rate of 0.05 and the values of three predictors of AD risk 
of André et al. [19]. Since the variables were standardized 
beforehand, we assumed them to be normally distributed 
with 0 mean and a standard deviation of 1. The dementia-
associated adjusted odds ratio of the main predictor was 1.3 
and the two covariates were 1.09 and 0.98. We independently 
included sample size and proportion of events for the ACD 
and AD. The power of the n = 805 ACD case–cohort was 
91% and for the n = 740 AD case–cohort was 76%. Indeed, 
a sample size of n = 577 and n = 809 would produce the 
conventionally acceptable power (≥ 80%) for the ACD and 
AD case–cohorts, respectively. Considering that this stand-
ard power method has been shown to produce conservative 
estimates for case–cohort studies with non-rare events and 
binary predictors [47], it is likely that the actual power of 
our study samples would be higher.

Multivariable Regression Analysis Continuous and cat-
egorical predictors were standardized and dummy coded, 
respectively. To estimate the association of the primary 
predictors (gut microbiome molecules and inflammatory 
markers) adjusted for covariates with ACD and AD risk, 
we adopted one of the recommended multivariable statisti-
cal approaches for analyzing case–cohort data, which com-
prises an initial variable selection step in binary outcome 
analysis with logistic regression followed by time-to-event 
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analysis with weighted Cox proportional hazards (Cox PH) 
regression [48]. In the current variable selection step, we 
used three methods, the parametric adaptive Least Abso-
lute Shrinkage and Selection Operator (aLASSO) logistic 
regression with 10-fold cross-validation, the random forest–
based Boruta algorithm (RF-Boruta), and the recursive fea-
ture elimination implemented using Naïve Bayes algorithm 
(RFE-NB) with 10-fold cross-validation. These methods 
help to capture all (linear, non-linear, and interactions) com-
plex inter-relationships among the predictors so that those 
that robustly discriminate dementia cases from non-cases 
are recovered. It also reduces potentially exaggerating the 
strength of associations of the multiple primary predictors 
with dementia risk and over-adjustment for covariates in the 
time-to-dementia models. Predictors with non-zero coef-
ficients from the aLASSO logistic regression, predictors 
confirmed as important from the RF-Boruta, and optimal 
features from the RFE-NB were considered as the true rel-
evant predictors of dementia. These true relevant predictors 
were used to estimate time-to-ACD and time-to-AD. We 
fitted Self-Prentice weighted Cox PH and checked for the 
PH assumption. The continuous predictors that violated the 
PH assumption were included with their time-varying form, 
while categorical predictors were handled by stratification 
of their baseline hazard function leading to no estimates 
for them. In addition, we fitted the accelerated failure time 
(AFT) models with weighted least-squares approach.

Bias Analysis

If any main predictor is significantly associated with time-to-
dementia in the Cox PH, we estimated the strength of asso-
ciation (E-value) [49] on the risk ratio scale that unmeasured 
confounder(s) would need to have with both the predictor 
and dementia risk to completely explain away the predic-
tor–dementia risk association, conditional on the measured 
covariates. Furthermore, by excluding early (first year of 
follow-up) incident cases, we addressed reverse causality in 
which the long prodromal phase and premorbid (subclini-
cal) dementia might have directly altered the levels of these 
biomarkers rather than the reverse.

All probabilities were two-sided and significant level was 
set at P < 0.05. Statistical analyses were performed using 
R version 4.2.1.

Results

Descriptive Analysis

Tables 1 and 2 summarize the baseline characteristics of 
the n = 805 ACD and n = 740 AD study populations with 
281 (35%) cases and 151 (20%) cases, respectively. About 

two-thirds were women with median age and BMI of 83 
years and 25 kg/m2, respectively. Around 77% were physi-
cally active, about 5% were current smokers, mild alcohol 
consumers, and had normal MMSE score. Cases for both 
dementia outcomes were more likely to be women, older, 
more likely to be APOE-ɛ4 carriers, less physically active, 
less likely to be married, more likely to live alone, and had 
lower MMSE score. AD cases also had lower BMI. In addi-
tion, cases had higher IBA and lower 5OH-IAA (Table 3).

Multivariable Modeling of the Association of Gut 
Microbiome Molecules and Inflammatory Markers 
with Dementia Risk

Some primary predictors are intercorrelated, highest 
between IAG and IPA, and between 2-methylbutyric acid 
with isobutyric acid and isovaleric acid (Table A.1). Further-
more, at least one primary predictor was associated with a 
covariate, with the largest proportion of the primary predic-
tors associated with tryptophan and study center (Table A.1 
and Table A.2).

Handling of Missingness

The proportion of missingness was low to moderate, 
between 0.1 and 6.8% in the ACD case–cohort and between 
0.1 and 7.2% in the AD casecohort (Table A.3). For the ACD 
case–cohort, VA, PA, BA, HA, marital status, and smok-
ing status were MAR, while other variables were MCAR. 
For the AD case–cohort, VA, BA, marital status, and smok-
ing status were MAR, while other variables were MCAR 
(Table A.3). Although the global MCAR assumption was 
not significant for both datasets (P = <0.001), the fact that 
the predictors were a mix of MCAR and MAR suggests that 
the MAR assumption is optimally appropriate for both data-
sets. Hence, missing values were imputed using the non-
parametric multivariate imputation by the chained random 
forest weighted by the number of non-missing values per 
observation.

Multivariable Regression Analysis

All‑Cause Dementia

The 13 (eight positive and five negative) non-zero predic-
tors from the aLASSO logistic regression were age, sex, 
heterozygous APOE-ɛ4 vs. none, homozygous APOE-ɛ4 
vs none, MMSE score, family history of dementia, physi-
cally active vs. inactive, prevalent visual impairment, 
prevalent stroke, TBI, medication use, serotonin, and 
study center Düsseldorf vs. Bonn (Fig.  1A). The RF-
Boruta confirmed eight important predictors, 5OH-IAA, 
IBA, 2-methylbutyric acid, age, sex, MMSE, heterozygous 
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Table 1  Baseline characteristics of the all-cause dementia case-cohort

All-cause dementia case-cohort (subcohort: n = 662; cases outside subcohort: n = 
143)

P‡

Total (n = 805) Cases (n = 281) Non-cases (n = 524)

Age, years* 83 (81, 86) 84 (82, 87) 83 (81, 86) <0.001
Women† 534 (66.3%) 212 (75.4%) 322 (61.5%) <0.001
Body mass index* 25.39 (23.15, 28.13) 24.92 (22.86, 28.40) 25.83 (23.34, 28.04) 0.106
Apolipoprotein E-ε4  status† 0.004
 Absent 629 (81.5%) 201 (75.0%) 428 (84.9%)
 Heterozygous 140 (18.1%) 65 (24.3%) 75 (14.9%)
 Homozygous 3 (0.4%) 2 (0.7%) 1 (0.2%)
 Family history of  dementia† 198 (24.6%) 79 (28.1%) 119 (22.7%) 0.09
Educational  level† 0.405
 Low 482 (59.9%) 173 (61.6%) 309 (59.0%)
 Middle 229 (28.4%) 81 (28.8%) 148 (28.2%)
 High 94 (11.7%) 27 (9.6%) 67 (12.8%)
Employment history,  Unemployed† 208 (25.8%) 80 (28.5%) 128 (24.4%) 0.212
Smoking  status† 0.993
 Non-smokers 518 (64.4%) 181 (64.6%) 337 (64.3%)
 Ex-smokers 245 (30.5%) 85 (30.4%) 160 (30.5%)
 Smokers 41 (5.1%) 14 (5.0%) 27 (5.2%)
Alcohol consumption, g/day* 2.57 (0, 10) 0 (0, 10) 3.43 (0, 10) 0.124
Physically  active† 621 (77.1%) 199 (70.8%) 422 (80.5%) 0.002
Marital  status† 0.01
 Single 57 (7.1%) 22 (7.9%) 35 (6.7%)
 Married 287 (35.7%) 79 (28.2%) 208 (39.7%)
 Divorced 35 (4.4%) 11 (3.9%) 24 (4.6%)
 Widowed 425 (52.9%) 168 (60.0%) 257 (49.0%)
Living  alone† 430 (53.4%) 164 (58.4%) 266 (50.8%) 0.039
Prevalent  hypertension† 633 (81.4%) 220 (81.2%) 413 (81.5%) 0.924
Prevalent  diabetes† 201 (25.9%) 72 (26.7%) 129 (25.5%) 0.722
Hemoglobin A1c, %* 5.70 (5.50, 6.00) 5.70 (5.50, 6.00) 5.70 (5.50, 6.00) 0.638
Prevalent coronary heart  disease† 271 (35.0%) 89 (32.8%) 182 (36.1%) 0.363
Prevalent  stroke† 52 (6.7%) 22 (8.1%) 30 (5.9%) 0.244
Prevalent  depression† 166 (21.3%) 66 (24.4%) 100 (19.7%) 0.133
Prevalent visual  loss† 0.447
 No impairment 635 (78.9%) 214 (76.2%) 421 (80.3%)
 Difficult vision 121 (15.0%) 50 (17.8%) 71 (13.5%)
 Considerable visual impairment 39 (4.8%) 14 (5.0%) 25 (4.8%)
 Most severe visual impairment 10 (1.2%) 3 (1.1%) 7 (1.3%)
Prevalent hearing  loss† 0.714
 No impairment 458 (56.9%) 156 (55.5%) 302 (57.6%)
 Mild hearing loss 324 (40.2%) 118 (42.0%) 206 (39.3%)
 Significant hearing loss 23 (2.9%) 7 (2.5%) 16 (3.1%)
 Traumatic brain injury† 6 (0.8%) 4 (1.5%) 2 (0.4%) 0.307
Mini-Mental State Examination score* 28.00 (27.00, 29.00) 28.00 (26.96, 29.00) 29.00 (27.39, 30.00) <0.001
Methionine* 9.46 (7.74, 11.45) 9.38 (7.86, 11.35) 9.53 (7.66, 11.54) 0.672
Tryptophan* 32.55 (28.23, 37.48) 32.33 (27.72, 37.83) 32.64 (28.35, 37.42) 0.659
Tyrosine* 52.52 (45.63, 60.99) 51.62 (44.95, 61.33) 53.03 (46.15, 60.88) 0.338
Serotonin* 0.13 (0.06, 0.24) 0.13 (0.06, 0.24) 0.13 (0.06, 0.24) 0.819
N-acetyl -tryptophan* 0.04 (0.04, 0.05) 0.04 (0.04, 0.05) 0.04 (0.04, 0.05) 0.413
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APOE-ɛ4 vs. none, and serotonin (Fig. 1B). The RFE-NB 
showed that a four-predictor model with age, sex, MMSE 
score, and 5OH-IAA optimally discriminates ACD cases 
from non-cases (Fig. 1C). Overall, 16 true relevant predic-
tors discriminated ACD cases from non-cases. These were 
three gut microbiome molecules (5OH-IAA, IBA, 2-meth-
ylbutyric acid) and 13 covariates (age, sex, homozygous 
APOE-ɛ4 vs none, heterozygous APOE-ɛ4 vs. none, 
MMSE score, family history of dementia, physical active 
vs. inactive, prevalent visual impairment, prevalent stroke, 
history of TBI, medication, serotonin, and study center 
Düsseldorf vs. Bonn).

The Cox PH model with the aforementioned true 
relevant predictors showed that the whole model (P = 
<0.001), homozygous APOE-ɛ4 vs none (P = <0.001), 
MMSE score (P = <0.001), and serotonin (P = 0.02) vio-
lated the PH assumption. Consequently, we fitted the Cox 
PH model comprising the original predictors, the time-
dependent MMSE score and serotonin, and stratification of 
the baseline hazard function for homozygous APOE-ɛ4 vs 
none. The result showed that over time, a one-SD increase 
in 5OH-IAA is significantly associated with a constant 
42% decrease ACD risk (adjusted hazard ratio (HR) 0.58; 
95% confidence interval (CI): 0.36 to 0.94, P = 0.025) 
(Fig. 2A). In line with the Cox PH model, the AFT model 
with the true relevant predictors showed that for each one-
SD increase in 5OH-IAA, the logarithm of ACD survival 
time significantly increases by 0.21 (adjusted coefficient 
0.21; 95% CI 0.02 to 0.40, P = 0.03) years (Fig. 2B). 
Other significant predictors of time-to-ACD were age, sex, 
homozygous APOE-ɛ4 vs none, heterozygous APOE-ɛ4 
vs. none, MMSE score, physical active vs. inactive, TBI, 
and serotonin.

Bias Analysis

The E-values for 5OH-IAA were 2.27 and 1.27 for its 
adjusted HR of 0.58 (risk ratio, RR of 0.69) and upper CI of 
0.94 (RR of 0.95), respectively. The observed adjusted HR of 
0.58 could be explained away by an unmeasured confounder 
that is associated with both 5OH-IAA and time-to-ACD risk 
by a RR of 2.27-fold each, beyond the measured confound-
ers, but weaker confounding could not do so. Furthermore, 
the upper CI could be moved to include one by an unmeas-
ured confounder that was associated with both 5OH-IAA 
and time-to-ACD risk by a RR of 1.27-fold each, above and 
beyond the measured confounders, but weaker confounding 
could not do so. In addition, the association between 5OH-
IAA and time-to-ACD risk was robust to the exclusion of 
cases within the first 1 year of follow-up, making it unlikely 
that the result is explained by reverse causality (Table A.4).

Alzheimer’s Disease Dementia

The 12 (six positive and six negative) non-zero predic-
tors from aLASSO logistic regression were IAG, age, sex, 
MMSE score, homozygous APOE-ɛ4 vs none, heterozygous 
APOE-ɛ4 vs. none, married vs single, widowed vs. single, 
prevalent stroke vs. not, physical active vs. inactive, Düs-
seldorf vs. Bonn, and Munich vs. Bonn (Fig. 3A). The RF-
Boruta confirmed 10 important predictors, ILA, IAA ME, 
isobutyric acid, 2-methylbutyric acid, age, MMSE score, 
homozygous APOE-ɛ4 vs none, widowed vs. single, seroto-
nin, and tryptophan, as discriminating AD cases from non-
cases (Fig. 3B). The RFE-NB showed that a four-predictor 
model with age, MMSE score, married vs single, widowed 
vs. single optimally discriminates AD cases from non-cases 

Table 1  (continued)

All-cause dementia case-cohort (subcohort: n = 662; cases outside subcohort: n = 
143)

P‡

Total (n = 805) Cases (n = 281) Non-cases (n = 524)

Medication  use† 795 (98.8%) 277 (98.6%) 518 (98.9%) 0.746
Study  center† 0.492
 Leipzig 160 (19.9%) 48 (17.1%) 112 (21.4%)
 Hamburg 121 (15.0%) 43 (15.3%) 78 (14.9%)
 Düsseldorf 120 (14.9%) 37 (13.2%) 83 (15.8%)
 Mannheim 137 (17.0%) 50 (17.8%) 87 (16.6%)
 Bonn 119 (14.8%) 47 (16.7%) 72 (13.7%)
 Munich 148 (18.4%) 56 (19.9%) 92 (17.6%)
Follow-up, years* 5.67 (3.34, 7.51) 4.61 (3.21, 6.02) 6.84 (3.65, 7.70) <0.001

*Median (25% and 75% percentile)
† Count (percentage)
‡ P value obtained from Kruskal–Wallis rank-sum test and either Pearson’s Chi-squared or Fisher’s exact test
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Table 2  Baseline characteristics of the Alzheimer’s disease dementia case-cohort

Alzheimer’s disease dementia case-cohort (subcohort: n = 662; cases outside subco-
hort: n = 78)

P‡

Total (n = 740) Cases (n = 151) Non-cases (n = 589)

Age, years* 83 (81, 86) 85 (83, 87) 83 (81, 86) <0.001
Women† 484 (65.4%) 116 (76.8%) 368 (62.5%) <0.001
Body mass index* 25.39 (23.15, 28.01) 24.68 (22.59, 27.68) 25.71 (23.31, 28.06) 0.021
Apolipoprotein E-ε4  status† 0.002
 Absent 583 (82.1%) 103 (72.0%) 480 (84.7%)
 Heterozygous 125 (17.6%) 39 (27.3%) 86 (15.2%)
 Homozygous 2 (0.3%) 1 (0.7%) 1 (0.2%)
 Family history of  dementia† 183 (24.7%) 43 (28.5%) 140 (23.8%) 0.232
Educational  level† 0.49
 Low 443 (59.9%) 92 (60.9%) 351 (59.6%)
 Middle 208 (28.1%) 45 (29.8%) 163 (27.7%)
 High 89 (12.0%) 14 (9.3%) 75 (12.7%)
Employment history,  unemployed† 189 (25.5%) 42 (27.8%) 147 (25.0%) 0.473
Smoking  status† 0.902
 Non-smokers 478 (64.7%) 99 (66.0%) 379 (64.3%)
 Ex-smokers 223 (30.2%) 43 (28.7%) 180 (30.6%)
 Smokers 38 (5.1%) 8 (5.3%) 30 (5.1%)
Alcohol consumption, g/day* 3.20 (0, 10) 0 (0, 10) 3.43 (0, 10) 0.164
Physically  active† 575 (77.7%) 103 (68.2%) 472 (80.1%) 0.002
Marital  status† 0.001
 Single 53 (7.2%) 11 (7.3%) 42 (7.1%)
 Married 270 (36.5%) 34 (22.5%) 236 (40.1%)
 Divorced 33 (4.5%) 7 (4.6%) 26 (4.4%)
 Widowed 383 (51.8%) 99 (65.6%) 284 (48.3%)
Living  alone† 388 (52.4%) 94 (62.3%) 294 (49.9%) 0.007
Prevalent  hypertension† 581 (81.0%) 115 (78.2%) 466 (81.8%) 0.331
Prevalent  diabetes† 181 (25.3%) 40 (27.2%) 141 (24.8%) 0.553
Hemoglobin A1c, %* 5.70 (5.50, 6.00) 5.70 (5.50, 6.00) 5.70 (5.50, 6.00) 0.424
Prevalent coronary heart  disease† 252 (35.3%) 50 (34.0%) 202 (35.6%) 0.715
Prevalent  stroke† 44 (6.1%) 6 (4.1%) 38 (6.7%) 0.243
Prevalent  depression† 152 (21.2%) 33 (22.4%) 119 (20.9%) 0.678
Prevalent visual  loss† 0.909
 No impairment 586 (79.2%) 118 (78.1%) 468 (79.5%)
 Difficult vision 107 (14.5%) 22 (14.6%) 85 (14.4%)
 Considerable visual impairment 37 (5.0%) 9 (6.0%) 28 (4.8%)
 Most severe visual impairment 10 (1.4%) 2 (1.3%) 8 (1.4%)
Prevalent hearing  loss† 0.914
 No impairment 417 (56.4%) 87 (57.6%) 330 (56.0%)
 Mild hearing loss 300 (40.5%) 59 (39.1%) 241 (40.9%)
 Significant hearing loss 23 (3.1%) 5 (3.3%) 18 (3.1%)
Traumatic brain injury† 5 (0.7%) 1 (0.7%) 4 (0.7%) 0.918
Mini-Mental State Examination score* 28.91 (27.00, 29.00) 28.00 (26.00, 29.00) 29.00 (27.00, 29.25) < 0.001
Methionine* 9.52 (7.74, 11.47) 9.23 (7.71, 11.23) 9.57 (7.75, 11.52) 0.413
Tryptophan* 32.56 (28.16, 37.49) 31.97 (26.80, 37.26) 32.74 (28.35, 37.49) 0.274
Tyrosine* 52.44 (45.68, 61.02) 51.78 (44.29, 62.03) 52.66 (46.06, 60.83) 0.423
Serotonin* 0.13 (0.06, 0.23) 0.13 (0.06, 0.22) 0.13 (0.06, 0.25) 0.46
N-acetyl -tryptophan* 0.04 (0.04, 0.05) 0.04 (0.04, 0.05) 0.04 (0.04, 0.05) 0.541
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(Fig. 3C). Overall, 18 true relevant predictors discriminated 
AD cases from non-cases. This included five gut microbiome 
molecules (IAG, ILA, IAA ME, isobutyric acid, 2-meth-
ylbutyric acid) and 13 covariates (age, sex, MMSE score, 
homozygous APOE-ɛ4 vs none, heterozygous APOE-ɛ4 vs. 
none, married vs single, widowed vs. single, serotonin, tryp-
tophan, prevalent stroke vs. not, physical active vs. inactive, 
study center Düsseldorf vs. Bonn, and study center Munich 
vs. Bonn). However, none of the four inflammatory markers 
discriminated AD cases from non-cases.

The Cox PH model with the aforementioned true relevant 
predictors showed that the whole model (global test, P = 
<0.001), IAG (P = <0.001), and homozygous APOE-ɛ4 
vs none (P = <0.001) violated the PH assumption. Conse-
quently, we fitted the Cox PH model comprising the origi-
nal predictors, time-dependent IAG, and stratification of 
the baseline hazard function for homozygous APOE-ɛ4 vs 
none. We observed that none of the primary predictors was 
associated with time-to-AD in the Cox PH (Fig. 4A) and 
AFT models (Fig. 4B). Consequently, no bias analysis was 
performed for AD. The significant predictors of time-to-AD 
were age, homozygous APOE-ɛ4 vs none, heterozygous 
APOE-ɛ4 vs. none, MMSE score, physical active vs. inac-
tive, and study center Düsseldorf vs. Bonn.

Discussion

The present epidemiological study leveraging a unique mul-
ticenter German cohort explored the relationship between 
the plasma levels of 19 gut microbiome molecules and four 
inflammatory markers and the risk of incident dementia. 
There were three observations. Firstly, seven (three ACD-
related: 5OH-IAA, IBA, and 2-methylbutyric acid and 

five AD-related: IAG, ILA, IAA ME, isobutyric acid, and 
2-methylbutyric acid) gut microbiome molecules discrimi-
nated incident dementia cases from non-cases. Secondly, 
decreased 5OH-IAA level was associated with elevated 
time-to-ACD. Thirdly, there was no association between 
inflammatory markers and the risk of either ACD or AD.

The relationship between IBA, IAG, ILA, and IAA ME 
and either ACD or AD risk has not been reported previously. 
Hence, the current study adds to the body of literature. Our 
observed relationship between 2-methylbutyric acid and 
AD risk is in consort with Wu et al. where fecal 2-meth-
ylbutyric acid was associated with AD risk in 55 individuals 
[22]. 2-Methylbutyric acid is a branched SCFA produced 
by microbial fermentation of isoleucine [50]. Another AD-
related branched SCFA, isobutyric acid is produced by 
microbial fermentation of valine [50]. Isobutyric acid was 
previously associated with ACD [16]. Bacteroides, Pro-
pionibacterium, Bacillus, Lactobacillus, Clostridium, and 
Escherichia coli produce isobutyric acid and 2-methylbu-
tyric acid [50]. The potential explanation for their relation-
ship with dementia is that SCFAs modulate microglial acti-
vation, although the exact signaling pathways are not fully 
understood [51]. SCFAs also stimulate the expression of aryl 
hydrocarbon receptor (AhR) factors [52].

The first indole-containing tryptophan metabolite, ILA 
is secreted by Bifidobacterium infantis [53] and Lactilac-
tobacillus species [54], functioning as a potent activator of 
human AhR signaling [52]. The second, IBA is a precur-
sor of IAA [55] produced by Bifidobacterium, Lactilacto-
bacillus, Clostridium, and Bacteroides [54]. Furthermore, 
IAA ME is a metabolite of IAA produced by Pseudomonas 
amygdali [56] and IAG is synthesized from microbial 
tryptophan metabolism and host glycine conjugation [57]. 
The last, 5OH-IAA is the most compelling finding, as it 

Table 2  (continued)

Alzheimer’s disease dementia case-cohort (subcohort: n = 662; cases outside subco-
hort: n = 78)

P‡

Total (n = 740) Cases (n = 151) Non-cases (n = 589)

Medication  use† 730 (98.6%) 150 (99.3%) 580 (98.5%) 0.6961
Study  center† 0.054
 Leipzig 148 (20.0%) 24 (15.9%) 124 (21.1%)
 Hamburg 113 (15.3%) 24 (15.9%) 89 (15.1%)
 Düsseldorf 102 (13.8%) 13 (8.6%) 89 (15.1%)
 Mannheim 128 (17.3%) 26 (17.2%) 102 (17.3%)
 Bonn 107 (14.5%) 24 (15.9%) 83 (14.1%)
Munich 142 (19.2%) 40 (26.5%) 102 (17.3%)
Follow-up, years* 5.83 (3.33, 7.55) 4.36 (3.26, 5.90) 6.48 (3.43, 7.66) < 0.001

*Median (25% and 75% percentile)
† Count (percentage)
‡ P value obtained from Kruskal–Wallis rank-sum test and either Pearson’s Chi-squared or Fisher’s exact test
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was associated with time-to-ACD independent of several 
covariates and robust against bias. 5OH-IAA was previously 
associated with AD [23, 24]. Possible explanation for 5OH-
IAA is that it is an agonist for AhR signaling [52, 58–60] 
and prevents the formation of amyloid beta plaques [61]. 
Thus, its low circulating levels suggest a reduction in these 
dementia-preventing properties. 5OH-IAA is synthesized 

mainly in the kidney and liver as the final serotonin catabo-
lite in a two-step reaction, involving monoamine oxidase 
and aldehyde dehydrogenase [62]. Besides, it functions in 
the indole pathway [63]. Some gut bacteria such as Pseu-
domonas [64, 65] also directly synthesize its serotonin pre-
cursor. It is therefore unsurprising that 5OH-IAA is highly 
associated with the gut microbiome [66] and an emerging 

Table 3  Description of the primary predictors

All values are in median (25% and 75% percentile), *pg/mL, #μg/mL, †μM, ‡P value obtained from Kruskal–Wallis rank-sum test

All-cause dementia case-cohort (subcohort: n = 662; 
cases outside subcohort: n = 143)

P‡ Alzheimer’s disease dementia case-cohort (subcohort: 
n = 662; cases outside subcohort: n = 78)

P‡

Total (n = 805) Cases (n = 281) Non-cases (n = 
524)

Total (n = 740) Cases (n = 151) Non-cases (n = 
589)

Lipopolysaccha-
ride*

107.91 (69.49, 
168.92)

111.45 (71.94, 
174.83)

104.78 (65.85, 
164.82)

0.112 106.86 (69.07, 
165.10)

112.76 (71.94, 
173.14)

105.09 (68.09, 
164.65)

0.224

LPS-binding 
 protein#

5.20 (4.10, 6.30) 5.20 (4.10, 6.50) 5.20 (4.10, 6.30) 0.824 5.20 (4.10, 6.30) 5.30 (4.00, 6.30) 5.20 (4.10, 6.30) 0.78

Indole-3-acetic 
 acid†

5.12 (3.93, 7.15) 5.33 (4.12, 7.37) 5.05 (3.79, 7.08) 0.094 5.09 (3.90, 7.15) 5.12 (4.08, 7.61) 5.07 (3.84, 7.08) 0.363

Indole-3-acetic 
acid methyl 
 ester†

0.01 (0.01, 0.01) 0.01 (0.01, 0.01) 0.01 (0.01, 0.01) 0.742 0.01 (0.01, 0.01) 0.01 (0.01, 0.01) 0.01 (0.01, 0.01) 0.952

Indole-3-propi-
onic  acid†

5.13 (3.09, 7.70) 4.93 (2.83, 7.95) 5.17 (3.19, 7.32) 0.669 5.01 (3.08, 7.41) 4.86 (2.95, 7.70) 5.145 3.132, 
7.334)

0.426

Indole-3-butyric 
 acid†

0.03 (0.02, 0.04) 0.03 (0.02, 0.04) 0.03 (0.02, 0.04) 0.003 0.03 (0.02, 0.04) 0.03 (0.02, 0.04) 0.03 (0.02, 0.04) 0.033

Indole-3-lactic 
 acid†

1.45 (1.13, 1.87) 1.39 (1.12, 1.77) 1.49 (1.13, 1.90) 0.099 1.45 (1.12, 1.87) 1.40 (1.11, 1.81) 1.46 (1.12, 1.87) 0.449

Indole-3-carbox-
aldehyde†

0.27 (0.22, 0.39) 0.27 (0.23, 0.39) 0.27 (0.22, 0.40) 0.882 0.27 (0.22, 0.39) 0.27 (0.23, 0.38) 0.27 (0.22, 0.40) 0.406

Indole-3-acry-
loylglycine†

0.04 (0.03, 0.07) 0.04 (0.02, 0.07) 0.04 (0.03, 0.07) 0.711 0.04 (0.03, 0.06) 0.04 (0.03, 0.06) 0.04 (0.03, 0.07) 0.962

Indoxyl  sulfate† 34.57 (20.96, 
51.74)

34.75 (22.06, 
51.08)

34.41 (20.80, 
51.96)

0.82 34.58 (20.98, 
51.77)

35.12 (22.31, 
50.24)

34.31 (20.84, 
52.00)

0.841

5-hydroxyin-
dole-3-acetic 
 acid†

0.77 (0.48, 1.22) 0.68 (0.47, 1.10) 0.82 (0.50, 1.29) 0.003 0.79 (0.48, 1.25) 0.67 (0.46, 1.12) 0.82 (0.50, 1.29) 0.014

Acetic  acid† 22.72 (17.92, 
30.25)

22.69 (17.39, 
30.27)

22.77 (18.19, 
30.14)

0.461 22.74 (18.06, 
30.02)

22.94 (17.52, 
29.17)

22.62 (18.12, 
30.30)

0.884

Propionic  acid† 3.51 (2.83, 4.39) 3.49 (2.87, 4.31) 3.53 (2.81, 4.42) 0.866 3.53 (2.86, 4.42) 3.56 (3.08, 4.42) 3.52 (2.81, 4.42) 0.292
Isobutyric  acid† 0.47 (0.37, 0.65) 0.47 (0.36, 0.64) 0.47 (0.37, 0.65) 0.789 0.47 (0.37, 0.65) 0.46 (0.37, 0.65) 0.47 (0.37, 0.65) 0.677
Butyric  acid† 0.94 (0.76, 1.21) 0.96 (0.76, 1.15) 0.93 (0.76, 1.24) 0.662 0.94 (0.76, 1.21) 0.97 (0.76, 1.14) 0.94 (0.76, 1.23) 0.464
2-methylbutyric 

 acid†
0.36 (0.28, 0.48) 0.37 (0.28, 0.49) 0.36 (0.28, 0.48) 0.797 0.36 (0.28, 0.48) 0.37 (0.28, 0.50) 0.36 (0.28, 0.48) 0.852

Isovaleric  acid† 0.42 (0.30, 0.63) 0.42 (0.29, 0.63) 0.42 (0.30, 0.62) 0.571 0.42 (0.29, 0.62) 0.41 (0.27, 0.58) 0.43 (0.30, 0.63) 0.253
Valeric  acid† 0.24 (0.19, 0.32) 0.24 (0.19, 0.31) 0.25 (0.19, 0.33) 0.514 0.25 (0.19, 0.32) 0.24 (0.18, 0.32) 0.25 (0.19, 0.33) 0.369
Hexanoic  acid† 1.49 (1.15, 1.91) 1.44 (1.13, 1.84) 1.53 (1.17, 1.95) 0.058 1.51 (1.17, 1.94) 1.51 (1.15, 1.94) 1.51 (1.17, 1.93) 0.813
CRP, mg/mL 2.15 (1.11, 4.32) 2.14 (1.04, 4.14) 2.16 (1.18, 4.50) 0.349 2.14 (1.12, 4.38) 1.92 (1.01, 4.31) 2.19 (1.19, 4.47) 0.158
Interleukin 

(IL)-1β#
3.33 (1.38, 9.51) 3.28 (1.13, 8.95) 3.33 (1.47, 9.76) 0.393 3.28 (1.36, 9.30) 3.19 (1.13, 8.92) 3.28 (1.38, 9.55) 0.651

IL-6# 3.84 (2.30, 6.84) 3.88 (2.42, 6.79) 3.77 (2.25, 6.97) 0.68 3.84 (2.30, 7.03) 4.01 (2.38, 7.09) 3.75 (2.30, 7.03) 0.672
Tumor necrosis 

factor-α#
5.59 (4.23, 7.26) 5.54 (4.00, 6.96) 5.61 (4.27, 7.42) 0.212 5.61 (4.23, 7.35) 5.66 (4.09, 7.43) 5.59 (4.25, 7.33) 0.92
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Fig. 1  The true relevant predictors of all-cause dementia risk 
obtained from adaptive Least Absolute Shrinkage and Selection 
Operator logistic regression (green: positively associated predic-
tors, red: negatively associated predictors) (A), random forest–based 
Boruta algorithm (Importance = median, minimum, and maximum 

z-scores of importance computed over multiple iterations) (B), and 
recursive feature elimination implemented using Naïve Bayes algo-
rithm (Importance = area under the ROC curve (AUC) score impor-
tance) (C)

Fig. 2  Association between true relevant predictors and time-to-all cause dementia risk. (A) Weighted Cox proportional hazard model (hazard 
ratio and 95% confidence interval). (B) Weighted least-squares accelerated failure time (coefficient and 95% confidence interval)
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gut microbiome molecule [58–60, 67]. Interestingly, altera-
tion in this host–gut microbiome co-molecule is implicated 
in neuropsychiatric conditions such as depression [67], epi-
lepsy [68], and schizophrenia [69]. This suggests that the 
comorbidity of these conditions with dementia [70] may be 
partly underlined by the gut microbiome and 5OH-IAA.

Surprisingly, the gut microbiome de novo synthesized 
LPS and a measure of its long-term exposure (LBP) was 
not related to either ACD or AD. This is in contrast to the 
association of plasma LPS in 36 individuals [18] and plasma 
LBP in 636 individuals [19] with AD as well as the inde-
pendent association of plasma LPS with cognitive decline 
in 127 individuals [71]. Moreover, other previously reported 
ACD-related gut microbiome molecules were saliva AA and 
PA in 51 individuals [15], fecal isovaleric acid in 107 indi-
viduals [16], and plasma IS in 24 individuals [17]. While 
Zhang et al. [18] was independent of age, André et al. [19] 
and Figueira et al. [15] were independent of a few covariates, 
Saji et al. [16] was not significant after adjusting for covari-
ates, and Teruya et al. [17] was unadjusted for covariates. 
In addition, PA [21, 22] and 5OH-IAA [23, 24] have been 
consistently associated with AD, independent of age and 
sex. Yilmaz et al. observed the association in the saliva of 21 
individuals [21], Wu et al. in the feces of 55 individuals [22]. 
Whiley et al. in the urine of 556 individuals [23], and Baker 
et al. in the brain of 25 individuals [24]. The fact most of the 
aforementioned molecules were not related to either ACD 
or AD suggests that the discrepancy between our findings 
and others is likely attributable to underlying differences 
in the study populations and methodologies. Moreover, the 
absence of association of any molecule with time-to-AD is 
unlikely due to statistical power since time-to-event analysis 

has greater statistical power than binary outcome analysis 
[72].

Unexpectedly, inflammatory markers, CRP, IL-1β, IL-6, 
and TNF-α did not discriminate dementia cases from non-
cases. The absence of their association with dementia risk is 
unlikely to be due to intercorrelation of the markers, which 
is low, or covariate adjustment, since none was associated 
with dementia in the unadjusted analysis. This finding is in 
consort with recent reports [19, 29–31]. Two studies like 
ours investigated both ACD and AD [27, 29]. While the 
meta-analysis showed that CRP and IL-6 are associated with 
ACD and CRP with AD [27], the more recent study [29] 
did not observe an association of CRP with either ACD or 
AD. Considering that most recent studies [19, 30, 31] did 
not observe an association with other inflammatory mark-
ers casts doubt on the independent association between 
the circulating levels of this set of inflammatory markers 
and dementia risk. Nevertheless, this does not preclude the 
potential role of other inflammatory markers since systemic 
inflammation is the primary cause of BBB damage and often 
precedes dementia pathologies [73].

It is noteworthy that we confirmed previously reported 
determinants of dementia such as age [74], sex [16, 74], 
APOE-ɛ4 [16, 74, 75], MMSE [16, 22], and physical inactiv-
ity [2, 75]. In fact, we observed that age, sex, APOE-ɛ4, and 
MMSE were independent predictors of time-to-dementia 
risk. Additionally, our objectively measured habitual diet 
proxies that were negligible predictors of dementia agree 
with recent inconclusive evidence linking diet to demen-
tia risk [76–78]. Furthermore, there are indications that 
the association between diet and dementia risk is driven 
by cardiovascular risk factors [2]. Since we adjusted for 

Fig. 3  The true relevant predictors of Alzheimer’s disease dementia 
risk obtained from adaptive Least Absolute Shrinkage and Selection 
Operator logistic regression (green: positively associated predic-
tors, red: negatively associated predictors) (A), random forest–based 
Boruta algorithm (Importance = median, minimum, and maximum 

z-scores of importance computed over multiple iterations) (B), and 
recursive feature elimination implemented using Naïve Bayes algo-
rithm (Importance = area under the ROC curve (AUC) score impor-
tance) (C)
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cardiovascular risk factors, it is likely that residual con-
founding by diet would be trivially small, despite SCFA 
and indole-containing tryptophan metabolites being diet-
dependent. Furthermore, APOE-ɛ4 is a strong determi-
nant of dementia and interacts with other risk factors [74]. 
Adjusting for APOE-ɛ4 status as a three-group variable 
ensures that its influence and related factors are properly 
accounted for.

There are several strengths of this study. It is a multi-
center study; as such, these findings are generalizable to the 
broader German population. It is also one of the largest stud-
ies linking this set of biomarkers to dementia risk. Our anal-
yses are sufficiently powered to produce valid and reliable 
results. Standardization of all continuous predictors reduces 
the impact of variation in the molecules and inflammatory 

markers thereby facilitating their comparison. Furthermore, 
our multivariable analysis ensured that we accounted for 
most of the inter-relationships among the molecules and 
inflammatory markers, covariates, and dementia risk. Our 
reporting of the effect estimates of primary predictors and 
covariates will improve the statistical power estimation of 
future studies. Finally, the case–cohort design affords the 
use of the subcohort for other health conditions since it is 
not case-matched. While this study is hypothesis-driven and 
yielded scientifically interesting and biologically plausible 
findings, it is important to acknowledge its limitations. This 
is an observational study; thus, it does not prove causal rela-
tionship between these molecules and dementia risk. Indeed, 
the potential causal relationship of 5OH-IAA with ACD risk 
may be explored by linking genetically predicted levels of 

Fig. 4  Association between true relevant predictors and time-to-Alzheimer’s disease dementia risk. (A) Weighted Cox proportional hazard 
model (hazard ratio and 95% confidence interval). (B) Weighted least-squares accelerated failure time (coefficient and 95% confidence interval)
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5OH-IAA with ACD risk in Mendelian randomization anal-
ysis. Besides, our finding may be different in other biospeci-
men. However, this seems unlikely for 5OH-IAA since there 
is a good agreement of its plasma, serum, and urine levels 
[60]. Moreover, we reported the impact of reverse causality 
and the strength of unmeasured confounders that are likely 
to explain away our findings. Despite these bias analyses and 
extensive adjustment for covariates, our results could still be 
biased due to measurement error and the use of two catego-
ries for some covariates. Our limited sample size precludes 
an intermediate step of internally validating and assessing 
the potential clinical utility of the true relevant predictors in 
a holdout dataset. Our findings should be confirmed in other 
studies, particularly in larger well-characterized and harmo-
nized multicenter studies with broader microbiome metabo-
lomics and a larger set of inflammatory markers. Since the 
levels of some of these dementia-related molecules are time-
dependent [33], the relationship between their repeatedly 
measured levels and dementia risk should be investigated. 
Indeed, the AD-related molecules are interesting candidates 
to thoroughly elucidate in future biomarker-based research.

Conclusion

In a relatively large cohort of older Germans, we observed 
that circulating concentrations of seven gut microbiome mol-
ecules are related to dementia risk, of which 5OH-IAA is 
associated with long-term ACD risk. These molecules under-
pin gut microbiome-host interactions in dementia occurrence. 
The modulation of these molecules such as through direct 
supplemental intake and probiotic consumption of their syn-
thesizing bacteria may be crucially relevant in dementia’s 
multifactorial risk prevention and intervention strategies.
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