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Abstract: Preprocessing Synthetic Aperture Radar (SAR) data is a crucial initial stage in leveraging
SAR data for remote sensing applications. Terrain correction, both radiometric and geometric, and
the detection of layover/shadow areas hold significant importance when SAR data are collected over
mountainous regions. This study aims at investigating the impact of the Digital Elevation Model
(DEM) used for terrain correction (radiometric and geometric) and for mapping layover/shadow
areas on windthrow detection using COSMO SkyMed SAR images. The terrain correction was
done using a radiometric and geometric terrain correction algorithm. Specifically, we evaluated
five different DEMs: (i–ii) a digital terrain model and a digital surface model derived from airborne
LiDAR flights; (iii) the ALOS Global Digital Surface Model; (iv) the Copernicus global DEM; and
(v) the Shuttle Radar Topography Mission (SRTM) DEM. All five DEMs were resampled at 2 m
and 30 m pixel spacing, obtaining a total of 10 DEMs. The terrain-corrected COSMO SkyMed SAR
images were employed for windthrow detection in a forested area in the north of Italy. The findings
revealed significant variations in windthrow detection across the ten corrections. The detailed LiDAR-
derived terrain model (i.e., DTM at 2 m pixel spacing) emerged as the optimal choice for both pixel
spacings considered.

Keywords: SAR; windthrow detection; preprocessing; digital elevation model; digital surface model;
COSMO SkyMed

1. Introduction

Synthetic Aperture Radar (SAR) images acquired over areas with complex topography
often exhibit significant distortions in the backscatter values due to the side-looking nature
of SAR sensors. For instance, hills facing the SAR system typically appear brighter (with
higher backscatter values) because they reflect energy back toward the sensor, while hills
facing away appear darker (with lower backscatter values) because they scatter energy
away from the sensor. Additionally, SAR images provided in Level 1A or 1B by the data
providers (e.g., European Space Agency) also need a geometric correction to determine the
correct location of each pixel with respect to the ground using a digital elevation model.
Usually, the process to radiometrically correct the images with respect to the topography
is called radiometric terrain correction, while the correction of the geometric distortions
and the correct positioning of the pixels with respect to the terrain is called geometric
terrain correction.

SAR images in complex topography can be affected by layover and shadows. Layover
occurs when the radar beam reaches the top of a tall feature before reaching its base. In
a SAR image with layover, the mountains look as if they have fallen over toward the
sensor. Steeper angles lead to more extreme layovers, where mountain tops appear to lay
over their base. Layover pixels appear to have high values in the image (bright pixels).
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Shadows in SAR images arise when higher objects obstruct the radar beam, resulting in
certain areas not being illuminated and appearing dark due to the absence of backscattered
energy. The extent of shadow effects increases as the radar beam’s incidence angle becomes
more oblique with respect to the surface. Where slopes are very steep, the dim side may
be completely dark because no radar signal is returned at all. Before SAR images can
be reliably used for surface mapping and change detection, it is essential to correct the
backscatter values for topographic effects and to address distortions caused by layovers
and shadows. The process adopted to map layover and/or shadow areas is known as
layover/shadows masking.

Many algorithms exist in the literature to perform both radiometric and geometric
terrain correction [1–4] and layover/shadows masking [5–8] and all of them rely on the
use of a Digital Elevation Model (DEM). A DEM is the umbrella term to indicate, in the
most generic possible way, an elevation model. Inside DEMs it is possible to differentiate
two products, the digital terrain models (DTMs) and the digital surface models (DSMs).
A DSM is the specific term to indicate a surface model, i.e., it represents the absolute
elevation at the very top of solid objects in the scene; it includes buildings, infrastructures,
and vegetation. A DSM is therefore a DEM, but a DEM is not necessarily a DSM. A DTM
is the specific term to indicate the elevation of the natural topography, i.e., after having
removed vegetation and man-made buildings. As for the DSM, a DTM is a DEM, but a
DEM is not necessarily a DTM. There are some worldwide DEMs that are widely used for
remote sensing applications, such as the SRTM [9], the ASTER [10], the ALOS [11], or the
Copernicus one [12]. These models are usually DSMs, or if based on SAR data, they could
be either a DSM, a DTM, or something in between depending on the SAR wavelength.
Such data are available worldwide, but they typically have a significantly coarser pixel
spacing compared to those generated from LiDAR data. Airborne LiDAR-based DEMs are
available nationwide in a few countries or locally in some regions of the world.

Terrain correction with a detailed VHR DEM becomes particularly important when
using SAR data at a VHR. Indeed, the most advanced and recent satellite constellations
acquire SAR images with a pixel spacing in the order of meters or even sub-meters (VHR).
In these cases, the terrain correction with a high-spatial-resolution model becomes fun-
damental to preserving the spatial details of the images [13,14]. According to the CEOS
recommendations [15], in order to topographically correct SAR images, the DEM should
have a spatial resolution as good or better than the spatial resolution of the image to correct.
This means that, optimally, to correct VHR SAR images, it is necessary to have a VHR DEM.

Thus, the aim of this study is to evaluate the effect of DEM on terrain correction and
layover/shadows mapping of VHR SAR images. These are fundamental steps in SAR
data processing, and thus, a correct understanding of the most suitable DEM to use is
very important for many applications. We considered VHR images acquired with the
COSMO SkyMed constellation over an area located in the north of Italy. SAR images
could be used in many types of applications; to evaluate the effect of the DEM also on
a real application in this study, we decided to focus on change detection, in particular
on windthrow detection. SAR images have been used successfully for this application
previously in many studies [16,17] and using VHR SAR images [18]. While windthrow
detection is but one potential application of SAR data for change detection, its importance
is expected to grow in response to forecasts of increased windthrow events due to global
warming [19]. SAR data, with its ability to penetrate cloud cover, could emerge as a
valuable tool for mapping damages resulting from such events.

2. Materials and Methods
2.1. Materials
2.1.1. Study Area and Reference Data

The study area is the North-Eastern part of the Autonomous Province of Trento (PAT)
in Italy (see Figure 1). Characterised by predominantly mountainous terrain, the landscape
is dominated by tree species such as Norway spruce (Picea abies (L.) H. Karst), silver fir
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(Abies alba Mill.), and European beech (Fagus sylvatica L.). In late October 2018, the entire
Northeastern region of Italy, including the study area, was struck by the devastating Vaia
storm, one of the most severe storm events witnessed in Italy in recent decades [20]. This
storm had devastating effects on the forests of Northern Italy and of the Autonomous
Province of Trento in particular [21].
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Figure 1. The location of PAT in Italy and Europe (inset (a)), the location of the two reference sites
inside the territory of PAT and the DTM of PAT (inset (b)), and the DTM of the two reference areas A
and B (inset (c)).

Reference data used for windthrow detection were established in two distinct sites of
about 27 km2 each (Figure 1, Table 1). These sites were previously examined in a separate
study, with further details available in [18] (areas A and B of the study in [18]). The
reference windthrow maps were established through manual photointerpretation using
VHR imagery (i.e., SPOT5 images) [18]. Given the absence of relevant differences between
the two sites, in this analysis they were treated as a single site.

Table 1. Characteristics of the two study areas.

A B

Area (km2)

Non-forest 6.1 3.9

Intact forest 16.3 20.9

Windthrows 5.0 3.1

Total 27.4 27.9

Windthrows
patches

Number 456 774

Area range (m2) 36–1,746,189 9–389,781

Median area (m2) 472.5 288

Altitude
a.s.l. (m)

Range 1095–2318 989–2291

Median 1513 1511

Slope (◦)
Range 0.003–77.7 0.009–79.2

Median 29.7 24.9

Aspect (◦)
Range 0–360 0–360

Median 154.8 233.8

Forest
Types (%)

Deciduous 12.2 5.4

Evergreen 87.8 94.6
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2.1.2. SAR Data

COSMO SkyMed, managed by the Italian Space Agency (ASI), is a SAR satellite
constellation with four medium-sized satellites. It offers global coverage and can revisit
areas of interest twice daily, regardless of weather conditions. The SAR data, available in
X-band and single- or dual-polarisation modes, have varying spatial resolutions based on
acquisition modes, and they are acquired on demand. For this study, two pre-event and
two post-event images acquired in Stripmap HIMAGE mode with HH polarisation were
used (ascending and descending, Table 2). ASI provided the images in processing level
1B—Detected Ground Multi-look (DGM), with a range and azimuth resolution of 5 meters,
pixel spacing of 2.5 m, and swath width and scene length of 40 km. The equivalent number
of looks is slightly greater than 3 for all images.

Table 2. COSMO SkyMed images used in this study.

Direction Time Date Incidence Angle

Ascending
Pre-event 16 August 2018 26.5◦–27.1◦

Post-event 3 August 2019 26.5◦–27.1◦

Descending
Pre-event 9 August 2018 31.4◦–31.9◦

Post-event 23 August 2019 31.4◦–31.9◦

2.1.3. Digital Elevation Models

We considered five different DEM models for this study (Table 3): (i) DTM: a local
DTM extracted from a LiDAR flight released in 2020 [22]; (ii) DSM: a local DSM extracted
from a LiDAR flight released in 2020 [23]; (iii) ALOS: the ALOS Global Digital Surface
Model released in 2021 (version 3.2) [11]; (iv) COP: the Copernicus global DEM released
in 2019 [12]; and (v) SRTM: the Shuttle Radar Topography Mission (SRTM) released in
2003. The pixel spacing of each DEM model is detailed in Table 3. It is worth noting that
for the global DEM, the native pixel spacing was in degrees (1 arcsecond), and they were
all reprojected in the local reference system in meters (i.e., EPSG 25832). Thus, the pixel
spacing in meters reported in Table 3 are the ones after reprojection to the common system.

Table 3. DEM characteristics.

DEM Origin Data Acquisition
Year(s) Pixel Spacing (m)

DTM Airborne LiDAR data 2014–2018 0.5

DSM Airborne LiDAR data 2014–2018 0.5

ALOS Stereo optical data 2006–2011 ~26.5

COP Band-X SAR data 2011–2015 ~23.7

SRTM Band-C SAR data 2000 ~26.5

The three global DEMs (i.e., ALOS, COP, and SRTM) are generated from three different
sources. ALOS is generated starting from the Panchromatic Remote-sensing Instrument
for Stereo Mapping (PRISM), which was a panchromatic radiometer with 2.5 m spatial
resolution at nadir. The objective of PRISM was to obtain high-resolution stereo data (pixel
size of 2.5 m) for cartographic applications (extraction of highly accurate digital elevation
models, etc.). Thus, ALOS DEMs are based on optical stereo data at high resolution. COP
and SRTM DEMs are based on SAR data. COP is generated from the TanDEM-X SAR
images acquired in band X, while SRTM is generated from C-band SAR data. The five
DEMs were upsampled/downsampled using bilinear interpolation to a pixel spacing of
2 m and 30 m, and the upsampled/downsampled DEMs were used in the elaborations.
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2.2. Methods

The methods adopted in this study are summarised in Figure 2, where the same process
is carried out for different DEMs, ending up with several windthrow detection results that
allow us to compare the impacts of using different DEMs for the terrain correction process.
In the next paragraphs, each step is detailed.
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2.2.1. Calibration

The COSMO SkyMed SAR calibration was carried out using the calibration mod-
ule (https://step.esa.int/main/wp-content/help/versions/10.0.0/snap-toolboxes/eu.esa.
microwavetbx.sar.op.calibration.ui/operators/CalibrationOp.html, accessed on 15 Novem-
ber 2024) implemented in the SNAP software (SNAP—ESA Sentinel Application Platform
v8.0, http://step.esa.int, accessed on 15 November 2024). This module is designed to
convert the raw digital numbers (DNs) of SAR data into backscatter intensity. Calibration is
important because it helps make the data more accurate, meaningful, and consistent across
different times and locations. Specifically, the calibration module converts the DNs of the
Level 1B images into backscatter coefficients, which represent the normalised radar cross-
section of the surface. The backscatter coefficients could be sigma0, beta0, and gamma0.
Sigma0 represents the radar reflectivity per unit area on the ground, normalised by the
cosine of the incidence angle; beta0 represents the radar brightness, which is the backscatter
per unit area in the radar slant range plane; and gamma0 is similar to sigma0 but normalised
by the cosine of the local incidence angle, which accounts for variations in terrain slope.
Moreover, the calibration module corrects for instrumental and environmental factors: the
calibration corrects for the effects of the instrument’s characteristics and environmental
conditions to provide a more consistent and standardised measurement. This includes
correcting for differences in the radar’s look angle, range distance, and power variations.

2.2.2. Terrain Correction

Other than the calibration itself, SAR data needs to be corrected for distortions that
are mainly related to side-looking geometry. Thus, terrain corrections aim at ensuring that
such distortions will be corrected and the resulting image will be as close as possible to
the real world. Even though methods can be found in literature that can help to reduce the
above-mentioned distortions [1–3,24,25], they are all based on similar principles. Given this,
in this work we decided to make use of one of the most used methods in literature, being
the one offered by ESA on their SNAP platform for processing Sentinel data (SNAP—ESA
Sentinel Application Platform v8.0, http://step.esa.int, accessed on 15 November 2024).
The terrain correction step is made up of two main steps: (i) radiometric terrain correction
(TF) and (ii) geometric terrain correction (TC). In this study, both steps were applied using
state-of-the-art methods implemented in the software SNAP. Inside the SNAP modules,
when requested, a bilinear interpolation was used.

The radiometric terrain correction was done using the terrain flattening module of
SNAP that is implementing the radiometric terrain correction algorithm proposed by
Small [26]. The algorithm using a DEM, resampled to a pixel spacing equal to or better than

https://step.esa.int/main/wp-content/help/versions/10.0.0/snap-toolboxes/eu.esa.microwavetbx.sar.op.calibration.ui/operators/CalibrationOp.html
https://step.esa.int/main/wp-content/help/versions/10.0.0/snap-toolboxes/eu.esa.microwavetbx.sar.op.calibration.ui/operators/CalibrationOp.html
http://step.esa.int
http://step.esa.int
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the one of the SAR data, normalises the backscatter with respect to the local incidence angle,
effectively reducing the influence of slope and topographic effects on the measured signal.

The geometric terrain correction was done using the range-doppler terrain correction
module of SNAP that applies the method proposed in [27] for geocoding SAR images
from single 2D raster radar geometry. The algorithm uses a DEM to accurately model
and compensate for distortions due to topography, ensuring that each pixel in the SAR
image is correctly geolocated. The module applies the range-Doppler equation, which
relates the sensor’s range and Doppler history to the ground coordinates, in combina-
tion with the DEM to project the slant-range image into a ground-range, map-projected
coordinate system.

Additionally, in these two steps, during the terrain correction, it is also important to
map and mask the layover/shadow areas. In this study, this was done using the algorithm
presented in [27] that we implemented in an R [28] script. This algorithm uses as input the
DEM, the SAR incidence angle with respect to the ellipsoid, and the SAR local incidence
angle. These last two products were obtained as output of the range-doppler terrain
correction module.

2.2.3. Windthrow Detection Algorithm

The windthrow detection methodology used was developed starting from the one
proposed by [29] to detect forest fires using ERS-1 SAR data. The algorithm takes in input
one pre- and one post-event SAR image already pre-processed with the terrain correction.
The strength of this method is that it decomposes the images at different scales. The
algorithm has been successfully used in previous studies [18], and we refer the reader
to [18,29,30] for a detailed description of it.

The algorithm is organised into four steps: (i) creation of the log ratio image: the
logarithm of the ratio between the pre-event image and the post-event image in linear
scale. The ratio is used instead of the difference due to speckle noise present in these
images: the statistical distribution of the data changes and cannot be compared by standard
subtraction; (ii) multiscale decomposition/reconstruction: this step is done using a 2D
stationary wavelet transform (2D-SWT) using a Daubechies filter of 8. As windthrow
in each area have different sizes, they cannot be compared on the same scale, otherwise
smaller or larger windthrows would be missed (iii) Otsu thresholding of each multiscale
component: given the analysis at different scales, separate thresholds are required in order
to improve detection capability; and (iv) final decision using a majority rule for each pixel:
a given pixel could be observed more than once at different scales, reporting different
results, thus a majority rule helps to assign the best label. Afterwards, an additional spatial
filtering of 3 × 3 pixels based on a majority rule is applied to the final map.

In the case of the use of both ascending and descending images, the algorithm could be
applied either to the mosaic or to each couple separately, and the windthrow maps merged.
In this study we decided to use this second option: any pixel detected as windthrow in the
ascending and/or descending map was considered as windthrow in the final map.

3. Results

As a first analysis, we visually compared the five DEMs at 2 and 30 m: we sub-
tracted from four DEMs (i.e., DSM, ALOS, COP, and SRTM) the DTM obtained using
LiDAR data (that we consider to be the most precise one). We considered the entire
study area (Figures 3A and 4A), a small, almost flat area (Figures 3B and 4B), a small forest
area (Figures 3C and 4C), and two transects (Figures 3D and 4D). As it could be seen in
Figure 3A–C), subtracting the LiDAR DTM from the LiDAR DSM at 2 m pixel spacing
results in the canopy height model where the crowns are quite visible (Figure 3C). When
working at 30 m pixel spacing (Figure 4A), the crowns are no more visible, and the elevation
value in the pixels is influenced by both the presence of the trees and by the gaps in the
canopy. Subtracting the three satellite-based DEMs, the DTM generated large areas with
high elevation differences (from −73 to +232 m). These differences are partially related to
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the tree’s coverage and partially to the topography of the area. The topographic differences
are clearly highlighting small valleys and microtopography related to water catchments,
or very steep areas. These are the areas where we have the highest differences between
the LiDAR-based DTM and the three global DEMs. In the difference images for the three
global DEMs, a kind of tiling pattern is also visible; this could be related to the fact that the
five DEMs were not mutually calibrated among each other, and it could also be an issue
present in the ALS-derived DTM and DSM. In Figures 3D and 4D, a comparison among
the five DEMs over two transects (one South to North and one West to East) is also shown.
First, the canopy of the forest is very clearly highlighted in the LiDAR-derived DSM at
2 m pixel spacing (red line in Figure 3D), while moving at 30 m pixel spacing, the LiDAR
DSM becomes more like the DTM. The DTM at 2 m pixel spacing is also describing much
better the microtopography that gets lost at 30 m. Additionally, it is visible that the three
global DEMs are neither DTMs nor DSMs, and they are losing the microtopography due
to their lower pixel spacing. The three global DEMs are not much different at 2 m and
30 m pixel spacing, as the upsampling was done with an interpolation and not through a
pansharpening process. From these graphs (Figures 3D and 4D), it seems also that the COP
DEM (blue line) is the closest to the LiDAR DSM among the three global DEMs considered,
while ALOS (green line) seems closer to the LiDAR DTM (black line).

In Table 4, we present the percentage of pixels flagged as layovers/shadows within
the two reference areas. The data are organised by image. Notably, there is a difference
between the ascending and descending acquisitions, probably related to the topography of
the two areas: while for the ascending images the percentage of layover/shadow pixels is
around 36%, for the descending acquisitions it is much lower (around 8%). The only value
that is not in line with the others is the one obtained using the LiDAR-based DSM at 2 m
pixel spacing, where, for the descending images, the percentage of layover/shadow areas
is much higher (about 22%).

Table 4. Percentage of pixels detected as layover/shadows inside the two reference sites for each
image, varying the DEM and the pixel spacing. A = ascending image; D = descending image.

DEM Pixel
Spacing (m)

9 August
2018 (D)

16 August
2018 (A)

3 August
2019 (A)

23 August
2019 (D)

DTM
2 7.6 37.1 37.1 7.6

30 8.9 36.3 36.3 8.9

DSM
2 22.3 33.8 33.7 22.4

30 9.5 35.8 35.8 9.4

ALOS
2 7.2 36.5 36.6 7.1

30 8.9 36.1 36.1 8.9

COP
2 6.8 36.2 36.3 6.8

30 8.3 36.0 36.0 8.3

SRTM
2 6.6 36.2 36.2 6.6

30 7.7 36.0 36.0 7.7
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In Table 5, we present the results of windthrow detection with varying DEMs used for
SAR image correction. We considered only the areas not detected as layovers/shadows for
all DEMs analyzed. These results were obtained by calculating combined accuracies over
the two reference areas. It is evident that the highest accuracies were achieved with images
terrain-corrected with the LiDAR-derived DTM at 2 m pixel spacing (kappa accuracy
around 0.53), followed by the DTM at 30 m pixel spacing (kappa accuracy around 0.48).
The lowest accuracy (kappa around 0.2) was obtained by images terrain-corrected with
the LiDAR-derived DSM at 2 m pixel spacing and COP DEM at 2 m pixel spacing. ALOS,
COP, and SRTM at 30 m provided quite similar accuracies, ranging from values of kappa
accuracy around 0.45 for ALOS and 0.41 for COP.

Table 5. Windthrow detection results in terms of kappa accuracy, balanced accuracy, producer’s
accuracy, and user’s accuracy.

DEM
Pixel

Spacing (m)
Kappa

Accuracy
Balanced

Accuracy (%)
Producer’s Accuracies (%) User’s Accuracies (%)

NW W NW W

DTM
2 0.532 82.3 84.6 79.9 95.3 52.0

30 0.489 80.1 83.0 77.1 94.6 48.7

DSM
2 0.267 70.3 67.1 73.4 92.4 31.8

30 0.473 79.1 82.6 75.6 94.2 47.7

ALOS
2 0.436 77.6 80.6 74.6 93.8 44.6

30 0.45 78.2 81.4 75.0 94.0 45.7

COP
2 0.273 70.6 67.6 73.5 92.4 32.2

30 0.419 76.7 80.1 73.3 93.5 43.5

SRTM
2 0.383 75.2 77.5 72.9 93.2 40.5

30 0.437 77.3 81.2 73.4 93.6 45

Upon examination of the detection maps of the study areas shown in Figure 5, the
results of Table 5 are confirmed. Additionally, it is quite clear that the use of the LiDAR-
based DSM at 2 m pixel spacing creates a lot of scattered shadow areas due to the very
detailed information of the tree crown shapes. ALOS, COP, and SRTM are also generating
more false alarms compared to the LiDAR-based DTM (at both 2 and 30 m pixel spacing).
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4. Discussion

To the best of our knowledge, this study represents one of the first investigations into
the impact of DEMs on terrain correction for COSMO SkyMed images. While our focus is
on COSMO SkyMed data and windthrow detection, the insights gleaned from this research
hold relevance for anyone involved in SAR image terrain correction.

The use of DEMs with a fine pixel spacing (i.e., 2 m) in the processing of VHR SAR
images emerged to be of high importance, as underlined in [15] and [31]. In particular,
in [31] the authors underlined that when the pixel spacing of DEM is too rough compared
with that of SAR images, lots of spatial information on SAR images will be lost in regions
where the terrain changes significantly. This is the case in mountain areas where the terrain
elevation can change rapidly.

The results obtained with the LiDAR-based DTM at 2 m pixel spacing are undeniably
superior to all other datasets. Even when downsampled to 30 m pixel spacing, the LiDAR
DTM still provides better corrections than satellite DEMs downsampled at 30 m pixel
spacing. This is probably more related to the type of information contained in the DTM
itself than to the pixel spacing: while the global satellite DEMs are neither representing
the terrain nor the surface (i.e., they are neither DTM nor DSMs), the LiDAR-derived
DTM is representing the terrain very accurately. When subtracting the LiDAR DTM from
the satellite-based DSMs, significant terrain features emerge, with height differences in
the range of −73 to +232 meters. These variations have a direct impact on SAR image
corrections, particularly in areas with rugged terrain, where finer topographical details
improve the accuracy of the corrections. In [32], Lee et al. analysed the geolocation accuracy
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of COSMO-SkyMed images corrected with a local LiDAR DTM and global DEMs, finding
that LiDAR DEM consistently produced superior results across all datasets. Additionally,
they observed that the commonly used global DEMs, such as SRTM and ASTER, introduced
significant terrain distortions, particularly in mountainous regions.

The differences in results obtained when using the same DEM at different pixel
spacings (e.g., 2 m vs. 30 m) suggest that it is preferable to use global DEMs at their
native resolution. Allowing SNAP to manage any discrepancies in pixel spacing be-
tween the DEM and the SAR image yields better outcomes than manually upsampling
the DEM before processing in SNAP. Indeed, the SNAP module for terrain flattening
requires a DEM pixel spacing higher than the image pixel spacing, and when this is
not the case (as for the 30 m pixel spacing DEMs in our study), SNAP either oversam-
ples the DEM to higher pixel spacing or multilooks the source image to lower resolu-
tion (https://step.esa.int/main/wp-content/help/versions/10.0.0/snap-toolboxes/eu.
esa.microwavetbx.sar.op.sar.processing.ui/operators/TerrainFlatteningOp.html, accessed
on 15 November 2024). Choosing this second option means that the SAR image is not
terrain corrected at 2.5 m using a 30 m pixel spacing DEM, but it is multi-looked to 30 m
and terrain corrected at 30 m. The worst results were observed with the LiDAR-based DSM
at 2 m pixel spacing. A problem could be that geolocation errors caused by the positive
elevation bias of the DSM have a bigger impact at 2 m than at 30 m: residual shifts remain
within the same pixel at 30 m but result in wrong pixel collocation at 2 m. Additionally, the
high level of detail in crown characterisation led to numerous false layovers and shadow
areas, likely caused by excessive height variations that also interfered with terrain correc-
tion. This is evident in the map of Figure 5, which shows numerous scattered regions of
layover and shadow, likely due to the shadows cast by tree crowns. While using a detailed
DSM can be beneficial, as it may capture canopy gaps that influence VHR SAR images,
the temporal gap of 3 to 4 years between the LiDAR DSM and the imagery is problematic.
Canopy gaps present in the DSM may have since been partially filled, while new gaps
could have emerged, given that selective logging is routinely practiced in the study area.
This temporal misalignment between the datasets could therefore be one of the reasons for
the bad outcomes of this terrain correction.

Among the global DEMs, COP is the one that, if used in the SAR image corrections,
is resulting in the lowest accuracy in windthrow detection. From Figures 3D and 4D, it
emerged that, at least over our study area, COP is the closest to the LiDAR DSM, and on the
official documentation of the COP DEM, it is specified that it is a digital surface model that
represents the surface of the Earth, including buildings, infrastructure, and vegetation [12].
COP global DEM is based on Tandem-X data: InSAR-based DEMs represent the phase
height corresponding to the mean scattering centre, meaning that the true surface elevation
is not correctly captured over vegetation. The mean scattering centre height depends on
the vegetation, the considered resolution, and the wavelength. Considering a common 30
m pixel spacing for the COP DEM and the SRTM, the only differences between these two
DEMs lie in the potential vegetation difference due to the temporal separation between the
products and the COSMO SkyMed acquisitions and in the use of the X- and C-band signals,
respectively. In [33], InSAR tree heights predicted with Tandem-X data were compared
with tree heights generated with LiDAR. The RMSE was between 0.7 and 2.3 m. Many
other studies (e.g., [33,34]) exist on the use of Tandem-X data to retrieve forest canopy,
and all of them highlight the fact that the penetration of Tandem-X data in the canopy is
dependent also on environmental factors, and it is not always the same. Indeed, the COP
DEM over vegetated areas has, in any case, lower values with respect to the LiDAR-derived
DSM, so it is not properly correct to call it DSM over vegetation. Tandem-X data also has
a very high spatial resolution (less than 3 m) when acquired in stripmap mode, but we
expected that in the generation of the COP DEM this detail got lost.

ALOS is the global DEM that seems to provide images with the best terrain corrections
to be used for windthrow detection. In [35], Chai et al. evaluated the accuracy of some
global DEMs and a LiDAR DTM; in particular, they considered all three global DEMs used

https://step.esa.int/main/wp-content/help/versions/10.0.0/snap-toolboxes/eu.esa.microwavetbx.sar.op.sar.processing.ui/operators/TerrainFlatteningOp.html
https://step.esa.int/main/wp-content/help/versions/10.0.0/snap-toolboxes/eu.esa.microwavetbx.sar.op.sar.processing.ui/operators/TerrainFlatteningOp.html
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in this study. From their results, it emerged that, as expected, a LiDAR DTM is the most
precise in both barren land and forested areas, while among the global DEMs, ALOS seems
the most accurate. On the opposite, COP DEM resulted in the least accurate. It is worth
noting that in [35] they used COP DEM at 90 m.

A factor that should be considered, that is independent from the results, is also the data
availability. As this study points out, and also other studies did [32], a local LiDAR DTM is
the best option, but it is also the most expensive, as LiDAR data needs to be acquired if not
available, and thus is frequently an option that is not viable in many parts of the world.

It is important to note that in emergency scenarios, obtaining SAR images with the
same orbit and optimal imaging conditions, as utilised in this study, is often challenging.
In such cases, the availability of imagery is constrained by satellite acquisition schedules,
making it necessary to work with images captured from different orbits and angles. This
limitation can introduce geometric distortions and variations in backscatter, which may
impact the accuracy of the terrain corrections and windthrow detection. Even though this
is not the main focus of this paper, the authors have addressed the reality of suboptimal
conditions in emergency applications in [18]. In [18], the authors thoroughly analysed the
effects of using images with varying orbits and angles, comparing optimal pre- and post-
event images with suboptimal ones. The findings demonstrate that while the results are
generally more accurate with optimal imagery, the proposed methods remain effective even
when working with less-than-ideal data. This highlights the robustness of the approach
in real-world emergency situations, where rapid response often necessitates the use of
available, rather than optimal, images.

It is noteworthy that while there has been considerable attention devoted to developing
algorithms for terrain correction, scarce research has delved into the influence of the DEM
used for this purpose. A previous study [36] similarly noted that high-resolution DEMs
contribute to higher-quality sigma0 images, underscoring the importance of DEM selection
in SAR image processing. In [37] a detailed study on the preprocessing of Sentinel-1 images
using the SNAP software has been done, comparing different freely available DEMs and
resampling algorithms. The authors of [37] found that the DEMs affected the results, with
SRTM performing better in the correction. It is worth noting that Sentinel-1 data spatial
resolution is coarser compared to COSMO SkyMed.

5. Conclusions

This paper presents some insights about the impact of the DEM used for applying
terrain correction on SAR data, more specifically on COSMO SkyMed SAR images. To
evaluate the results, an application case was selected for windthrow detection, and five
different DEMs were evaluated at different pixel spacings, 2 m and 30 m, derived from
different sources. The results showed that there are significant discrepancies in windthrow
detection across the five corrections. Among the five different DTMs, the local DTM at VHR
(2 m pixel spacing) was the one that provided terrain-corrected images most suitable for
windthrow detection, while the VHR DSM at 0.5 m pixel spacing had the worst performance.
Concerning the global DEM, images corrected with ALOS DEM seem to be the ones most
suitable for windthrow detection, while the ones corrected with the COP DEM are the least.

For future works, it would be interesting to not only evaluate different DEMs but
also to compare them with other SAR data at lower spatial resolutions, for instance, data
from Sentinel-1.

Author Contributions: Conceptualisation, M.D.; methodology, M.D., D.M. and Y.T.S.-C.; software,
M.D.; validation, M.D. and D.M.; formal analysis, M.D., D.M. and Y.T.S.-C.; investigation, M.D.,
D.M. and Y.T.S.-C.; data curation, M.D.; writing—original draft preparation, M.D. and Y.T.S.-C.;
writing—review and editing, M.D., Y.T.S.-C. and D.M.; supervision, M.D. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data is not available due to the provider source.



Remote Sens. 2024, 16, 4309 14 of 15

Acknowledgments: This work was carried out using CSK® Products, © ASI (Italian Space Agency),
delivered under an ASI license to use. The authors are thankful to ASI for their help with distributing
the data for the different experiments.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Flores-Anderson, A.I.; Parache, H.B.; Martin-Arias, V.; Jiménez, S.A.; Herndon, K.; Mehlich, S.; Meyer, F.J.; Agarwal, S.;

Ilyushchenko, S.; Agarwal, M.; et al. Evaluating SAR Radiometric Terrain Correction Products: Analysis-Ready Data for Users.
Remote Sens. 2023, 15, 5110. [CrossRef]

2. Zhao, L.; Chen, E.; Li, Z.; Fan, Y.; Xu, K. Radiometric Terrain Correction Method Based on RPC Model for Polarimetric SAR Data.
Remote Sens. 2023, 15, 1909. [CrossRef]

3. Shiroma, G.H.X.; Lavalle, M.; Buckley, S.M. An Area-Based Projection Algorithm for SAR Radiometric Terrain Correction and
Geocoding. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5222723. [CrossRef]

4. Jiang, W.; Yu, A.; Dong, Z.; Wang, Q. Comparison and Analysis of Geometric Correction Models of Spaceborne SAR. Sensors 2016,
16, 973. [CrossRef]

5. Chen, X.; Sun, Q.; Hu, J. Generation of Complete SAR Geometric Distortion Maps Based on DEM and Neighbor Gradient
Algorithm. Appl. Sci. 2018, 8, 2206. [CrossRef]

6. Kropatsch, W.G.; Strobl, D. The Generation of SAR Layover and Shadow Maps from Digital Elevation Models. IEEE Trans. Geosci.
Remote Sens. 1990, 28, 98–107. [CrossRef]

7. Li, X.; Zhang, G.; Yin, C.; Wu, Y.; Shen, X. A Novel Shadow and Layover Segmentation Network for Multi-Angle SAR Images
Fusion. IEEE Access 2022, 10, 117770–117781. [CrossRef]

8. Du, X.; Yang, Q.; Cai, B.; Liang, D. A New Method on Shadow and Layover Detection of InSAR. In Proceedings of the 2017 Sixth
Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi’an, China, 16–19 October 2017; pp. 1–3.

9. Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The
Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 2005RG000183. [CrossRef]

10. Michael, A.; Bailey, B.; Hiroji, T.; Hato, M. The ASTER Global DEM. Photogramm. Eng. Remote Sens. 2010, 76, 344–348.
11. EORC, J. ALOS Global Digital Surface Model (DSM). ALOS World 2021, 1, 1–21.
12. Fahrland, E. Copernicus DEM Product Handbook (v4.0); Airbus Defence and Space GmbH: Taufkirchen, Germany, 2022.
13. Rosario, J.; Shiroma, G.H.X.; Fattahi, H.; Meyer, F.; Jeong, S. Assessment of Terrain Dependence of Radiometric Terrain Corrected

C-Band Sentinel-1 SAR Backscatter over Different Target Types. In Proceedings of the IGARSS 2023—2023 IEEE International
Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 4286–4289.

14. Filipponi, F. Sentinel-1 GRD Preprocessing Workflow. Proceedings 2019, 18, 11. [CrossRef]
15. CEOS. Analysis Ready Data for Land: Normalized Radar Backscatter 2021. Available online: https://ceos.org/ard/files/PFS/

SAR/v1.1/CEOS-ARD_PFS_Synthetic_Aperture_Radar_v1.1.pdf (accessed on 15 November 2024).
16. Rüetschi, M.; Small, D.; Waser, L.T. Rapid Detection of Windthrows Using Sentinel-1 C-Band SAR Data. Remote Sens. 2019, 11, 115.

[CrossRef]
17. Lazecky, M.; Wadhwa, S.; Mlcousek, M.; Sousa, J.J. Simple Method for Identification of Forest Windthrows from Sentinel-1 SAR

Data Incorporating PCA. Procedia Comput. Sci. 2021, 181, 1154–1161. [CrossRef]
18. Dalponte, M.; Solano-Correa, Y.T.; Marinelli, D.; Liu, S.; Yokoya, N.; Gianelle, D. Detection of Forest Windthrows with Bitemporal

COSMO-SkyMed and Sentinel-1 SAR Data. Remote Sens. Environ. 2023, 297, 113787. [CrossRef]
19. Feng, Y.; Negrón-Juárez, R.I.; Romps, D.M.; Chambers, J.Q. Amazon Windthrow Disturbances Are Likely to Increase with Storm

Frequency under Global Warming. Nat. Commun. 2023, 14, 101. [CrossRef]
20. Giovannini, L.; Davolio, S.; Zaramella, M.; Zardi, D.; Borga, M. Multi-Model Convection-Resolving Simulations of the October

2018 Vaia Storm over Northeastern Italy. Atmos. Res. 2021, 253, 105455. [CrossRef]
21. Vaglio Laurin, G.; Puletti, N.; Tattoni, C.; Ferrara, C.; Pirotti, F. Estimated Biomass Loss Caused by the Vaia Windthrow in

Northern Italy: Evaluation of Active and Passive Remote Sensing Options. Remote Sens. 2021, 13, 4924. [CrossRef]
22. LiDAR DTM—Modello Digitale Del Terreno—PAT 2014 / 2018 2020. Available online: https://data.europa.eu/data/datasets/p_

tn-79c6cdf0-c73a-46ba-870c-704bf4e27ac3?locale=en (accessed on 15 November 2024).
23. LiDAR DSM First—Modello Digitale Della Superficie First Pulse—PAT 2014 / 2018 2020. Available online: http://data.europa.

eu/88u/dataset/p_tn-9bb00ab2-8c9e-4afd-aac4-8b6caef3edc9 (accessed on 15 November 2024).
24. Dostalova, A.; Navacchi, C.; Greimeister-Pfeil, I.; Small, D.; Wagner, W. The Effects of Radiometric Terrain Flattening on

SAR-Based Forest Mapping and Classification. Remote Sens. Lett. 2022, 13, 855–864. [CrossRef]
25. Xiang, Y.; Jiao, N.; Liu, R.; Wang, F.; You, H.; Qiu, X.; Fu, K. A Geometry-Aware Registration Algorithm for Multiview High-

Resolution SAR Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–18. [CrossRef]
26. Small, D. Flattening Gamma: Radiometric Terrain Correction for SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2011, 49,

3081–3093. [CrossRef]
27. SAR Geocoding: Data and Systems; Schreier, G., Ed.; Wichmann: Karlsruhe, Germany, 1993; ISBN 978-3-87907-247-7.

https://doi.org/10.3390/rs15215110
https://doi.org/10.3390/rs15071909
https://doi.org/10.1109/TGRS.2022.3147472
https://doi.org/10.3390/s16070973
https://doi.org/10.3390/app8112206
https://doi.org/10.1109/36.45752
https://doi.org/10.1109/ACCESS.2022.3217510
https://doi.org/10.1029/2005RG000183
https://doi.org/10.3390/ECRS-3-06201
https://ceos.org/ard/files/PFS/SAR/v1.1/CEOS-ARD_PFS_Synthetic_Aperture_Radar_v1.1.pdf
https://ceos.org/ard/files/PFS/SAR/v1.1/CEOS-ARD_PFS_Synthetic_Aperture_Radar_v1.1.pdf
https://doi.org/10.3390/rs11020115
https://doi.org/10.1016/j.procs.2021.01.312
https://doi.org/10.1016/j.rse.2023.113787
https://doi.org/10.1038/s41467-022-35570-1
https://doi.org/10.1016/j.atmosres.2021.105455
https://doi.org/10.3390/rs13234924
https://data.europa.eu/data/datasets/p_tn-79c6cdf0-c73a-46ba-870c-704bf4e27ac3?locale=en
https://data.europa.eu/data/datasets/p_tn-79c6cdf0-c73a-46ba-870c-704bf4e27ac3?locale=en
http://data.europa.eu/88u/dataset/p_tn-9bb00ab2-8c9e-4afd-aac4-8b6caef3edc9
http://data.europa.eu/88u/dataset/p_tn-9bb00ab2-8c9e-4afd-aac4-8b6caef3edc9
https://doi.org/10.1080/2150704X.2022.2092911
https://doi.org/10.1109/TGRS.2022.3205382
https://doi.org/10.1109/TGRS.2011.2120616


Remote Sens. 2024, 16, 4309 15 of 15

28. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2022.

29. Bovolo, F.; Bruzzone, L. A Detail-Preserving Scale-Driven Approach to Change Detection in Multitemporal SAR Images. IEEE
Trans. Geosci. Remote Sens. 2005, 43, 2963–2972. [CrossRef]

30. Marin, C.; Bovolo, F.; Bruzzone, L. Building Change Detection in Multitemporal Very High Resolution SAR Images. IEEE Trans.
Geosci. Remote Sens. 2015, 53, 2664–2682. [CrossRef]

31. Han, K.; Zeng, Q.; Wang, H.; Jiao, J. Comparison of Sar Image Geometric Correction Based on Multi-Resolution DEMS. In
Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27
July 2018; pp. 581–584.

32. Lee, K.Y.; Byun, Y.G.; Kim, Y.S. Accuracy Evaluation of Terrain Correction of High Resolution SAR Imagery with the Quality of
DEM. K. J. Geomat. 2012, 30, 519–528. [CrossRef]

33. Schlund, M.; Baron, D.; Magdon, P.; Erasmi, S. Canopy Penetration Depth Estimation with TanDEM-X and Its Compensation in
Temperate Forests. ISPRS J. Photogramm. Remote Sens. 2019, 147, 232–241. [CrossRef]

34. Chen, H.; Cloude, S.R.; Goodenough, D.G. Forest Canopy Height Estimation Using Tandem-X Coherence Data. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2016, 9, 3177–3188. [CrossRef]

35. Chai, L.T.; Wong, C.J.; James, D.; Loh, H.Y.; Liew, J.J.F.; Wong, W.V.C.; Phua, M.H. Vertical Accuracy Comparison of Multi-Source
Digital Elevation Model (DEM) with Airborne Light Detection and Ranging (LiDAR). IOP Conf. Ser. Earth Environ. Sci. 2022,
1053, 012025. [CrossRef]

36. Goyal, S.K.; Seyfried, M.S.; O’Neill, P.E. Effect of Digital Elevation Model Resolution on Topographic Correction of Airborne SAR.
Int. J. Remote Sens. 1998, 19, 3075–3096. [CrossRef]

37. Truckenbrodt, J.; Freemantle, T.; Williams, C.; Jones, T.; Small, D.; Dubois, C.; Thiel, C.; Rossi, C.; Syriou, A.; Giuliani, G. Towards
Sentinel-1 SAR Analysis-Ready Data: A Best Practices Assessment on Preparing Backscatter Data for the Cube. Data 2019, 4, 93.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TGRS.2005.857987
https://doi.org/10.1109/TGRS.2014.2363548
https://doi.org/10.7848/ksgpc.2012.30.6-1.519
https://doi.org/10.1016/j.isprsjprs.2018.11.021
https://doi.org/10.1109/JSTARS.2016.2582722
https://doi.org/10.1088/1755-1315/1053/1/012025
https://doi.org/10.1080/014311698214190
https://doi.org/10.3390/data4030093

	Introduction 
	Materials and Methods 
	Materials 
	Study Area and Reference Data 
	SAR Data 
	Digital Elevation Models 

	Methods 
	Calibration 
	Terrain Correction 
	Windthrow Detection Algorithm 


	Results 
	Discussion 
	Conclusions 
	References

