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Abstract.—The loss of information accompanying assessment of absolute fit of substitution models to phylogenetic data
negatively affects the discriminatory power of previous methods and can make them insensitive to lineage-specific changes
in the substitution process. As an alternative, I propose evaluating absolute fit of substitution models based on a novel
statistic which describes the observed data without information loss and which is unlikely to become zero-inflated with
increasing numbers of taxa. This method can accommodate gaps and is sensitive to lineage-specific shifts in the substitution
process. In simulation experiments, it exhibits greater discriminatory power than previous methods. The method can be
implemented in both Bayesian and Maximum Likelihood phylogenetic analyses, and used to screen any set of models.
Recently, it has been suggested that model selection may be an unnecessary step in phylogenetic inference. However, results
presented here emphasize the importance of model fit assessment for reliable phylogenetic inference. [Absolute model fit;
model misspecification; origin of plastids; phylogenomics.]

A key requirement for avoiding errors in phylogenetic
reconstruction is that the substitution model chosen
for inference should approximate the data-generating
process. This requirement stems from methodological
considerations, as it has been shown that Bayesian
inference and maximum likelihood (ML) methods are
consistent estimators of true tree under the correct model
(Chang 1996; Steel 2013; RoyChoudhury et al. 2015;
Truszkowski and Goldman 2016). In other words, given
infinite site sampling, the tree that generated the data has
the highest likelihood/posterior probability when the
data-generating substitution model is used for inference.
This cannot be generally expected under a wrong model
(e.g., Felsenstein 2004).

Although it is impossible to sample an infinite number
of sites, a number of simulation studies have identified
model misspecification as a source of error in phylogeny
reconstruction (Bruno and Halpern 1999; Lemmon and
Moriarty 2004; Kolaczkowski and Thornton 2008; Wang
et al. 2008; Nguyen et al. 2012; Chen et al. 2019).
Consequently, model selection has become an essential
part of the phylogenetic reconstruction protocol. The
importance of the search for the best-fitting model has
recently been challenged (Abadi et al. 2019) on the basis
of similarity of trees built under the best-fitting and
misspecified models. The validity of the conclusions
presented by Abadi et al. (2019) was checked in this study.

Model selection typically involves ranking models
according to the information theoretic criteria, of which
AIC (Akaike 1974) and BIC (Schwarz 1978) are the best
known. These criteria compare model likelihood scores
penalized by model dimensionality to avoid selection
of overparameterized models. Despite their wide use
and popularity, the above methods are limited to ML
models with fixed numbers of parameters (Wang et al.
2018). Recently, Crotty and Holland (2022) found that

these criteria are also not suitable to discriminate among
complex ML finite mixture models and partitioned
models and suggested to focus on developing alternative
approaches to model selection.

Tests of absolute model fit are free from above
limitations. They learn model properties from a large set
of simulated data (“training data set”) and compare how
these properties deviate from those of the observed data.
In principle, absolute indices of fit assessing overall fit
of a model can be employed to compare all substitution
models and to identify the most appropriate substitution
model available. The main challenge in development of
such indices is coming up with the metric that captures
the information relevant to phylogenetic reconstruction.

Given infinite site sampling, the site pattern probabil-
ities expected under the true tree and model are equal to
observed pattern frequencies (Yang 2006). This provides
a theoretical criterion for construction of indices of
overall absolute fit in phylogenetics. A proper index
of overall absolute model fit should be constructed in
such a way as to yield the best possible estimate of
model fit only when the set of site patterns in the
observed alignment is predicted by a model. Such an
index would assess how far a model deviates from the
conditions under which the true tree can be expected
to have the highest likelihood/posterior probability if
the number of sites is large enough. Compliance with
the above criterion becomes increasingly important in
the modern phylogenomic era, with the growing use of
large alignments in phylogenetic studies. The previous
methods do not meet this criterion. This is because they
use the statistics describing the observed alignment that
are not sufficient to reproduce it.

The relative merits of absolute fit indices still remain
poorly documented or simply are unknown because they
are very rarely used in phylogenetics. The presented
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study discusses the data properties used by these tests
and compares their practical performance. Evaluation of
a novel method, termed T statistic, that meets the above
theoretical criterion, has been included in the study.

Existing test statistics can be divided into those that
use multinomial likelihoods (Goldman 1993; Bollback
2002), site pattern binning (Lewis et al. 2014; Chen
et al. 2019), pairwise site pattern frequencies (Goremykin
2019), marginal character state frequencies (Foster 2004)
and Bowker’s test P-values (Dutheil and Boussau 2008).

Multinomial likelihood-based tests implicitly assume
that the best fit is associated with correct prediction
of the observed site pattern counts. However, because
multinomial likelihoods depend only on the counts of
site patterns and not the patterns themselves, extremely
different alignments can have the same multinomial
likelihood (Lewis et al. 2014). This potential problem only
increases in severity with increasing numbers of taxa and
associated exponential growth in the number of possible
site patterns. For alignments of finite length, there can
be scarcity of site patterns in alignment compared to
the number of site patterns the underlying substitution
process can potentially generate. This could lead to a
situation in which an overwhelming majority of site
patterns in observed and simulated alignments would be
rare and would have counts equal to one. Under such a
scenario, multinomial likelihood-based statistics cannot
distinguish if such patterns are accurately predicted or
not. Also, in this case, the constant and near-constant
sites will predominate in model predictions. This can
be expected to decrease the sensitivity of these tests to
lineage-specific changes in substitution process.

Tests that rely on site pattern binning also result in a
loss of information necessary to detect departures from
time-reversibility of the substitution process in different
lineages. Such departures can be visualized by Bowker’s
test of symmetry (Bowker 1948; reviewed in Jermiin et al.
2017 and Naser-Khdour et al. 2019) that checks the null
hypothesis of equality of occurrences of the forward
and reverse substitutions in a pairwise comparison of
sequences (see Supplementary Appendix S1 available on
Dryad at http://dx.doi.org/10.5061/dryad.4f4qrfjc8).
Considering the above null hypothesis here helps to
highlight deviations from time-reversible assumptions
concerning forward and reverse substitutions among
sequences. This is necessary because lineage-specific
deviations from time-reversibility of the substitutions
process, common in biological data, have been shown
to lead to errors in phylogeny reconstruction (Ho and
Jermiin 2004; Jermiin et al. 2004; Gruber et al. 2007;
Blanquart and Lartillot 2008; Duchêne et al. 2017). A
comprehensive test of data-model fit should be sensitive
to such phenomena.

The statistic utilized in the tests based on composition-
dependent binning of site patterns (counts of sites in a
binned category) is not sensitive to direction of change
between character states. For example, the replacement
of all A character states by T character states and all T
character states by A character states in a site pattern
assigned to the A + T category would not affect the size

of the category and, thus, would not affect the results
of model fit assessment. The same would be true for the
exact frequency-based bins comprising, for example 50%
A + 50% T character states and thus, for any downstream
clustering algorithm which reduces the number of such
bins by merging some of them together. These and
similar types of replacements change compositional bias
among sequences, but they cannot be registered by any
test which is based on site pattern binning.

The test for overall substitution model fit described in
Goremykin (2019), section “Estimation of Substitution
Model Fit,” has the same drawback. The test utilizes
the counts for the combinations of aligned character
states (A + A, A + C, etc.) calculated in a pairwise
alignment that is built by concatenating all possible
pairwise alignments of sequences of dissimilar taxa in
each multiple sequence alignment (MSA). The observed
and predicted counts are compared using the Gelfand
and Ghosh (1998) statistic. Because the ratio of forward
to reverse substitutions does not affect the calculation
of these counts, the test cannot visualize an ability of a
model to account for lineage-heterogeneous substitution
process.

By contrast, the tree and model-based composition-fit
test (Foster 2004) answers a specific question whether
a model can account for departures from stationarity
of substitution process across the lineages (Foster 2004;
Duchêne et al. 2017; Jermiin et al. 2020a). The test
utilizes the �2 statistic to compare the counts of character
states in observed MSA sequences with corresponding
model-based predictions. The test cannot discriminate
among alignments with any substitution rate changes.
The reason for considering the test here is to illustrate
a case in which a statistic that is known to be limited a
priori to only certain aspects of models is used for their
ranking in terms of fit.

It should be noted that the statistics for model fit
based on Bowker’s test P-values (Dutheil and Boussau
2008) are poorly suited for detecting the similarity
between observed and predicted sequence alignments
(Supplementary Appendix S1 available on Dryad). This
is because pairwise alignments with different marginal
base composition and different counts of individual
substitutions can have the same Bowker’s test P-value.
Therefore, these statistics cannot serve as indices of
overall model fit (Supplementary Appendix S1 available
on Dryad).

In order to address the shortcomings of the previous
methods, a novel T statistic is suggested here. The
underlying principle of this novel test statistic is that
a model should be evaluated based on how much it
deviates from the observed data and not from any other
alignment of the same size.

The T statistic checks how exactly a model can
reproduce the structure of the pairwise alignment
subsets characterized by different overall substitution
rates. The statistic is sensitive to modeling of site-
specific substitution rates and disparity among forward
and reverse substitutions, which allows to visualize
ability of a model to accommodate departures from
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A key requirement for avoiding errors in phylogenetic
reconstruction is that the substitution model chosen
for inference should approximate the data-generating
process. This requirement stems from methodological
considerations, as it has been shown that Bayesian
inference and maximum likelihood (ML) methods are
consistent estimators of true tree under the correct model
(Chang 1996; Steel 2013; RoyChoudhury et al. 2015;
Truszkowski and Goldman 2016). In other words, given
infinite site sampling, the tree that generated the data has
the highest likelihood/posterior probability when the
data-generating substitution model is used for inference.
This cannot be generally expected under a wrong model
(e.g., Felsenstein 2004).

Although it is impossible to sample an infinite number
of sites, a number of simulation studies have identified
model misspecification as a source of error in phylogeny
reconstruction (Bruno and Halpern 1999; Lemmon and
Moriarty 2004; Kolaczkowski and Thornton 2008; Wang
et al. 2008; Nguyen et al. 2012; Chen et al. 2019).
Consequently, model selection has become an essential
part of the phylogenetic reconstruction protocol. The
importance of the search for the best-fitting model has
recently been challenged (Abadi et al. 2019) on the basis
of similarity of trees built under the best-fitting and
misspecified models. The validity of the conclusions
presented by Abadi et al. (2019) was checked in this study.

Model selection typically involves ranking models
according to the information theoretic criteria, of which
AIC (Akaike 1974) and BIC (Schwarz 1978) are the best
known. These criteria compare model likelihood scores
penalized by model dimensionality to avoid selection
of overparameterized models. Despite their wide use
and popularity, the above methods are limited to ML
models with fixed numbers of parameters (Wang et al.
2018). Recently, Crotty and Holland (2022) found that

these criteria are also not suitable to discriminate among
complex ML finite mixture models and partitioned
models and suggested to focus on developing alternative
approaches to model selection.

Tests of absolute model fit are free from above
limitations. They learn model properties from a large set
of simulated data (“training data set”) and compare how
these properties deviate from those of the observed data.
In principle, absolute indices of fit assessing overall fit
of a model can be employed to compare all substitution
models and to identify the most appropriate substitution
model available. The main challenge in development of
such indices is coming up with the metric that captures
the information relevant to phylogenetic reconstruction.

Given infinite site sampling, the site pattern probabil-
ities expected under the true tree and model are equal to
observed pattern frequencies (Yang 2006). This provides
a theoretical criterion for construction of indices of
overall absolute fit in phylogenetics. A proper index
of overall absolute model fit should be constructed in
such a way as to yield the best possible estimate of
model fit only when the set of site patterns in the
observed alignment is predicted by a model. Such an
index would assess how far a model deviates from the
conditions under which the true tree can be expected
to have the highest likelihood/posterior probability if
the number of sites is large enough. Compliance with
the above criterion becomes increasingly important in
the modern phylogenomic era, with the growing use of
large alignments in phylogenetic studies. The previous
methods do not meet this criterion. This is because they
use the statistics describing the observed alignment that
are not sufficient to reproduce it.

The relative merits of absolute fit indices still remain
poorly documented or simply are unknown because they
are very rarely used in phylogenetics. The presented
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study discusses the data properties used by these tests
and compares their practical performance. Evaluation of
a novel method, termed T statistic, that meets the above
theoretical criterion, has been included in the study.

Existing test statistics can be divided into those that
use multinomial likelihoods (Goldman 1993; Bollback
2002), site pattern binning (Lewis et al. 2014; Chen
et al. 2019), pairwise site pattern frequencies (Goremykin
2019), marginal character state frequencies (Foster 2004)
and Bowker’s test P-values (Dutheil and Boussau 2008).

Multinomial likelihood-based tests implicitly assume
that the best fit is associated with correct prediction
of the observed site pattern counts. However, because
multinomial likelihoods depend only on the counts of
site patterns and not the patterns themselves, extremely
different alignments can have the same multinomial
likelihood (Lewis et al. 2014). This potential problem only
increases in severity with increasing numbers of taxa and
associated exponential growth in the number of possible
site patterns. For alignments of finite length, there can
be scarcity of site patterns in alignment compared to
the number of site patterns the underlying substitution
process can potentially generate. This could lead to a
situation in which an overwhelming majority of site
patterns in observed and simulated alignments would be
rare and would have counts equal to one. Under such a
scenario, multinomial likelihood-based statistics cannot
distinguish if such patterns are accurately predicted or
not. Also, in this case, the constant and near-constant
sites will predominate in model predictions. This can
be expected to decrease the sensitivity of these tests to
lineage-specific changes in substitution process.

Tests that rely on site pattern binning also result in a
loss of information necessary to detect departures from
time-reversibility of the substitution process in different
lineages. Such departures can be visualized by Bowker’s
test of symmetry (Bowker 1948; reviewed in Jermiin et al.
2017 and Naser-Khdour et al. 2019) that checks the null
hypothesis of equality of occurrences of the forward
and reverse substitutions in a pairwise comparison of
sequences (see Supplementary Appendix S1 available on
Dryad at http://dx.doi.org/10.5061/dryad.4f4qrfjc8).
Considering the above null hypothesis here helps to
highlight deviations from time-reversible assumptions
concerning forward and reverse substitutions among
sequences. This is necessary because lineage-specific
deviations from time-reversibility of the substitutions
process, common in biological data, have been shown
to lead to errors in phylogeny reconstruction (Ho and
Jermiin 2004; Jermiin et al. 2004; Gruber et al. 2007;
Blanquart and Lartillot 2008; Duchêne et al. 2017). A
comprehensive test of data-model fit should be sensitive
to such phenomena.

The statistic utilized in the tests based on composition-
dependent binning of site patterns (counts of sites in a
binned category) is not sensitive to direction of change
between character states. For example, the replacement
of all A character states by T character states and all T
character states by A character states in a site pattern
assigned to the A + T category would not affect the size

of the category and, thus, would not affect the results
of model fit assessment. The same would be true for the
exact frequency-based bins comprising, for example 50%
A + 50% T character states and thus, for any downstream
clustering algorithm which reduces the number of such
bins by merging some of them together. These and
similar types of replacements change compositional bias
among sequences, but they cannot be registered by any
test which is based on site pattern binning.

The test for overall substitution model fit described in
Goremykin (2019), section “Estimation of Substitution
Model Fit,” has the same drawback. The test utilizes
the counts for the combinations of aligned character
states (A + A, A + C, etc.) calculated in a pairwise
alignment that is built by concatenating all possible
pairwise alignments of sequences of dissimilar taxa in
each multiple sequence alignment (MSA). The observed
and predicted counts are compared using the Gelfand
and Ghosh (1998) statistic. Because the ratio of forward
to reverse substitutions does not affect the calculation
of these counts, the test cannot visualize an ability of a
model to account for lineage-heterogeneous substitution
process.

By contrast, the tree and model-based composition-fit
test (Foster 2004) answers a specific question whether
a model can account for departures from stationarity
of substitution process across the lineages (Foster 2004;
Duchêne et al. 2017; Jermiin et al. 2020a). The test
utilizes the �2 statistic to compare the counts of character
states in observed MSA sequences with corresponding
model-based predictions. The test cannot discriminate
among alignments with any substitution rate changes.
The reason for considering the test here is to illustrate
a case in which a statistic that is known to be limited a
priori to only certain aspects of models is used for their
ranking in terms of fit.

It should be noted that the statistics for model fit
based on Bowker’s test P-values (Dutheil and Boussau
2008) are poorly suited for detecting the similarity
between observed and predicted sequence alignments
(Supplementary Appendix S1 available on Dryad). This
is because pairwise alignments with different marginal
base composition and different counts of individual
substitutions can have the same Bowker’s test P-value.
Therefore, these statistics cannot serve as indices of
overall model fit (Supplementary Appendix S1 available
on Dryad).

In order to address the shortcomings of the previous
methods, a novel T statistic is suggested here. The
underlying principle of this novel test statistic is that
a model should be evaluated based on how much it
deviates from the observed data and not from any other
alignment of the same size.

The T statistic checks how exactly a model can
reproduce the structure of the pairwise alignment
subsets characterized by different overall substitution
rates. The statistic is sensitive to modeling of site-
specific substitution rates and disparity among forward
and reverse substitutions, which allows to visualize
ability of a model to accommodate departures from
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time-reversibility of the substitution process in different
lineages. The proposed statistic is also sensitive to
phylogenetic information contained in pairwise aligned
sequences. Saturation due to multiple substitutions per
site results in a loss of phylogenetic information and
makes model prediction of the pairwise site patterns
less exact. Taking that into account, the proposed
statistic prioritizes modeling accuracy of the observed
substitutions that are not affected by a degradation of
phylogenetic signal due to saturation.

The novel test shows superior predictive power on
unseen data in comparison to all other methods of
absolute model-data fit assessment tested. Because the
test statistic does not become zero-inflated with increase
in number of taxa, it is suitable for assessment of fit
of models to multitaxon data sets. The statistic can be
used to compare lineage-heterogeneous and lineage-
homogeneous substitution models used in ML and
Bayesian analyses. Another important advantage of the
T statistic is that it can also be applied to gapped
alignments, which are used in a great majority of
phylogenetic studies today.

MATERIALS AND METHODS

The Novel T Statistic for Assessment of Substitution Model
Fit

For each MSA included in comparisons of model-data
fit, estimates of relative substitution rate in each site are
conducted employing the method of Pesole and Saccone
(2001):

Rs =
i=0.5z(z−1)∑

i=1

�is
Di

(1)

wherein Di is a genetic distance calculated in the ith
pairwise comparison of sequences from a MSA with
z taxa and �is =1 if a substitution is observed in the
above sequence comparison at a MSA site s or �is =
0 otherwise. Because the observed alignment used
in this study contained heterogeneously evolved taxa,
Di was calculated employing the Tamura-Nei distance
for heterogeneous substitution patterns (Tamura and
Kumar 2002). For each pairwise sequence comparison,
the distances are computed excluding sites with gaps
and ambiguous characters.

The Rs values are used to partition MSA sites
according to their relative substitution rate. In working
out the test, I considered that rare pairwise patterns
are likely to be affected by stochastic variation (i.e.,
noise). The number of such patterns increases with the
number of partitions. If the test extracts noise in the
training data, it negatively affects its discriminatory
power on unseen data. By contrast, pairwise substitution
patterns comprising numerous substitutions are more
likely to represent the underlying data structure. The
partitioning scheme, outlined below, helps to avoid rare
pairwise substitution patterns in partitions and was

chosen because it resulted in high discriminatory power
of the test. If rare pairwise substitution patterns are
unavoidable, the proposed method has another level of
protection against the influence of noise on model fit
estimates, as explained below (formula 10).

A sum of the Rs values (S) is calculated over all MSA
sites, and the sites are sorted in ascending order of the
Rs values. Starting from the first position in the sorted
site set, the sites are consecutively added to the first
MSA partition and their Rs values are added to each
other. When the resulting sum exceeds 0, the sites are
assigned to the second partition and when the sum
exceeds 0.5*S, all the remaining sites are assigned to
the third partition. This operation results in the variable
MSA partitions with equal number of substitutions. The
operation corresponds to the Step 1 in the flowchart
presenting the main steps of the proposed method
(Fig. 1).

In order to evaluate over all pairwise comparisons of
taxa, names of taxa in MSA are sorted in alphanumeric
order and each taxon is assigned a rank in the sorted
list. A square matrix is formed with entries in rows
and columns represent ranks of taxa in ascending order
(Step 2 in Fig. 1). All pairwise sequence comparisons are
iteratively performed among taxa represented by their
ranks in either upper or lower triangular part of the
resulting square matrix. The significance of it is that
each sequence comparison in each MSA compared is
performed maintaining the same direction of character
state substitutions, for example from the taxon assigned
Rank 1 to the taxon assigned Rank 2. Choice of
upper/lower triangular part of the rank matrix does not
affect the results.

For an alignment between sequences i and j, the counts
of pairwise site patterns containing alphabet-specific
character states (e.g., A–A, A–T, T–A, etc.) are separately
computed in three pairwise alignment subsets, each
containing sites assigned to the first, second or third MSA
partitions (Step 3 in Fig. 1):

Cxy(z) =
b=k(z)∑

b=1

1Nib=x1Njb=y if Ri <Rj (2)

wherein x ∈ {A,C,G,T}, y ∈ {A,C,G,T}, z is a subset of sites
assigned to a partition, k(z) is the length of z, Nib and
Njb are the character states at site b for sequences i and
j, respectively, 1v =1 if v is true and 0 otherwise and Ri
and Rj are the ranks for sequences i and j.

The counts are transformed into relative frequencies:

f 1xy(z) =
Cxy(z)

L
(3)

wherein x ∈ {A,C,G,T}, y ∈ {A,C,G,T}, z is a subset of
sites, and L is the length of pairwise alignment (PWA)
among sequences i and j calculated excluding positions
with gaps and ambiguous characters.

The relative frequencies of pairwise site patterns in
each PWA subset z are also calculated for the observed
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FIGURE 1. Flowchart of the main steps in calculation of the T statistic (formula 8). Step 1 provides sensitivity to modeling of the site rate
distribution. Step 2 provides sensitivity to modeling lineage-heterogeneous substitution processes. The counts calculated at Step 3 are used to
calculate (i) p values for the observed alignment (Step 4) and (ii) the observed and predicted data points that are compared by the method (s
values, Step 5). The method incorporates p values to assign relatively higher weights (Step 6) to the squared Z-scores for the observed substitutions
that are not affected by a degradation of phylogenetic signal due to saturation.

data:

f 2xy(z) =
Cxy(z)

L(z)
(4)

wherein x∈ {A,C,G,T}, y∈ {A,C,G,T}, z is a subset of sites,
and L(z) is the length of z calculated excluding positions
with gaps and ambiguous characters.

The f 2xy(z) values are transformed into odds:

oxy(z) =
fxifyj

f 2xy(z)
if Ri <Rj (5)

wherein x∈ {A,C,G,T}, y∈ {A,C,G,T}, z is a subset of
sites, fxi is a frequency of x in a part of sequence i which
contains alphabet-specific characters and is included in
alignment with alphabet-specific characters in sequence
j, fyj is a frequency of y in a part of sequence j which
contains alphabet-specific characters and is included in
alignment with such characters in sequence i, and Ri and,
Rj are the ranks for sequences i and j.

The odds are converted into probabilities (Step 4 in
Fig. 1):

pxy(z) =
oxy(z)

1+oxy(z)
(6)

The pxy(z) values (distributed on the Scale 0–1) are used
to assign different weights to the quality of the model
prediction of the individual observed data points, which

is assessed based on squared Z-scores. The method
incorporates pxy(z) values to assign relatively higher
weights to the squared Z-scores for the observed data
points (s values, described below) corresponding to
the observed substitutions that are not affected by a
degradation of phylogenetic signal due to saturation. A
pxy(z) value for a substitution approximating 1 indicate
that the effect of saturation is negligible.

The goodness of fit is assessed by comparing the actual
and simulated values calculated as follows:

sxy(z) =
fxifyj

f 1xy(z)
if Ri <Rj (7)

wherein x∈ {A,C,G,T}, y∈ {A,C,G,T}, z is a subset of sites,
f 1xy(z) is as in formula 3, fxi and fyj are as in formula
5, and Ri and, Rj are the ranks for sequences i and j.
The model-predicted sxy(z) values are inferred for each
of the 16 possible pairwise site patterns. If the model-
predicted f 1xy(z) value is equal to zero, and sxy(z) cannot
be computed, it is set to zero. These values are excluded
from the subsequent calculation of Z-scores. This stage
corresponds to Step 5 in Figure 1.

It should be noted that the computed s values can be
used to build a 4×4 asymmetric square matrix of odds
for pairwise site patterns in a PWA, where each matrix
member representing a substitution can be calculated
as x=1/(1/sxy(z2) +1/sxy(z3)) and other members as x=
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time-reversibility of the substitution process in different
lineages. The proposed statistic is also sensitive to
phylogenetic information contained in pairwise aligned
sequences. Saturation due to multiple substitutions per
site results in a loss of phylogenetic information and
makes model prediction of the pairwise site patterns
less exact. Taking that into account, the proposed
statistic prioritizes modeling accuracy of the observed
substitutions that are not affected by a degradation of
phylogenetic signal due to saturation.

The novel test shows superior predictive power on
unseen data in comparison to all other methods of
absolute model-data fit assessment tested. Because the
test statistic does not become zero-inflated with increase
in number of taxa, it is suitable for assessment of fit
of models to multitaxon data sets. The statistic can be
used to compare lineage-heterogeneous and lineage-
homogeneous substitution models used in ML and
Bayesian analyses. Another important advantage of the
T statistic is that it can also be applied to gapped
alignments, which are used in a great majority of
phylogenetic studies today.

MATERIALS AND METHODS

The Novel T Statistic for Assessment of Substitution Model
Fit

For each MSA included in comparisons of model-data
fit, estimates of relative substitution rate in each site are
conducted employing the method of Pesole and Saccone
(2001):

Rs =
i=0.5z(z−1)∑

i=1

�is
Di

(1)

wherein Di is a genetic distance calculated in the ith
pairwise comparison of sequences from a MSA with
z taxa and �is =1 if a substitution is observed in the
above sequence comparison at a MSA site s or �is =
0 otherwise. Because the observed alignment used
in this study contained heterogeneously evolved taxa,
Di was calculated employing the Tamura-Nei distance
for heterogeneous substitution patterns (Tamura and
Kumar 2002). For each pairwise sequence comparison,
the distances are computed excluding sites with gaps
and ambiguous characters.

The Rs values are used to partition MSA sites
according to their relative substitution rate. In working
out the test, I considered that rare pairwise patterns
are likely to be affected by stochastic variation (i.e.,
noise). The number of such patterns increases with the
number of partitions. If the test extracts noise in the
training data, it negatively affects its discriminatory
power on unseen data. By contrast, pairwise substitution
patterns comprising numerous substitutions are more
likely to represent the underlying data structure. The
partitioning scheme, outlined below, helps to avoid rare
pairwise substitution patterns in partitions and was

chosen because it resulted in high discriminatory power
of the test. If rare pairwise substitution patterns are
unavoidable, the proposed method has another level of
protection against the influence of noise on model fit
estimates, as explained below (formula 10).

A sum of the Rs values (S) is calculated over all MSA
sites, and the sites are sorted in ascending order of the
Rs values. Starting from the first position in the sorted
site set, the sites are consecutively added to the first
MSA partition and their Rs values are added to each
other. When the resulting sum exceeds 0, the sites are
assigned to the second partition and when the sum
exceeds 0.5*S, all the remaining sites are assigned to
the third partition. This operation results in the variable
MSA partitions with equal number of substitutions. The
operation corresponds to the Step 1 in the flowchart
presenting the main steps of the proposed method
(Fig. 1).

In order to evaluate over all pairwise comparisons of
taxa, names of taxa in MSA are sorted in alphanumeric
order and each taxon is assigned a rank in the sorted
list. A square matrix is formed with entries in rows
and columns represent ranks of taxa in ascending order
(Step 2 in Fig. 1). All pairwise sequence comparisons are
iteratively performed among taxa represented by their
ranks in either upper or lower triangular part of the
resulting square matrix. The significance of it is that
each sequence comparison in each MSA compared is
performed maintaining the same direction of character
state substitutions, for example from the taxon assigned
Rank 1 to the taxon assigned Rank 2. Choice of
upper/lower triangular part of the rank matrix does not
affect the results.

For an alignment between sequences i and j, the counts
of pairwise site patterns containing alphabet-specific
character states (e.g., A–A, A–T, T–A, etc.) are separately
computed in three pairwise alignment subsets, each
containing sites assigned to the first, second or third MSA
partitions (Step 3 in Fig. 1):

Cxy(z) =
b=k(z)∑

b=1

1Nib=x1Njb=y if Ri <Rj (2)

wherein x ∈ {A,C,G,T}, y ∈ {A,C,G,T}, z is a subset of sites
assigned to a partition, k(z) is the length of z, Nib and
Njb are the character states at site b for sequences i and
j, respectively, 1v =1 if v is true and 0 otherwise and Ri
and Rj are the ranks for sequences i and j.

The counts are transformed into relative frequencies:

f 1xy(z) =
Cxy(z)

L
(3)

wherein x ∈ {A,C,G,T}, y ∈ {A,C,G,T}, z is a subset of
sites, and L is the length of pairwise alignment (PWA)
among sequences i and j calculated excluding positions
with gaps and ambiguous characters.

The relative frequencies of pairwise site patterns in
each PWA subset z are also calculated for the observed
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FIGURE 1. Flowchart of the main steps in calculation of the T statistic (formula 8). Step 1 provides sensitivity to modeling of the site rate
distribution. Step 2 provides sensitivity to modeling lineage-heterogeneous substitution processes. The counts calculated at Step 3 are used to
calculate (i) p values for the observed alignment (Step 4) and (ii) the observed and predicted data points that are compared by the method (s
values, Step 5). The method incorporates p values to assign relatively higher weights (Step 6) to the squared Z-scores for the observed substitutions
that are not affected by a degradation of phylogenetic signal due to saturation.

data:

f 2xy(z) =
Cxy(z)

L(z)
(4)

wherein x∈ {A,C,G,T}, y∈ {A,C,G,T}, z is a subset of sites,
and L(z) is the length of z calculated excluding positions
with gaps and ambiguous characters.

The f 2xy(z) values are transformed into odds:

oxy(z) =
fxifyj

f 2xy(z)
if Ri <Rj (5)

wherein x∈ {A,C,G,T}, y∈ {A,C,G,T}, z is a subset of
sites, fxi is a frequency of x in a part of sequence i which
contains alphabet-specific characters and is included in
alignment with alphabet-specific characters in sequence
j, fyj is a frequency of y in a part of sequence j which
contains alphabet-specific characters and is included in
alignment with such characters in sequence i, and Ri and,
Rj are the ranks for sequences i and j.

The odds are converted into probabilities (Step 4 in
Fig. 1):

pxy(z) =
oxy(z)

1+oxy(z)
(6)

The pxy(z) values (distributed on the Scale 0–1) are used
to assign different weights to the quality of the model
prediction of the individual observed data points, which

is assessed based on squared Z-scores. The method
incorporates pxy(z) values to assign relatively higher
weights to the squared Z-scores for the observed data
points (s values, described below) corresponding to
the observed substitutions that are not affected by a
degradation of phylogenetic signal due to saturation. A
pxy(z) value for a substitution approximating 1 indicate
that the effect of saturation is negligible.

The goodness of fit is assessed by comparing the actual
and simulated values calculated as follows:

sxy(z) =
fxifyj

f 1xy(z)
if Ri <Rj (7)

wherein x∈ {A,C,G,T}, y∈ {A,C,G,T}, z is a subset of sites,
f 1xy(z) is as in formula 3, fxi and fyj are as in formula
5, and Ri and, Rj are the ranks for sequences i and j.
The model-predicted sxy(z) values are inferred for each
of the 16 possible pairwise site patterns. If the model-
predicted f 1xy(z) value is equal to zero, and sxy(z) cannot
be computed, it is set to zero. These values are excluded
from the subsequent calculation of Z-scores. This stage
corresponds to Step 5 in Figure 1.

It should be noted that the computed s values can be
used to build a 4×4 asymmetric square matrix of odds
for pairwise site patterns in a PWA, where each matrix
member representing a substitution can be calculated
as x=1/(1/sxy(z2) +1/sxy(z3)) and other members as x=
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1/(1/sxy(z1) +1/sxy(z2) +1/sxy(z3)). The above matrix of
odds corresponds uniquely to a PWA-specific set of
frequencies of pairwise site patterns (e.g., Chao and
Zhang 2008, p. 156). A frequency of a pairwise site
pattern is the sum of all the frequencies of site patterns in
a MSA that contains it. Following the rationale in Rogers
(1997), a set of frequencies of pairwise site patterns,
which can be sampled from a MSA therefore, should
uniquely correspond to a set of site patterns in the
MSA. The validity of this assumption was checked
here in preliminary experiments involving random site
pattern generation for a 4-taxon MSA. These indicated
that a set of frequencies of the pairwise site patterns
containing alphabet-specific character states uniquely
corresponds to a set of site patterns in a MSA which
does not contain (i) ambiguous character states, (ii)
columns consisting exclusively of gaps, and (iii) columns
with a single alphabet-specific character state. Such
site patterns do not contain phylogenetic signal and/or
are not encountered in simulated replicates and can
be removed from the observed alignment. Considering
above, assessment of model fit based on accuracy of
prediction of s values can identify a model that is able
to generate a set of site patterns in the observed MSA.
An advantage of this statistic is that it is sensitive to
heterogeneity of the substitution process across sites.
Another advantage related to sensitivity to phylogenetic
signal which is contained in pairwise aligned sequences
is explained in Supplementary Appendix S2 available on
Dryad.

Model fit is assessed by computation of a weighted
average of squared Z-scores (numbers of standard
deviations the realized s value lies from the mean over
the corresponding s values calculated from simulated
replicates) and taking a square root of the resulting value
in order to restore the original scale of measurement
(Step 7 in Fig. 1):

T =

���������

n=t�
n=1

wn

⎛
⎜⎜⎜⎝

sn −m̄n

1
r

i=r�
i=1

(sr −m̄n)2

⎞
⎟⎟⎟⎠

2

(8)

In the above formula, t is the total number of s
values calculated for the observed alignment, sn is the
nthobserved s value, m̄n is a mean over corresponding
replicate-specific (sr) s values predicted by a model
(formula 7) which are not equal to zero, r is the number of
non-zero sr values, and wn is the weight assigned to each
term in the sum. The smaller is the T value, the better is
the data-model fit. A numerical example of calculation
of T value is provided in Supplementary Appendix S3
available on Dryad.

The weighting scheme in formula 8 was designed
such that the test score was influenced more by the
squared Z-scores calculated for the observed s values
corresponding to unsaturated substitutions. Calculation
of weights (Step 6 in Fig. 1) used in formula 8 is

performed as follows:

wn = pn2dn
n=t�
n=1

pn2dn

(9)

wherein t is as in formula 8, pn is as calculated in formula
6, and dn is a coefficient which is introduced to correct
for a small sample size:

dn =
� r

h

�c
(10)

In the above formula, h is the number of simulated
replicates, r is as in the formula 8 (the number of
non-zero sr values), and c is a positive number. If h
equals r, then dn equals 1 and does not affect the
results. However, if the observed pairwise site pattern
is rare and the corresponding predicted pairwise site
pattern is encountered in just a few replicates, then its
impact on the total test result would be minimized. Rare
substitutions are more likely to be affected by stochastic
variation which does not represent the properties of
the data-generating process. The dn coefficient helps to
avoid influence of stochastic variation on model fit estim-
ates. In the preliminary experiments involving different
partitioning methods and alphabets and resulting in
rare alignments of character states in MSA partitions,
introduction of the dn coefficient was found to improve
discriminatory power of the corresponding tests (results
not shown). As the rate of improvement flattens out at
high c values, the default value of c was set to 100.

Use of weights calculated as in formula 9 but without
squaring pn values was found to improve discriminatory
power of the test more than twofold compared to the
unweighted test version. Introduction of weights calcu-
lated as shown in formula 9 was found to improve the
discriminatory power more than 12-fold in simulation
experiments compared to the unweighted test version.

The time necessary to perform the test as implemented
in test.pl script (available as Supplementary Material
available on Dryad) with a data matrix of 86 taxa
with 42,141 aligned positions, used as an observed
alignment, and 500 simulated replicates of the same size
representing model predictions is about 11 hours on a
single core of Intel Xeon Gold 6242 Processor.

Preparation of a Gap-Less Alignment
Sequences of chloroplast protein-coding genes com-

mon to the plastomes of five Glaucocystophyta and
eight Rhodophyta algae were fetched from GenBank.
Translated sequences of Porphyridium purpureum genes,
which were present in all above plastomes, were Blasted
against a local database of translated sequences of
cyanobacterial genes fetched from 74 cyanobacterial
genomes. The cyanobacterial coding gene sequences
corresponding to the best-scoring hit for each taxon
were aligned with the plastid gene sequences using the
MACSE program (Ranwez et al. 2011). The resulting set
of codon-based alignments was inspected to discard (i)
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alignments without gap-less sites shared by all species,
(ii) alignments wherein homology of sequences was
dubious due to short lengths of aligned regions and/or
high sequence divergence, and (iii) alignments which
produced trees under the GTR + G model characterized
by a mixture of short and long cyanobacterial branches,
which could be attributed to presence of paralogs.

The alignments of the 51 genes which passed the
inspection were concatenated to produce a gapped
alignment. The list of these genes is provided as
Supplementary Material available on Dryad. An array
of vertical gap-less blocks in the gapped alignment
was sampled by the Gblocks program (Castresana 2000)
embedded in the SeaView alignment editor (Gouy et al.
2010). Gblocks was run based on the protein alignment
version, selected by toggling protein view mode on
in SeaView. The resulting blocks were inspected and
manually edited in SeaView. The final selection of blocks
of codons was saved to produce a 42,141 positions long
gap-less codon-based alignment of 86 taxa (henceforth
referred as to the observed alignment, available as
Supplementary Material available on Dryad). The align-
ment contains only DNA alphabet-specific character
states.

Generation of Replicates
Some Bayesian and ML models used to generate rep-

licates assumed the same substitution model schemes.
In order to distinguish Bayesian and ML models, the
italicized names for the ML models are henceforth used
throughout the text. Model parameters for generation of
replicates under GTR + I + G, GTR + G, GTR + I, GTR,
TIM + I + G, TIM + G, TIM + I, TIM, TVM + I+G, TVM
+ G, TVM + I, TVM, TRN + I + G, TRN + G, TRN + I,
TRN, HKY + I + G, HKY + G, HKY + I, HKY, F81 + I +
G, F81 + G, F81 + I, F81, JC + I + G, JC + G, JC + I, and
JC models were obtained from IqTree v. 1.6.12 (Nguyen
et al. 2015) unconstrained tree searches performed based
on the observed alignment. The rates among sites in +G
models were modeled via a discrete gamma distribution
with four categories. Model parameters and the optimal
number of rate categories (8) for a GTR+R model with
across sites rate heterogeneity modeled via FreeRate
model (Soubrier et al. 2012) were determined employing
ModelFinder pipeline (Kalyaanamoorthy et al. 2017)
implemented in IqTree. The simulations were conducted
with Seq-Gen (Rambaut and Grassly 1997) to sample sets
of 500 parametric replicates, each 42,141 pos. long, under
each model.

Replicates were also sampled under the default
PhyloBayes v. 4.1 (Lartillot et al. 2009) parameters
(drawing site-specific rates and site-specific frequency
profiles from the corresponding conditional posterior
distributions and the nucleotide state at the root from
the conditional prior distribution) from the last 500
cycles of the PhyloBayes chains run for 3000 cycles based
on the observed alignment. All Bayesian models used
assumed GTR and f81 rate matrices. The Bayesian site-
heterogeneous models (CAT + GTR and CAT + f81)

assumed a mixture of equilibrium frequency profiles
(CAT, Lartillot and Philippe 2004) and mixtures of
distinct GTR-based rate matrices and equilibrium fre-
quencies over alignment sites (QMM, Wang et al. 2008).
Rates among sites for the Bayesian models were modeled
via (i) a discrete gamma distribution with four categories
(+G), (ii) a continuous gamma distribution (+Gc),
and (iii) a Dirichlet process (+D). Heterotachy was
modeled via (i) Mixture of Branch Lengths model (MBL,
Kolaczkowski and Thornton 2008; Zhou et al. 2007)
(+MBL), (ii) Tuffley and Steel’s covarion model (Tuffley
and Steel 1998) (+TS), and (iii) a modified version of the
above model (–covext option in PhyloBayes) (+TSm).
Combinations of some of the above components in
Markov chain Monte Carlo mixtures resulted in errors in
replicate sampling. The final selection of 36 PhyloBayes
models (Table 2) used here was determined by the ability
to sample replicates.

The default PhyloBayes parameters were applied
to sample replicates from the last 500 cycles of a
nhPhyloBayes (Blanquart and Lartillot 2008) chain run
under the CAT-BP model based on the same data. At
the moment of writing, 1314 cycles were sampled under
the model, which took 200 days. A fixed value for the
number of components in the mixture of equilibrium
frequency profiles (350) was used for the run as previ-
ously determined under CAT + f81 + G model. Distinct
sets of 500 replicates per chain were also sampled based
on the last cycle of all above-mentioned chains under the
default PhyloBayes parameters.

Assessment of Discriminatory Power
The discriminatory power of different tests was

measured as the percentage of times a correct model
showed better fit to 100 replicates simulated under
the correct model in comparison to a misspecified
model (termed “model separation value” [MS]). For each
pairwise model comparison, the first 100 replicates in
each 500-member replicate set sampled under the correct
model were chosen to represent the “unseen data.”
Each of these 100 replicates was taken as “observed
alignment” in turn, and was compared to (i) the last
400 replicates sampled under the correct model and
(ii) the last 400 replicates sampled under a misspecified
model to calculate two test values under a given method.
The above 400-member replicate sets served in these
experiments as “training data” to learn properties of
the models. If the correct model showed better fit to
each of the 100 replicates under a given method, MS
value was at maximum (100%). These experiments show
if a test statistic captures the properties of the data-
generating process poorly or too closely. In both cases,
the corresponding estimator can be expected to fail to
predict the correct model type reliably in the unseen
data.

In the Bayesian framework, the model parameters
change from one chain cycle to another under a fixed
substitution model scheme. However, the MS method
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1/(1/sxy(z1) +1/sxy(z2) +1/sxy(z3)). The above matrix of
odds corresponds uniquely to a PWA-specific set of
frequencies of pairwise site patterns (e.g., Chao and
Zhang 2008, p. 156). A frequency of a pairwise site
pattern is the sum of all the frequencies of site patterns in
a MSA that contains it. Following the rationale in Rogers
(1997), a set of frequencies of pairwise site patterns,
which can be sampled from a MSA therefore, should
uniquely correspond to a set of site patterns in the
MSA. The validity of this assumption was checked
here in preliminary experiments involving random site
pattern generation for a 4-taxon MSA. These indicated
that a set of frequencies of the pairwise site patterns
containing alphabet-specific character states uniquely
corresponds to a set of site patterns in a MSA which
does not contain (i) ambiguous character states, (ii)
columns consisting exclusively of gaps, and (iii) columns
with a single alphabet-specific character state. Such
site patterns do not contain phylogenetic signal and/or
are not encountered in simulated replicates and can
be removed from the observed alignment. Considering
above, assessment of model fit based on accuracy of
prediction of s values can identify a model that is able
to generate a set of site patterns in the observed MSA.
An advantage of this statistic is that it is sensitive to
heterogeneity of the substitution process across sites.
Another advantage related to sensitivity to phylogenetic
signal which is contained in pairwise aligned sequences
is explained in Supplementary Appendix S2 available on
Dryad.

Model fit is assessed by computation of a weighted
average of squared Z-scores (numbers of standard
deviations the realized s value lies from the mean over
the corresponding s values calculated from simulated
replicates) and taking a square root of the resulting value
in order to restore the original scale of measurement
(Step 7 in Fig. 1):

T =

���������

n=t�
n=1

wn

⎛
⎜⎜⎜⎝

sn −m̄n

1
r

i=r�
i=1

(sr −m̄n)2

⎞
⎟⎟⎟⎠

2

(8)

In the above formula, t is the total number of s
values calculated for the observed alignment, sn is the
nthobserved s value, m̄n is a mean over corresponding
replicate-specific (sr) s values predicted by a model
(formula 7) which are not equal to zero, r is the number of
non-zero sr values, and wn is the weight assigned to each
term in the sum. The smaller is the T value, the better is
the data-model fit. A numerical example of calculation
of T value is provided in Supplementary Appendix S3
available on Dryad.

The weighting scheme in formula 8 was designed
such that the test score was influenced more by the
squared Z-scores calculated for the observed s values
corresponding to unsaturated substitutions. Calculation
of weights (Step 6 in Fig. 1) used in formula 8 is

performed as follows:

wn = pn2dn
n=t�
n=1

pn2dn

(9)

wherein t is as in formula 8, pn is as calculated in formula
6, and dn is a coefficient which is introduced to correct
for a small sample size:

dn =
� r

h

�c
(10)

In the above formula, h is the number of simulated
replicates, r is as in the formula 8 (the number of
non-zero sr values), and c is a positive number. If h
equals r, then dn equals 1 and does not affect the
results. However, if the observed pairwise site pattern
is rare and the corresponding predicted pairwise site
pattern is encountered in just a few replicates, then its
impact on the total test result would be minimized. Rare
substitutions are more likely to be affected by stochastic
variation which does not represent the properties of
the data-generating process. The dn coefficient helps to
avoid influence of stochastic variation on model fit estim-
ates. In the preliminary experiments involving different
partitioning methods and alphabets and resulting in
rare alignments of character states in MSA partitions,
introduction of the dn coefficient was found to improve
discriminatory power of the corresponding tests (results
not shown). As the rate of improvement flattens out at
high c values, the default value of c was set to 100.

Use of weights calculated as in formula 9 but without
squaring pn values was found to improve discriminatory
power of the test more than twofold compared to the
unweighted test version. Introduction of weights calcu-
lated as shown in formula 9 was found to improve the
discriminatory power more than 12-fold in simulation
experiments compared to the unweighted test version.

The time necessary to perform the test as implemented
in test.pl script (available as Supplementary Material
available on Dryad) with a data matrix of 86 taxa
with 42,141 aligned positions, used as an observed
alignment, and 500 simulated replicates of the same size
representing model predictions is about 11 hours on a
single core of Intel Xeon Gold 6242 Processor.

Preparation of a Gap-Less Alignment
Sequences of chloroplast protein-coding genes com-

mon to the plastomes of five Glaucocystophyta and
eight Rhodophyta algae were fetched from GenBank.
Translated sequences of Porphyridium purpureum genes,
which were present in all above plastomes, were Blasted
against a local database of translated sequences of
cyanobacterial genes fetched from 74 cyanobacterial
genomes. The cyanobacterial coding gene sequences
corresponding to the best-scoring hit for each taxon
were aligned with the plastid gene sequences using the
MACSE program (Ranwez et al. 2011). The resulting set
of codon-based alignments was inspected to discard (i)
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alignments without gap-less sites shared by all species,
(ii) alignments wherein homology of sequences was
dubious due to short lengths of aligned regions and/or
high sequence divergence, and (iii) alignments which
produced trees under the GTR + G model characterized
by a mixture of short and long cyanobacterial branches,
which could be attributed to presence of paralogs.

The alignments of the 51 genes which passed the
inspection were concatenated to produce a gapped
alignment. The list of these genes is provided as
Supplementary Material available on Dryad. An array
of vertical gap-less blocks in the gapped alignment
was sampled by the Gblocks program (Castresana 2000)
embedded in the SeaView alignment editor (Gouy et al.
2010). Gblocks was run based on the protein alignment
version, selected by toggling protein view mode on
in SeaView. The resulting blocks were inspected and
manually edited in SeaView. The final selection of blocks
of codons was saved to produce a 42,141 positions long
gap-less codon-based alignment of 86 taxa (henceforth
referred as to the observed alignment, available as
Supplementary Material available on Dryad). The align-
ment contains only DNA alphabet-specific character
states.

Generation of Replicates
Some Bayesian and ML models used to generate rep-

licates assumed the same substitution model schemes.
In order to distinguish Bayesian and ML models, the
italicized names for the ML models are henceforth used
throughout the text. Model parameters for generation of
replicates under GTR + I + G, GTR + G, GTR + I, GTR,
TIM + I + G, TIM + G, TIM + I, TIM, TVM + I+G, TVM
+ G, TVM + I, TVM, TRN + I + G, TRN + G, TRN + I,
TRN, HKY + I + G, HKY + G, HKY + I, HKY, F81 + I +
G, F81 + G, F81 + I, F81, JC + I + G, JC + G, JC + I, and
JC models were obtained from IqTree v. 1.6.12 (Nguyen
et al. 2015) unconstrained tree searches performed based
on the observed alignment. The rates among sites in +G
models were modeled via a discrete gamma distribution
with four categories. Model parameters and the optimal
number of rate categories (8) for a GTR+R model with
across sites rate heterogeneity modeled via FreeRate
model (Soubrier et al. 2012) were determined employing
ModelFinder pipeline (Kalyaanamoorthy et al. 2017)
implemented in IqTree. The simulations were conducted
with Seq-Gen (Rambaut and Grassly 1997) to sample sets
of 500 parametric replicates, each 42,141 pos. long, under
each model.

Replicates were also sampled under the default
PhyloBayes v. 4.1 (Lartillot et al. 2009) parameters
(drawing site-specific rates and site-specific frequency
profiles from the corresponding conditional posterior
distributions and the nucleotide state at the root from
the conditional prior distribution) from the last 500
cycles of the PhyloBayes chains run for 3000 cycles based
on the observed alignment. All Bayesian models used
assumed GTR and f81 rate matrices. The Bayesian site-
heterogeneous models (CAT + GTR and CAT + f81)

assumed a mixture of equilibrium frequency profiles
(CAT, Lartillot and Philippe 2004) and mixtures of
distinct GTR-based rate matrices and equilibrium fre-
quencies over alignment sites (QMM, Wang et al. 2008).
Rates among sites for the Bayesian models were modeled
via (i) a discrete gamma distribution with four categories
(+G), (ii) a continuous gamma distribution (+Gc),
and (iii) a Dirichlet process (+D). Heterotachy was
modeled via (i) Mixture of Branch Lengths model (MBL,
Kolaczkowski and Thornton 2008; Zhou et al. 2007)
(+MBL), (ii) Tuffley and Steel’s covarion model (Tuffley
and Steel 1998) (+TS), and (iii) a modified version of the
above model (–covext option in PhyloBayes) (+TSm).
Combinations of some of the above components in
Markov chain Monte Carlo mixtures resulted in errors in
replicate sampling. The final selection of 36 PhyloBayes
models (Table 2) used here was determined by the ability
to sample replicates.

The default PhyloBayes parameters were applied
to sample replicates from the last 500 cycles of a
nhPhyloBayes (Blanquart and Lartillot 2008) chain run
under the CAT-BP model based on the same data. At
the moment of writing, 1314 cycles were sampled under
the model, which took 200 days. A fixed value for the
number of components in the mixture of equilibrium
frequency profiles (350) was used for the run as previ-
ously determined under CAT + f81 + G model. Distinct
sets of 500 replicates per chain were also sampled based
on the last cycle of all above-mentioned chains under the
default PhyloBayes parameters.

Assessment of Discriminatory Power
The discriminatory power of different tests was

measured as the percentage of times a correct model
showed better fit to 100 replicates simulated under
the correct model in comparison to a misspecified
model (termed “model separation value” [MS]). For each
pairwise model comparison, the first 100 replicates in
each 500-member replicate set sampled under the correct
model were chosen to represent the “unseen data.”
Each of these 100 replicates was taken as “observed
alignment” in turn, and was compared to (i) the last
400 replicates sampled under the correct model and
(ii) the last 400 replicates sampled under a misspecified
model to calculate two test values under a given method.
The above 400-member replicate sets served in these
experiments as “training data” to learn properties of
the models. If the correct model showed better fit to
each of the 100 replicates under a given method, MS
value was at maximum (100%). These experiments show
if a test statistic captures the properties of the data-
generating process poorly or too closely. In both cases,
the corresponding estimator can be expected to fail to
predict the correct model type reliably in the unseen
data.

In the Bayesian framework, the model parameters
change from one chain cycle to another under a fixed
substitution model scheme. However, the MS method
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employed here can function properly only if the rep-
licates in the unseen data set were sampled under the
model parameters used to generate the training data
for the correct model. Otherwise, the expectation of the
best theoretically possible fit of a correct model to each
of 100 replicates cannot be justified. Therefore all MS
values for comparisons involving Bayesian models were
calculated based on the posterior predictive replicates
sampled from the last chain cycles. In this case, the above
expectation should hold true and all the errors to identify
the correct models could be attributed to the drawbacks
of the methods of model fit assessment.

Assessment of Discriminatory Power in the Presence of
Missing Data

Indel-Seq-Gen v. 2.1.0 (Strope et al. 2009) was
employed to simulate two 42,141 pos. long replicates
under GTR + I + G model parameters estimated previ-
ously based on the observed alignment. The simulations
assumed the default indel model, maximum indel size of
10 positions, zero probability of insertions, 0.1 deletion
per substitution ratio for the first replicate and an ana-
logous value set to 0.2 for the second replicate. The first
and the second replicates (provided as Supplementary
Material available on Dryad) are henceforth referred as
to the “mask file 1” and “mask file 2,” respectively.

The mask file 1 had 503,603 gaps distributed over 66%
of alignment sites. The percentage of gaps per sequence
in the file ranged from 23% to 1.4% with an average value
of 14%. The mask file 2 had 906,686 gaps distributed
over 70% of alignment sites. A percentage of gaps per
sequence in the file ranged from 38% to 2.7% with an
average of 25%.

In the first series of the experiments with missing
data each character state in each taxon sequence in each
replicate encountered at the position where a gap was
inserted in the corresponding sequence in the mask file
1 was treated as a gap in calculation of the relevant test
statistics. The second series of these experiments was
conducted analogously using the mask file 2.

Alternative Statistics
Bollback’s test (2002) involves calculation of the

multinomial likelihood statistic for the observed align-
ment and each replicate generated under a model and
calculation of a right-tailed P-value, representing a
frequency of the test statistics calculated from replicates
which are larger or equal to the realized test statistic.
An absolute value of a Z-score (a number of standard
deviations the realized test statistic lies from the mean
over analogous values for replicates) was also tried here
as an alternative way to summarize the results of the
test. The corresponding test is henceforth referred to as
“multinomial-Z test.”

The tree- and model-based composition-fit test
(Foster 2004), henceforth referred to as to “TMCF
test,” utilizes a Chi-square statistic, X2 =∑[(observed−

expected)2/expected], which is individually calculated for
the observed alignment and for each replicate. The
observed values for the observed alignment and for
any replicate represent corresponding counts of taxon-
specific character states in these multiple sequence align-
ments. In experiments conducted here, each expected
value was calculated as a taxon-specific mean value
of counts of each character state in the distribution
of replicates. Such empirical estimation of the expected
values can be applied for all the models used in
the present study (personal communication from the
author). The significance of the test result is indicated
by a P-value representing the frequency of encountering
�2 values calculated from replicates, which are larger
or equal to the realized test statistic (Foster 2004). An
alternative Z-score-based statistic described above was
also employed here to summarize test’s results. The
corresponding test is henceforth referred to as “TMCF-Z
test”.

The test based on binning of site patterns into 15
categories with distinct combinations of the character
states (A, C, G, T, AC, AG, AT, CG, CT, GT, ACG, ACT,
AGT, CGT, and ACGT) proposed in Lewis et al. (2014) was
conducted forcefully setting the expression (0×log0) to 0
in calculation of Gelfand and Ghosh statistics, employed
to compare observed and predicted categories, consid-
ering the limit of the expression. The implementation
of the Gelfand and Ghosh method in Lewis et al.
does not address missing data explicitly. Following the
suggestion made by the authors, analyses with gapped
alignments were performed employing fractional dis-
tribution of each gapped site patterns to compatible
bins. The binning scheme used here (Supplementary
Appendix S4 available on Dryad) assumes that each
missing character in a gapped site pattern can represent
any of the four nucleotides with equal probability.

Recovery of the True Trees from Replicates
Fifty gap-less replicates (termed “initial replicates”)

were sampled from 3000th cycles of the 50 PhyloBayes
chains run based on the observed alignment under
50 distinct full topological constraints (provided as
Supplementary Material available on Dryad) and a
QMM + D model. Unconstrained tree searches based
on each replicate were run under QMM + D and CAT
+ GTR + D models in PhyloBayes and under GTR +
R, GTR + I + G, GTR + I, and JC models in IqTree.
Bayesian trees were built from the last 500 cycles of
the unconstrained chains run for 3000 cycles. Resulting
tree topologies were compared to the true trees. The
fit of QMM + D, CAT + GTR + D, GTR + R, GTR
+ I + G, GTR + I, and JC models to the above 50
initial replicates was assessed under the proposed test. In
these experiments, each model was represented by 500
gap-less replicates generated as described in the section
“Generation of replicates”, but using the “initial replicates”
as the observed data. Posterior predictive replicates were
sampled from the last 500 chain cycles of the chains.
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RESULTS

Comparison of the Discriminatory Power of the Tests
The discriminatory power of the tests was assessed

in the comparison of (i) gap-less replicates (comparison
series A), (ii) replicates with 503,603 alphabet-specific
characters per replicate masked by gaps (comparison
series B), and (iii) replicates with 906,686 alphabet-
specific characters per replicate masked by gaps (com-
parison series C). The discriminatory power of Boll-
back’s and multinomial-Z tests was assessed in the
comparison of gap-less alignments only. Each model was
taken as correct in turn, and was iteratively compared
to 65 misspecified candidate models to calculate 65
MS values in 65×100=6500 individual comparisons of
model pairs in terms of fit. These comparisons were
performed for each of 66 correct models and involved
calculation of 66×65=4290 MS values in 429,000 indi-
vidual comparisons of model fit in total for each test in
each comparison series.

Figure 2 provides an overview of discriminatory
power of different tests in the comparison series A. When
each correct model was iteratively compared to other 65
models, the lowest MS value was recorded for each test
(henceforth referred to as “LMS value”). The LMS values
in Figure 2 are sorted in ascending order for each test.
Each colored line with squares, diamonds, and triangles
represents 66 LMS values, obtained for 66 correct models
under each test (shown to the right of the graph). Because
a vast majority of LMS values (65 out of 66) registered in
comparison series A employing Bollback’s test were 0%,
these results are not shown in the figure.

Table 1 shows the (i) the lowest LMS values (out of 66
calculated for each test), (ii) the total numbers of failures

to identify correct models, and (iii) the total percentages
of failures to identify correct models registered in
comparison series A, B, and C for the tests compared.
The results indicate that the discriminatory power of
Bollback’s test approximates a random draw (evidenced
by 50.7% of failures to identify correct models). The
discriminatory power of the test assessed in a separate
experiment involving the Bayesian models was almost
the same (results not shown). Further experiments with
the test were not conducted.

In each comparison series, the proposed T statistic
showed the lowest number of failures to identify correct
models compared to previous methods. Most of these
failures (shown in Supplementary Table S1 available on
Dryad) were registered in pairwise model comparisons
of the Bayesian CAT + f81 models with different mixture
components. These experiments suggest that the new
test generalizes on unseen data far better than previous
methods.

Assessments of the Fit of Substitution Models to the
Observed Data

The observed alignment is characterized by composi-
tional heterogeneity among lineages, which is evidenced
by a majority (99.73%) of pairwise sequence comparisons
failing Bowker’s test at 0.05 P-value (performed using
the SymTest program [Ababneh et al. 2006]). The
percentages of such failed tests was also calculated
for replicates (one replicate per model). The replicates
representing Bayesian models were sampled from the
last chain cycles. The percentage of failed tests was
98.17% for the CAT-BP-based replicate. Other values

FIGURE 2. Discriminatory power of the tests compared shows that the proposed test has the highest levels of discrimination among models.
The graph shows, for each test, 66 LMS values calculated for 66 correct models in the comparison series A, sorted in ascending order. A LMS
value is the lowest model separation (MS) value among all values calculated for a correct model. The names of the tests are shown in the legend
to the right of the graph. Each colored sign (diamond, square, and triangle) in the graph corresponds to a LMS value, shown in the Y-axis,
obtained in each experiment aimed at calculating the value, shown in the Xaxis.
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employed here can function properly only if the rep-
licates in the unseen data set were sampled under the
model parameters used to generate the training data
for the correct model. Otherwise, the expectation of the
best theoretically possible fit of a correct model to each
of 100 replicates cannot be justified. Therefore all MS
values for comparisons involving Bayesian models were
calculated based on the posterior predictive replicates
sampled from the last chain cycles. In this case, the above
expectation should hold true and all the errors to identify
the correct models could be attributed to the drawbacks
of the methods of model fit assessment.

Assessment of Discriminatory Power in the Presence of
Missing Data

Indel-Seq-Gen v. 2.1.0 (Strope et al. 2009) was
employed to simulate two 42,141 pos. long replicates
under GTR + I + G model parameters estimated previ-
ously based on the observed alignment. The simulations
assumed the default indel model, maximum indel size of
10 positions, zero probability of insertions, 0.1 deletion
per substitution ratio for the first replicate and an ana-
logous value set to 0.2 for the second replicate. The first
and the second replicates (provided as Supplementary
Material available on Dryad) are henceforth referred as
to the “mask file 1” and “mask file 2,” respectively.

The mask file 1 had 503,603 gaps distributed over 66%
of alignment sites. The percentage of gaps per sequence
in the file ranged from 23% to 1.4% with an average value
of 14%. The mask file 2 had 906,686 gaps distributed
over 70% of alignment sites. A percentage of gaps per
sequence in the file ranged from 38% to 2.7% with an
average of 25%.

In the first series of the experiments with missing
data each character state in each taxon sequence in each
replicate encountered at the position where a gap was
inserted in the corresponding sequence in the mask file
1 was treated as a gap in calculation of the relevant test
statistics. The second series of these experiments was
conducted analogously using the mask file 2.

Alternative Statistics
Bollback’s test (2002) involves calculation of the

multinomial likelihood statistic for the observed align-
ment and each replicate generated under a model and
calculation of a right-tailed P-value, representing a
frequency of the test statistics calculated from replicates
which are larger or equal to the realized test statistic.
An absolute value of a Z-score (a number of standard
deviations the realized test statistic lies from the mean
over analogous values for replicates) was also tried here
as an alternative way to summarize the results of the
test. The corresponding test is henceforth referred to as
“multinomial-Z test.”

The tree- and model-based composition-fit test
(Foster 2004), henceforth referred to as to “TMCF
test,” utilizes a Chi-square statistic, X2 =∑[(observed−

expected)2/expected], which is individually calculated for
the observed alignment and for each replicate. The
observed values for the observed alignment and for
any replicate represent corresponding counts of taxon-
specific character states in these multiple sequence align-
ments. In experiments conducted here, each expected
value was calculated as a taxon-specific mean value
of counts of each character state in the distribution
of replicates. Such empirical estimation of the expected
values can be applied for all the models used in
the present study (personal communication from the
author). The significance of the test result is indicated
by a P-value representing the frequency of encountering
�2 values calculated from replicates, which are larger
or equal to the realized test statistic (Foster 2004). An
alternative Z-score-based statistic described above was
also employed here to summarize test’s results. The
corresponding test is henceforth referred to as “TMCF-Z
test”.

The test based on binning of site patterns into 15
categories with distinct combinations of the character
states (A, C, G, T, AC, AG, AT, CG, CT, GT, ACG, ACT,
AGT, CGT, and ACGT) proposed in Lewis et al. (2014) was
conducted forcefully setting the expression (0×log0) to 0
in calculation of Gelfand and Ghosh statistics, employed
to compare observed and predicted categories, consid-
ering the limit of the expression. The implementation
of the Gelfand and Ghosh method in Lewis et al.
does not address missing data explicitly. Following the
suggestion made by the authors, analyses with gapped
alignments were performed employing fractional dis-
tribution of each gapped site patterns to compatible
bins. The binning scheme used here (Supplementary
Appendix S4 available on Dryad) assumes that each
missing character in a gapped site pattern can represent
any of the four nucleotides with equal probability.

Recovery of the True Trees from Replicates
Fifty gap-less replicates (termed “initial replicates”)

were sampled from 3000th cycles of the 50 PhyloBayes
chains run based on the observed alignment under
50 distinct full topological constraints (provided as
Supplementary Material available on Dryad) and a
QMM + D model. Unconstrained tree searches based
on each replicate were run under QMM + D and CAT
+ GTR + D models in PhyloBayes and under GTR +
R, GTR + I + G, GTR + I, and JC models in IqTree.
Bayesian trees were built from the last 500 cycles of
the unconstrained chains run for 3000 cycles. Resulting
tree topologies were compared to the true trees. The
fit of QMM + D, CAT + GTR + D, GTR + R, GTR
+ I + G, GTR + I, and JC models to the above 50
initial replicates was assessed under the proposed test. In
these experiments, each model was represented by 500
gap-less replicates generated as described in the section
“Generation of replicates”, but using the “initial replicates”
as the observed data. Posterior predictive replicates were
sampled from the last 500 chain cycles of the chains.
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RESULTS

Comparison of the Discriminatory Power of the Tests
The discriminatory power of the tests was assessed

in the comparison of (i) gap-less replicates (comparison
series A), (ii) replicates with 503,603 alphabet-specific
characters per replicate masked by gaps (comparison
series B), and (iii) replicates with 906,686 alphabet-
specific characters per replicate masked by gaps (com-
parison series C). The discriminatory power of Boll-
back’s and multinomial-Z tests was assessed in the
comparison of gap-less alignments only. Each model was
taken as correct in turn, and was iteratively compared
to 65 misspecified candidate models to calculate 65
MS values in 65×100=6500 individual comparisons of
model pairs in terms of fit. These comparisons were
performed for each of 66 correct models and involved
calculation of 66×65=4290 MS values in 429,000 indi-
vidual comparisons of model fit in total for each test in
each comparison series.

Figure 2 provides an overview of discriminatory
power of different tests in the comparison series A. When
each correct model was iteratively compared to other 65
models, the lowest MS value was recorded for each test
(henceforth referred to as “LMS value”). The LMS values
in Figure 2 are sorted in ascending order for each test.
Each colored line with squares, diamonds, and triangles
represents 66 LMS values, obtained for 66 correct models
under each test (shown to the right of the graph). Because
a vast majority of LMS values (65 out of 66) registered in
comparison series A employing Bollback’s test were 0%,
these results are not shown in the figure.

Table 1 shows the (i) the lowest LMS values (out of 66
calculated for each test), (ii) the total numbers of failures

to identify correct models, and (iii) the total percentages
of failures to identify correct models registered in
comparison series A, B, and C for the tests compared.
The results indicate that the discriminatory power of
Bollback’s test approximates a random draw (evidenced
by 50.7% of failures to identify correct models). The
discriminatory power of the test assessed in a separate
experiment involving the Bayesian models was almost
the same (results not shown). Further experiments with
the test were not conducted.

In each comparison series, the proposed T statistic
showed the lowest number of failures to identify correct
models compared to previous methods. Most of these
failures (shown in Supplementary Table S1 available on
Dryad) were registered in pairwise model comparisons
of the Bayesian CAT + f81 models with different mixture
components. These experiments suggest that the new
test generalizes on unseen data far better than previous
methods.

Assessments of the Fit of Substitution Models to the
Observed Data

The observed alignment is characterized by composi-
tional heterogeneity among lineages, which is evidenced
by a majority (99.73%) of pairwise sequence comparisons
failing Bowker’s test at 0.05 P-value (performed using
the SymTest program [Ababneh et al. 2006]). The
percentages of such failed tests was also calculated
for replicates (one replicate per model). The replicates
representing Bayesian models were sampled from the
last chain cycles. The percentage of failed tests was
98.17% for the CAT-BP-based replicate. Other values

FIGURE 2. Discriminatory power of the tests compared shows that the proposed test has the highest levels of discrimination among models.
The graph shows, for each test, 66 LMS values calculated for 66 correct models in the comparison series A, sorted in ascending order. A LMS
value is the lowest model separation (MS) value among all values calculated for a correct model. The names of the tests are shown in the legend
to the right of the graph. Each colored sign (diamond, square, and triangle) in the graph corresponds to a LMS value, shown in the Y-axis,
obtained in each experiment aimed at calculating the value, shown in the Xaxis.
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TABLE 1. Indices of performance of different tests in comparison series A, B, and C

Tests compared 1a 2b 3c 4d 5e 6f 7g 8h 9i

Bolback (2002) 0 – – 217,458 – – 50.7 – –
Multinomial-Z 0 – – 23,250 – – 5.4 – –
TMCF 3 2 3 34,679 35,241 34,385 8.1 8.2 8
TMCF-Z test 2 2 3 33,969 33,821 34,175 7.9 7.9 8
Lewis et al. (2014) 53 46 47 507 1140 1417 0.12 0.27 0.34
Goremykin (2019) 68 65 65 644 772 860 0.15 0.18 0.2
T statistic 98 98 96 5 7 13 0.0012 0.0016 0.003

Note: The Bollback (2002) and multinomial-Z tests are not suitable for gapped alignments. Dashes indicate missing values for these tests in the
corresponding experiments.
aThe lowest MS value registered in comparison series A.
bThe lowest MS value registered in comparison series B.
cThe lowest MS value registered in comparison series C.
dThe number of failures to identify correct models in comparison series A.
eThe number of failures to identify correct models in comparison series B.
fThe number of failures to identify correct models in comparison series C.
gThe percentage of failures to identify correct models in comparison series A.
hThe percentage of failures to identify correct models in comparison series B.
iThe percentage of failures to identify correct models in comparison series C.

ranged from 1.89% to 10.89%. These observations suggest
that, with the likely exception of the CAT-BP model, the
models compared failed to model lineage-heterogeneous
substitutions processes, which are characteristic of the
observed data.

Comparison of the absolute fit of the models
(each represented by 500 replicates) to the observed
alignment was performed using various goodness of
fit indices (summarized in Table 2 and shown in
Supplementary Table S2 available on Dryad). The results
obtained with Bowker’s test-based methods are given
in Supplementary Appendix S1 available on Dryad.
All the replicates for Bayesian models used in these
experiments were sampled from different chain cycles,
following Bollback (2002). The test proposed here and
the TMCF-Z test demonstrated better fit of the CAT-BP
model. The TMCF test is not indicated in the presented
comparison because all the test values obtained were
zero. The TMCF-Z test yielded poor estimates of fit for
the majority of site-heterogeneous models (e.g., CAT +
GTR + G showed worse fit compared to a JC model). By
contrast, the proposed test revealed a better fit of all site-
heterogeneous models compared to site-homogeneous
models.

The multinomial-Z test identified a GTR + D model
as providing the best and almost perfect fit (|Z|=0.09) to
the observed data (Supplementary Table S2 available on
Dryad). The corresponding value for the similar GTR +
G model was 54 (Supplementary Table S2 available on
Dryad). These variations indicate poor reliability of the
test results. The percentage of the site patterns which are
shared with the observed alignment was calculated for
each replicate. The mean percentage values over each set
of replicates generated under each model ranged from
2.88% to 0.003% with an overall mean of 1.84%. Visual
inspection of the shared site patterns showed that they
were constant or near-constant. This observation reveals
that only a small proportion of the information in site
patterns is available for the test to assess model-data fit.

The above features of the test make it not well suited for
assessing overall model fit.

The statistics presented in Lewis et al. (2014) and
Goremykin (2019) (section “Estimation of Substitution
Model Fit”) are insensitive to the ratios of forward to
reverse substitutions in different lineages. The results
of model ranking obtained with these methods confirm
the expectation outlined in the Introduction section that
this drawback does not allow detection of the better
fit of lineage-heterogeneous models to heterogeneously
evolved data.

The results obtained under the proposed test when
posterior predictive replicates were sampled across
different cycles (i.e., under the conditions that allow
changes in model parameters, leading to broader distri-
butions of predicted s values) indicated a better overall
fit of the Bayesian models as compared to their ML
counterparts. In order to compare model performance
under the same conditions (assuming fixed model
parameters) for all the models compared, a separate
evaluation of fit for the Bayesian models under the
proposed test was conducted based on the replicates
sampled from the last chain cycles. Lower T values
(formula 8) for the Bayesian models were also obtained
in these experiments (Supplementary Table S3 available
on Dryad).

The rankings of models were compared with main-
stream model comparison under BIC (as calculated in
IqTree). To quantify the similarity in ranking, each ML
model was assigned a number according to its rank in
descending order of fit as estimated under BIC (shown in
Supplementary Table S2 available on Dryad). In the lists
of ML models ranked in terms of fit under other methods
model names were substituted by these numbers. The
strength of association between the resulting arrays
of numbers was assessed by the Spearman’s rank
correlation. The correlation coefficients calculated in
the comparisons of the array corresponding to BIC
with those obtained for the proposed test, Lewis et al.
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TABLE 2. The ranking of models in terms of absolute fit to the observed alignment obtained with different tests

Proposed testa Valuesb Multinomial-Zc TMCF-Zd Goremykin 2019e Lewis et al. 2014f

CAT-BP 3.778 GTR + D CAT-BP CAT + F81 + Gc + MBL CAT + F81 + G
QMM + D+MBL 9.049 CAT + GTR + D + MBL QMM + D + MBL CAT + F81 + D + MBL CAT + F81 + Gc + MBL
QMM + G 9.560 QMM + D + MBL CAT + GTR + G + MBL CAT + F81 + G + MBL CAT + F81 + G + MBL
QMM + D 9.749 QMM + G QMM + D CAT + F81 + Gc CAT + F81 + Gc
QMM + G+ MBL 9.839 F81 + G + MBL QMM + G CAT + F81 + D CAT + F81 + D + MBL
CAT + GTR + G + MBL 10.523 CAT + GTR + G + MBL GTR + R CAT + F81 + G CAT + F81 + D
CAT + GTR + D 11.322 QMM + D HKY + I + G CAT + F81 + Gc + TSm CAT + GTR + G
CAT + GTR + D + MBL 11.365 QMM + G + MBL TRN + I + G CAT + F81 + D + TSm CAT + GTR + Gc
CAT + GTR + Gc + MBL 11.879 CAT + GTR + Gc + MBL GTR + I + G CAT + F81 + G + TSm CAT + F81 + G + Ts
CAT + GTR + G 12.064 CAT + GTR + Gc TVM + I + G CAT + F81 + G + TS QMM + G + MBL
CAT + GTR + Gc 12.156 CAT + GTR + D F81 + I + G GTR + R CAT + GTR + Gc + MBL
CAT + F81 + D 13.303 CAT + F81 + Gc TRN + G GTR + I + G QMM + D
CAT + F81 + D + MBL 13.345 CAT + GTR + G F81 + G TIM + I + G CAT + F81 + D + TSm
CAT + F81 + Gc 13.483 CAT + F81 + D TIM + I + G TRN + I + G CAT + GTR + G + MBL
CAT + F81 + G 13.516 CAT + F81 + G + MBL TIM + I TVM + I + G CAT + F81 + Gc + TSm
CAT + F81 + G + MBL 13.519 CAT + F81 + D + MBL JC + G HKY + I + G CAT + GTR + D
CAT + F81 + Gc + MBL 13.555 CAT + F81 + G JC + I+G CAT + GTR + G + MBL QMM + D + MBL
CAT + F81 + G + TS 13.769 CAT + F81 + Gc + MBL GTR + G CAT + GTR + Gc CAT + F81 + G + TSm
CAT + F81 + D + TSm 13.826 CAT + F81 + D + TSm HKY + I CAT + GTR + G QMM + G
CAT + F81 + Gc + TSm 13.925 CAT + F81 + Gc + TSm TIM + G CAT + GTR + Gc + MBL CAT + GTR + D + MBL
CAT + F81 + G + TSm 14.228 CAT-BP GTR + I CAT + GTR + D CAT-BP
GTR + G + MBL 17.007 CAT + F81 + G + TSm GTR CAT-BP GTR + G
GTR + G 17.180 F81 + D + TSm HKY + G GTR + G GTR + R
GTR + Gc 17.330 CAT + F81 + G + TS TVM + G GTR + I GTR + Gc
GTR + Gc + MBL 17.349 F81 + D TVM + I TRN + I GTR + Gc + MBL
GTR + D 17.356 F81+ D + MBL TRN + I TIM + I GTR + D
GTR + R 17.373 GTR + D + MBL TRN TIM + G GTR + G +MBL
GTR + D + MBL 17.805 GTR + G + MBL TVM TRN + G GTR + D + MBL
GTR + I + G 18.699 TVM + I + G QMM + G + MBL CAT + GTR + D + MBL GTR + I + G
TVM + I + G 19.461 HKY + I + G F81 + I TVM + I TVM + I + G
TIM + I + G 19.968 TRN + I + G JC TVM + G F81 + G
TRN + I + G 20.093 GTR + I + G JC + I HKY + I TRN + I + G
HKY + I + G 20.774 TIM + I + G HKY F81 + I + G TIM + I + G
GTR + G 27.113 F81 + I + G TIM GTR + G HKY + I + G
TVM + G 28.475 JC + I + G F81 HKY + G F81 + G + TS
TIM + G 28.912 GTR + I F81 + D + MBL JC + I + G F81 + Gc + MBL
TRN + G 29.069 HKY + I F81 + Gc + TSm F81 + G F81 + Gc
F81 + G + TS 29.466 F81 + I F81 + Gc QMM + G + MBL F81 + D + MBL
HKY + G 30.046 JC + I F81 + G + TSm QMM + D + MBL F81 + D
F81 + G + MBL 30.872 TIM + I F81 + G QMM + D F81 + G + MBL
F81 + D + MBL 31.159 TRN + I GTR + G JC + G GTR + G
F81 + G + TSm 31.204 TVM + I F81 + G + TS QMM + G F81 + Gc + TSm
F81 + D + TSm 31.452 GTR + Gc + MBL F81 + D GTR + Gc TVM + G
F81 + Gc + MBL 31.700 GTR + Gc GTR + G + MBL GTR +Gc + MBL F81 + G + TSm
F81 + Gc + TSm 31.833 F81 + G + TS F81 + Gc + MBL GTR + D JC + G
F81 + D 31.964 F81 + G + TSm F81 + D + TSm F81 + G + TS TRN + G
JC + I + G 31.999 GTR + R GTR + Gc F81 + Gc + MBL F81 + G
F81 + G 32.166 F81 + Gc + TSm F81 + G + MBL F81 + Gc + TSm TIM + G
F81 + I + G 32.905 F81 + Gc + MBL GTR + D F81 + G + TSm HKY + G
F81 + Gc 32.943 F81 + Gc CAT + F81 + D + TSm F81 + D + TSm F81 + D + TSm
JC + G 35.646 F81 + G GTR + Gc + MBL F81 + D F81 + I + G
F81 + G 36.890 GTR + G CAT + GTR + D F81 + Gc JC + I + G
GTR + I 37.181 JC + G CAT + GTR + D + MBL F81 + G + MBL GTR + I
TIM + I 38.040 F81 + G CAT + F81 + Gc + TSm F81 + D + MBL TVM + I
TRN + I 38.412 TIM + G CAT + F81 +G + TSm F81 + G TIM + I
TVM + I 40.329 TRN + G CAT + F81 + G+ TS F81 + I TRN + I
HKY + I 40.775 TVM + G GTR + D + MBL JC + I HKY + I
JC + I 54.663 HKY + G CAT + F81 + D + MBL GTR F81 + I
F81 + I 55.819 GTR + G CAT + F81 + D TRN JC + I
GTR 64.557 GTR CAT + GTR + Gc + MBL TIM GTR
TIM 66.506 TRN CAT + GTR + G GTR + G + MBL TVM
TRN 67.047 TIM CAT + F81 + Gc TVM TIM
TVM 73.054 TVM CAT + GTR + Gc HKY TRN
HKY 75.140 HKY CAT + F81 + G GTR + D + MBL HKY
JC 82.453 F81 CAT + F81 + G + MBL JC F81
F81 87.798 JC CAT + F81 + Gc + MBL F81 JC

Note: Maximum likelihood models are shown in bold font.
aRanking of models under the proposed test.
bT values (Formula 8).
cRanking of models under Multinomial-Z test.
dRanking of models under TMCF-Z test.
eRanking of models under the test for substitution model fit proposed in Goremykin 2019.
fRanking of models under the binned test proposed in Lewis et al. (2014).
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TABLE 1. Indices of performance of different tests in comparison series A, B, and C

Tests compared 1a 2b 3c 4d 5e 6f 7g 8h 9i

Bolback (2002) 0 – – 217,458 – – 50.7 – –
Multinomial-Z 0 – – 23,250 – – 5.4 – –
TMCF 3 2 3 34,679 35,241 34,385 8.1 8.2 8
TMCF-Z test 2 2 3 33,969 33,821 34,175 7.9 7.9 8
Lewis et al. (2014) 53 46 47 507 1140 1417 0.12 0.27 0.34
Goremykin (2019) 68 65 65 644 772 860 0.15 0.18 0.2
T statistic 98 98 96 5 7 13 0.0012 0.0016 0.003

Note: The Bollback (2002) and multinomial-Z tests are not suitable for gapped alignments. Dashes indicate missing values for these tests in the
corresponding experiments.
aThe lowest MS value registered in comparison series A.
bThe lowest MS value registered in comparison series B.
cThe lowest MS value registered in comparison series C.
dThe number of failures to identify correct models in comparison series A.
eThe number of failures to identify correct models in comparison series B.
fThe number of failures to identify correct models in comparison series C.
gThe percentage of failures to identify correct models in comparison series A.
hThe percentage of failures to identify correct models in comparison series B.
iThe percentage of failures to identify correct models in comparison series C.

ranged from 1.89% to 10.89%. These observations suggest
that, with the likely exception of the CAT-BP model, the
models compared failed to model lineage-heterogeneous
substitutions processes, which are characteristic of the
observed data.

Comparison of the absolute fit of the models
(each represented by 500 replicates) to the observed
alignment was performed using various goodness of
fit indices (summarized in Table 2 and shown in
Supplementary Table S2 available on Dryad). The results
obtained with Bowker’s test-based methods are given
in Supplementary Appendix S1 available on Dryad.
All the replicates for Bayesian models used in these
experiments were sampled from different chain cycles,
following Bollback (2002). The test proposed here and
the TMCF-Z test demonstrated better fit of the CAT-BP
model. The TMCF test is not indicated in the presented
comparison because all the test values obtained were
zero. The TMCF-Z test yielded poor estimates of fit for
the majority of site-heterogeneous models (e.g., CAT +
GTR + G showed worse fit compared to a JC model). By
contrast, the proposed test revealed a better fit of all site-
heterogeneous models compared to site-homogeneous
models.

The multinomial-Z test identified a GTR + D model
as providing the best and almost perfect fit (|Z|=0.09) to
the observed data (Supplementary Table S2 available on
Dryad). The corresponding value for the similar GTR +
G model was 54 (Supplementary Table S2 available on
Dryad). These variations indicate poor reliability of the
test results. The percentage of the site patterns which are
shared with the observed alignment was calculated for
each replicate. The mean percentage values over each set
of replicates generated under each model ranged from
2.88% to 0.003% with an overall mean of 1.84%. Visual
inspection of the shared site patterns showed that they
were constant or near-constant. This observation reveals
that only a small proportion of the information in site
patterns is available for the test to assess model-data fit.

The above features of the test make it not well suited for
assessing overall model fit.

The statistics presented in Lewis et al. (2014) and
Goremykin (2019) (section “Estimation of Substitution
Model Fit”) are insensitive to the ratios of forward to
reverse substitutions in different lineages. The results
of model ranking obtained with these methods confirm
the expectation outlined in the Introduction section that
this drawback does not allow detection of the better
fit of lineage-heterogeneous models to heterogeneously
evolved data.

The results obtained under the proposed test when
posterior predictive replicates were sampled across
different cycles (i.e., under the conditions that allow
changes in model parameters, leading to broader distri-
butions of predicted s values) indicated a better overall
fit of the Bayesian models as compared to their ML
counterparts. In order to compare model performance
under the same conditions (assuming fixed model
parameters) for all the models compared, a separate
evaluation of fit for the Bayesian models under the
proposed test was conducted based on the replicates
sampled from the last chain cycles. Lower T values
(formula 8) for the Bayesian models were also obtained
in these experiments (Supplementary Table S3 available
on Dryad).

The rankings of models were compared with main-
stream model comparison under BIC (as calculated in
IqTree). To quantify the similarity in ranking, each ML
model was assigned a number according to its rank in
descending order of fit as estimated under BIC (shown in
Supplementary Table S2 available on Dryad). In the lists
of ML models ranked in terms of fit under other methods
model names were substituted by these numbers. The
strength of association between the resulting arrays
of numbers was assessed by the Spearman’s rank
correlation. The correlation coefficients calculated in
the comparisons of the array corresponding to BIC
with those obtained for the proposed test, Lewis et al.
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TABLE 2. The ranking of models in terms of absolute fit to the observed alignment obtained with different tests

Proposed testa Valuesb Multinomial-Zc TMCF-Zd Goremykin 2019e Lewis et al. 2014f

CAT-BP 3.778 GTR + D CAT-BP CAT + F81 + Gc + MBL CAT + F81 + G
QMM + D+MBL 9.049 CAT + GTR + D + MBL QMM + D + MBL CAT + F81 + D + MBL CAT + F81 + Gc + MBL
QMM + G 9.560 QMM + D + MBL CAT + GTR + G + MBL CAT + F81 + G + MBL CAT + F81 + G + MBL
QMM + D 9.749 QMM + G QMM + D CAT + F81 + Gc CAT + F81 + Gc
QMM + G+ MBL 9.839 F81 + G + MBL QMM + G CAT + F81 + D CAT + F81 + D + MBL
CAT + GTR + G + MBL 10.523 CAT + GTR + G + MBL GTR + R CAT + F81 + G CAT + F81 + D
CAT + GTR + D 11.322 QMM + D HKY + I + G CAT + F81 + Gc + TSm CAT + GTR + G
CAT + GTR + D + MBL 11.365 QMM + G + MBL TRN + I + G CAT + F81 + D + TSm CAT + GTR + Gc
CAT + GTR + Gc + MBL 11.879 CAT + GTR + Gc + MBL GTR + I + G CAT + F81 + G + TSm CAT + F81 + G + Ts
CAT + GTR + G 12.064 CAT + GTR + Gc TVM + I + G CAT + F81 + G + TS QMM + G + MBL
CAT + GTR + Gc 12.156 CAT + GTR + D F81 + I + G GTR + R CAT + GTR + Gc + MBL
CAT + F81 + D 13.303 CAT + F81 + Gc TRN + G GTR + I + G QMM + D
CAT + F81 + D + MBL 13.345 CAT + GTR + G F81 + G TIM + I + G CAT + F81 + D + TSm
CAT + F81 + Gc 13.483 CAT + F81 + D TIM + I + G TRN + I + G CAT + GTR + G + MBL
CAT + F81 + G 13.516 CAT + F81 + G + MBL TIM + I TVM + I + G CAT + F81 + Gc + TSm
CAT + F81 + G + MBL 13.519 CAT + F81 + D + MBL JC + G HKY + I + G CAT + GTR + D
CAT + F81 + Gc + MBL 13.555 CAT + F81 + G JC + I+G CAT + GTR + G + MBL QMM + D + MBL
CAT + F81 + G + TS 13.769 CAT + F81 + Gc + MBL GTR + G CAT + GTR + Gc CAT + F81 + G + TSm
CAT + F81 + D + TSm 13.826 CAT + F81 + D + TSm HKY + I CAT + GTR + G QMM + G
CAT + F81 + Gc + TSm 13.925 CAT + F81 + Gc + TSm TIM + G CAT + GTR + Gc + MBL CAT + GTR + D + MBL
CAT + F81 + G + TSm 14.228 CAT-BP GTR + I CAT + GTR + D CAT-BP
GTR + G + MBL 17.007 CAT + F81 + G + TSm GTR CAT-BP GTR + G
GTR + G 17.180 F81 + D + TSm HKY + G GTR + G GTR + R
GTR + Gc 17.330 CAT + F81 + G + TS TVM + G GTR + I GTR + Gc
GTR + Gc + MBL 17.349 F81 + D TVM + I TRN + I GTR + Gc + MBL
GTR + D 17.356 F81+ D + MBL TRN + I TIM + I GTR + D
GTR + R 17.373 GTR + D + MBL TRN TIM + G GTR + G +MBL
GTR + D + MBL 17.805 GTR + G + MBL TVM TRN + G GTR + D + MBL
GTR + I + G 18.699 TVM + I + G QMM + G + MBL CAT + GTR + D + MBL GTR + I + G
TVM + I + G 19.461 HKY + I + G F81 + I TVM + I TVM + I + G
TIM + I + G 19.968 TRN + I + G JC TVM + G F81 + G
TRN + I + G 20.093 GTR + I + G JC + I HKY + I TRN + I + G
HKY + I + G 20.774 TIM + I + G HKY F81 + I + G TIM + I + G
GTR + G 27.113 F81 + I + G TIM GTR + G HKY + I + G
TVM + G 28.475 JC + I + G F81 HKY + G F81 + G + TS
TIM + G 28.912 GTR + I F81 + D + MBL JC + I + G F81 + Gc + MBL
TRN + G 29.069 HKY + I F81 + Gc + TSm F81 + G F81 + Gc
F81 + G + TS 29.466 F81 + I F81 + Gc QMM + G + MBL F81 + D + MBL
HKY + G 30.046 JC + I F81 + G + TSm QMM + D + MBL F81 + D
F81 + G + MBL 30.872 TIM + I F81 + G QMM + D F81 + G + MBL
F81 + D + MBL 31.159 TRN + I GTR + G JC + G GTR + G
F81 + G + TSm 31.204 TVM + I F81 + G + TS QMM + G F81 + Gc + TSm
F81 + D + TSm 31.452 GTR + Gc + MBL F81 + D GTR + Gc TVM + G
F81 + Gc + MBL 31.700 GTR + Gc GTR + G + MBL GTR +Gc + MBL F81 + G + TSm
F81 + Gc + TSm 31.833 F81 + G + TS F81 + Gc + MBL GTR + D JC + G
F81 + D 31.964 F81 + G + TSm F81 + D + TSm F81 + G + TS TRN + G
JC + I + G 31.999 GTR + R GTR + Gc F81 + Gc + MBL F81 + G
F81 + G 32.166 F81 + Gc + TSm F81 + G + MBL F81 + Gc + TSm TIM + G
F81 + I + G 32.905 F81 + Gc + MBL GTR + D F81 + G + TSm HKY + G
F81 + Gc 32.943 F81 + Gc CAT + F81 + D + TSm F81 + D + TSm F81 + D + TSm
JC + G 35.646 F81 + G GTR + Gc + MBL F81 + D F81 + I + G
F81 + G 36.890 GTR + G CAT + GTR + D F81 + Gc JC + I + G
GTR + I 37.181 JC + G CAT + GTR + D + MBL F81 + G + MBL GTR + I
TIM + I 38.040 F81 + G CAT + F81 + Gc + TSm F81 + D + MBL TVM + I
TRN + I 38.412 TIM + G CAT + F81 +G + TSm F81 + G TIM + I
TVM + I 40.329 TRN + G CAT + F81 + G+ TS F81 + I TRN + I
HKY + I 40.775 TVM + G GTR + D + MBL JC + I HKY + I
JC + I 54.663 HKY + G CAT + F81 + D + MBL GTR F81 + I
F81 + I 55.819 GTR + G CAT + F81 + D TRN JC + I
GTR 64.557 GTR CAT + GTR + Gc + MBL TIM GTR
TIM 66.506 TRN CAT + GTR + G GTR + G + MBL TVM
TRN 67.047 TIM CAT + F81 + Gc TVM TIM
TVM 73.054 TVM CAT + GTR + Gc HKY TRN
HKY 75.140 HKY CAT + F81 + G GTR + D + MBL HKY
JC 82.453 F81 CAT + F81 + G + MBL JC F81
F81 87.798 JC CAT + F81 + Gc + MBL F81 JC

Note: Maximum likelihood models are shown in bold font.
aRanking of models under the proposed test.
bT values (Formula 8).
cRanking of models under Multinomial-Z test.
dRanking of models under TMCF-Z test.
eRanking of models under the test for substitution model fit proposed in Goremykin 2019.
fRanking of models under the binned test proposed in Lewis et al. (2014).
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FIGURE 3. Relationship between the T statistic and accuracy
of phylogeny reconstruction. The X-axis shows sums of normalized
Matching Pair distances between the true tree topologies, used as full
topological constraints to simulate replicates under a QMM + D model,
and the tree topologies recovered under different models from these
replicates. The Y-axis shows models ranked in ascending order of T
values (formula 8) calculated in comparisons of the models to the above
replicates.

test, Goremykin’s (2019), TMCF-Z, and Multinomial-Z
tests were 0.99704, 0.97537, 0.89507, 0.85566, and 0.64236,
respectively.

The Effect of Model-Data Fit as Assessed with T Statistic on
the Inference of Tree Topology

Models used to estimate trees from 50 replicates
simulated under distinct topological constraints and a
QMM + D model were ranked in descending order of fit
to the corresponding replicates under the proposed test.
The following model ranking was obtained in all exper-
iments: QMM + D, CAT + GTR + D, GTR + R, GTR + I
+ G, GTR + I, and JC (Supplementary Table S4 available
on Dryad). Similarity between each true tree topology
and each topology recovered under above models from
the corresponding replicate was quantified under the
normalized Matching Pair distance, which is reported
to be free from a number of drawbacks characteristic to
previously published metrics (Bogdanowicz and Giaro
2017) employing the Visual TreeCmp web applet (Goluch
et al. 2020). The distance value ranges from 0 to 1. For
the purpose of comparison, all the trees compared here
were rooted at Gloeobacter violaceus, a basally diverging
cyanobacterion. Distances for the unconstrained trees
recovered under each model (Supplementary Table S5
available on Dryad) were summed up. The results,
shown in Figure 3, suggest that phylogenetic inference
can be expected to become more reliable with decrease
in T values (formula 8) and highlight the usefulness of
absolute model fit assessment for phylogenetic practice.

The tree built under the best-fitting model identified
under the proposed test (CAT-BP) is presented in
Figure 4. In the tree, the branch supporting the clade
of plastids plus Gloeomargarita lithophora appears at a

basal position within the cyanobacterial radiation. The
topology of the tree lends support to the conclusions
presented by Ponce-Toledo et al. (2017), which were
based on analyses of protein and re-coded protein data.

The tree topology was compared to those recovered
under other models from the observed data as described
above. The distances between the topology recovered
under CAT-BP and the topologies recovered under the
models ranked second to eighth in terms of fit (shown
in the first column in the Table 2) under the proposed
test were about 0.2 (Fig. 5). Analogous distances to the
topologies recovered under the 14 worst-fitting models
were larger than 0.59.

The branch supporting the sister group relationship
between G. lithophora and plastids was present in the
seven trees built under the site-heterogeneous models
ranked second to eighth in terms of fit under the
proposed test (Table 2). By contrast, the branch was not
recovered under site-homogeneous models. These are
the worst-fitting models considered here.

All 29 ML models and 9 site-homogeneous Bayesian
models have recovered the branch supporting plastids
as sister to Trichodesmium erythraeum, a crown-group
nitrogen-fixing cyanobacterion. A BioNJ tree was built
with FasTMe v.2.1.6.2 (Lefort et al. 2015) under the default
options from the CFS compositional distances calculated
from the observed alignment using Homo v. 2.0 (Jermiin
et al. 2020a). The resulting tree also places plastids sister
to T. erythraeum. Given that the CFS distance cannot
inform about phylogenetic relationships (Jermiin et al.
2020a), this indicates that the above placement of plastids
in the phylogenetic trees is likely due to compositional
signal.

DISCUSSION

Theoretically, methods assessing how well simulated
data resemble the observed can be used to compare any
models regardless of their assumptions and dimensions
and to identify the best-fitting model. The area of
applicability of such methods is limited only by the
ability to generate simulated data. This is not an intrinsic
limitation of the methodology per se and with the
development of new simulation tools, it can be expected
to become less significant. As the number of sites in
molecular phylogenetic data sets continues to grow,
assessment of absolute model fit has the potential
to become a very useful procedural addition to the
phylogenetic protocol. With the increase in the number
of sites, site pattern probabilities under the true tree
and model approximate observed pattern frequencies
(Yang 2006). Therefore, it can be expected that a good
agreement between observed and predicted site pattern
distributions can become an increasingly important
indicator of correctness of phylogeny reconstruction.

Suggestions to include absolute model-data fit assess-
ments into a standard phylogenetic practice have
already been made (Jermiin et al. 2020b). However,
absolute model fit assessment is still rarely used in
phylogenetics and the need for a wider understanding
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FIGURE 4. The tree recovered under CAT-BP model. All branches with PP support < 1 are labeled with diamonds. The plastid clade is
highlighted in green. The branch leading to Trichodesmium erythraeum is highlighted in red.

of the advantages and disadvantages of the assessment
methods persists (Jermiin et al. 2020b). It is important
to note that similarity of the observed and predicted
data features compared by previous methods does not
indicate if a model predicts well the set of site patterns
characteristic of the observed alignment. For instance,
the observed alignment and other, extremely different
alignments can have the same multinomial likelihoods,
distributions of binned site pattern categories, marginal

base compositions of taxon sequences, median Bowker’s
test values, etc.

To address shortcomings of previously proposed
methods, the presented study proposes a novel T
statistic. It was designed in such a way as to yield the
best possible estimate of model fit only if a model is
able to correctly reproduce the set of site patterns in the
observed alignment. The statistic does not become zero-
inflated with increase in number of taxa, which makes
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FIGURE 3. Relationship between the T statistic and accuracy
of phylogeny reconstruction. The X-axis shows sums of normalized
Matching Pair distances between the true tree topologies, used as full
topological constraints to simulate replicates under a QMM + D model,
and the tree topologies recovered under different models from these
replicates. The Y-axis shows models ranked in ascending order of T
values (formula 8) calculated in comparisons of the models to the above
replicates.

test, Goremykin’s (2019), TMCF-Z, and Multinomial-Z
tests were 0.99704, 0.97537, 0.89507, 0.85566, and 0.64236,
respectively.

The Effect of Model-Data Fit as Assessed with T Statistic on
the Inference of Tree Topology

Models used to estimate trees from 50 replicates
simulated under distinct topological constraints and a
QMM + D model were ranked in descending order of fit
to the corresponding replicates under the proposed test.
The following model ranking was obtained in all exper-
iments: QMM + D, CAT + GTR + D, GTR + R, GTR + I
+ G, GTR + I, and JC (Supplementary Table S4 available
on Dryad). Similarity between each true tree topology
and each topology recovered under above models from
the corresponding replicate was quantified under the
normalized Matching Pair distance, which is reported
to be free from a number of drawbacks characteristic to
previously published metrics (Bogdanowicz and Giaro
2017) employing the Visual TreeCmp web applet (Goluch
et al. 2020). The distance value ranges from 0 to 1. For
the purpose of comparison, all the trees compared here
were rooted at Gloeobacter violaceus, a basally diverging
cyanobacterion. Distances for the unconstrained trees
recovered under each model (Supplementary Table S5
available on Dryad) were summed up. The results,
shown in Figure 3, suggest that phylogenetic inference
can be expected to become more reliable with decrease
in T values (formula 8) and highlight the usefulness of
absolute model fit assessment for phylogenetic practice.

The tree built under the best-fitting model identified
under the proposed test (CAT-BP) is presented in
Figure 4. In the tree, the branch supporting the clade
of plastids plus Gloeomargarita lithophora appears at a

basal position within the cyanobacterial radiation. The
topology of the tree lends support to the conclusions
presented by Ponce-Toledo et al. (2017), which were
based on analyses of protein and re-coded protein data.

The tree topology was compared to those recovered
under other models from the observed data as described
above. The distances between the topology recovered
under CAT-BP and the topologies recovered under the
models ranked second to eighth in terms of fit (shown
in the first column in the Table 2) under the proposed
test were about 0.2 (Fig. 5). Analogous distances to the
topologies recovered under the 14 worst-fitting models
were larger than 0.59.

The branch supporting the sister group relationship
between G. lithophora and plastids was present in the
seven trees built under the site-heterogeneous models
ranked second to eighth in terms of fit under the
proposed test (Table 2). By contrast, the branch was not
recovered under site-homogeneous models. These are
the worst-fitting models considered here.

All 29 ML models and 9 site-homogeneous Bayesian
models have recovered the branch supporting plastids
as sister to Trichodesmium erythraeum, a crown-group
nitrogen-fixing cyanobacterion. A BioNJ tree was built
with FasTMe v.2.1.6.2 (Lefort et al. 2015) under the default
options from the CFS compositional distances calculated
from the observed alignment using Homo v. 2.0 (Jermiin
et al. 2020a). The resulting tree also places plastids sister
to T. erythraeum. Given that the CFS distance cannot
inform about phylogenetic relationships (Jermiin et al.
2020a), this indicates that the above placement of plastids
in the phylogenetic trees is likely due to compositional
signal.

DISCUSSION

Theoretically, methods assessing how well simulated
data resemble the observed can be used to compare any
models regardless of their assumptions and dimensions
and to identify the best-fitting model. The area of
applicability of such methods is limited only by the
ability to generate simulated data. This is not an intrinsic
limitation of the methodology per se and with the
development of new simulation tools, it can be expected
to become less significant. As the number of sites in
molecular phylogenetic data sets continues to grow,
assessment of absolute model fit has the potential
to become a very useful procedural addition to the
phylogenetic protocol. With the increase in the number
of sites, site pattern probabilities under the true tree
and model approximate observed pattern frequencies
(Yang 2006). Therefore, it can be expected that a good
agreement between observed and predicted site pattern
distributions can become an increasingly important
indicator of correctness of phylogeny reconstruction.

Suggestions to include absolute model-data fit assess-
ments into a standard phylogenetic practice have
already been made (Jermiin et al. 2020b). However,
absolute model fit assessment is still rarely used in
phylogenetics and the need for a wider understanding
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FIGURE 4. The tree recovered under CAT-BP model. All branches with PP support < 1 are labeled with diamonds. The plastid clade is
highlighted in green. The branch leading to Trichodesmium erythraeum is highlighted in red.

of the advantages and disadvantages of the assessment
methods persists (Jermiin et al. 2020b). It is important
to note that similarity of the observed and predicted
data features compared by previous methods does not
indicate if a model predicts well the set of site patterns
characteristic of the observed alignment. For instance,
the observed alignment and other, extremely different
alignments can have the same multinomial likelihoods,
distributions of binned site pattern categories, marginal

base compositions of taxon sequences, median Bowker’s
test values, etc.

To address shortcomings of previously proposed
methods, the presented study proposes a novel T
statistic. It was designed in such a way as to yield the
best possible estimate of model fit only if a model is
able to correctly reproduce the set of site patterns in the
observed alignment. The statistic does not become zero-
inflated with increase in number of taxa, which makes
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FIGURE 5. Dissimilarity between the tree topologies recovered from
the observed alignment under different models. The figure presents
normalized Matching Pair distances between the tree topology
recovered under a CAT-BP model and phylogenetic tree topologies
recovered under other models shown in ascending order of T values
(formula 8) calculated in comparisons of these models to the observed
data.

it suitable for evaluation of model fit to the multitaxon
data sets.

The discriminatory power of the absolute fit indices
was assessed here on the basis of their ability to
generalize to unseen data. In designing this experiment,
it was considered that if a method excessively learns
the noise in the training data, it will negatively affect its
predictive power on unseen data. It was also considered
that poor predictive ability on unseen data can be
expected if a method fails to capture important training
data properties. The proposed T statistic showed by far
the best out-of-sample prediction ability (Fig. 2).

This is a desirable property of an index of overall
absolute fit. Such indices assess how far a model
deviates from the underlying process that generated
the observed data. The ability to identify the data
generation process in unseen replicates indicates that
the method captures important properties of the process
and, thus it estimates how much the model deviates
from this process. By contrast, previous statistics which
(intentionally or not) describe partial features of the data-
generating mechanism can visualize only how strongly
a model deviates from the correct description of these
features. A model can describe other important features
of the data-generating process well or not, but this
will not be registered by these statistics. This leads to
incorrect model ranking in terms of overall fit, and,
by consequence, errors in in identification of the data-
generating models.

The main reason to include assessment of model
fit in empirical phylogenetic studies is based on the
expectation that application of the best-fitting model
can help to avoid errors in phylogeny reconstruction.
The results obtained here allow a researcher to check
the validity of this expectation, which is essential for
the further development and use of the methods for
assessment of the model-data fit in phylogenetics. This

is all more important in light of the recent claim that
the expectation is not justified (Abadi et al. 2019). The
authors supported their recommendation to abandon
the search for the best model by referring to similarity
in the topologies of the trees built under the optimal
model identified employing jModelTest (Darriba et al.
2012) and other models, including a simple JC model.
The authors suggested to uniformly use a GTR + I + G
model in phylogenetic studies (Abadi et al. 2019).

It should be noted that the choice of models in
Abadi et al. was determined by availability of models
implemented in jModelTest. These models are all linked
to simplified assumptions of molecular evolution such
as across-site and across-tree homogeneity of substi-
tution process. More realistic models that relax above
assumptions are available. However, their effects on
tree inference were not considered in Abadi et al.
(2019) due to limitation of the model selection method
employed, which is suitable only for models of fixed
sizes. These effects can be quite noticeable. If the data
are generated by a complex substitution process, which
usually the case with biological alignments, use of a
simplified models (such as GTR + I + G) can lead to
errors in phylogeny reconstruction (Fig. 3). Considering
absolute model-data fit can help to improve reliability of
phylogenetic inference (Fig. 3).

Phylogenetic inference from biological sequence data
reported here also contradict the hypothesis that the
degree of model fit has no noticeable influence on the
results. Here, all ML models implemented in jModelTest
and ranging in complexity from JC to GTR + I + G
uniformly recovered the same phylogenetic artifact—
the branch supporting plastids as sister to T. erythraeum.
The branch was also recovered in the tree built from
compositional distances, which indicates a probability
of a systematic error in the placement of these lineages
in the corresponding phylogenetic trees. The error
was confirmed by application of a site- and lineage-
heterogeneous model (CAT-BP), which provided the best
fit to the observed data under the most powerful test
considered here. In the tree recovered under the CAT-
BP model (Fig. 4), plastids formed a sister group to
the deep-branching cyanobacterium G. lithophora. In this
tree, the branches leading to plastids and Trichodesmium
were divided by seven internal branches. The above
results indicate that the recommendation to abandon
time-consuming model evaluations (Abadi et al. 2019)
based on assumed similarity of the trees, which can be
obtained with various models can only lead to confusion
and unfounded expectations.

There is no reason to restrict assessment of fit to any
group of models. Model selection methods that cannot
explore available model space can only provide a limited
perspective on the efficiency of better-fitting models in
recovery of phylogenetic relationships. This drawback of
the current model selection methodology can promote
misconceptions. The methodological recommendations
put forward by Abadi et al. (2019) highlight this point
and illustrate the need to change the current approach
to model fit assessment. The presented analyses indicate
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that examination of the discrepancies between substitu-
tion models and data can be a useful procedural addition
to a standard phylogenetic protocol. The observations
reported here encourage that introduction of the pro-
posed T test into a broad phylogenetic practice can help
to avoid errors in phylogeny reconstruction.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.4f4qrfjc8.
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FIGURE 5. Dissimilarity between the tree topologies recovered from
the observed alignment under different models. The figure presents
normalized Matching Pair distances between the tree topology
recovered under a CAT-BP model and phylogenetic tree topologies
recovered under other models shown in ascending order of T values
(formula 8) calculated in comparisons of these models to the observed
data.

it suitable for evaluation of model fit to the multitaxon
data sets.

The discriminatory power of the absolute fit indices
was assessed here on the basis of their ability to
generalize to unseen data. In designing this experiment,
it was considered that if a method excessively learns
the noise in the training data, it will negatively affect its
predictive power on unseen data. It was also considered
that poor predictive ability on unseen data can be
expected if a method fails to capture important training
data properties. The proposed T statistic showed by far
the best out-of-sample prediction ability (Fig. 2).

This is a desirable property of an index of overall
absolute fit. Such indices assess how far a model
deviates from the underlying process that generated
the observed data. The ability to identify the data
generation process in unseen replicates indicates that
the method captures important properties of the process
and, thus it estimates how much the model deviates
from this process. By contrast, previous statistics which
(intentionally or not) describe partial features of the data-
generating mechanism can visualize only how strongly
a model deviates from the correct description of these
features. A model can describe other important features
of the data-generating process well or not, but this
will not be registered by these statistics. This leads to
incorrect model ranking in terms of overall fit, and,
by consequence, errors in in identification of the data-
generating models.

The main reason to include assessment of model
fit in empirical phylogenetic studies is based on the
expectation that application of the best-fitting model
can help to avoid errors in phylogeny reconstruction.
The results obtained here allow a researcher to check
the validity of this expectation, which is essential for
the further development and use of the methods for
assessment of the model-data fit in phylogenetics. This

is all more important in light of the recent claim that
the expectation is not justified (Abadi et al. 2019). The
authors supported their recommendation to abandon
the search for the best model by referring to similarity
in the topologies of the trees built under the optimal
model identified employing jModelTest (Darriba et al.
2012) and other models, including a simple JC model.
The authors suggested to uniformly use a GTR + I + G
model in phylogenetic studies (Abadi et al. 2019).

It should be noted that the choice of models in
Abadi et al. was determined by availability of models
implemented in jModelTest. These models are all linked
to simplified assumptions of molecular evolution such
as across-site and across-tree homogeneity of substi-
tution process. More realistic models that relax above
assumptions are available. However, their effects on
tree inference were not considered in Abadi et al.
(2019) due to limitation of the model selection method
employed, which is suitable only for models of fixed
sizes. These effects can be quite noticeable. If the data
are generated by a complex substitution process, which
usually the case with biological alignments, use of a
simplified models (such as GTR + I + G) can lead to
errors in phylogeny reconstruction (Fig. 3). Considering
absolute model-data fit can help to improve reliability of
phylogenetic inference (Fig. 3).

Phylogenetic inference from biological sequence data
reported here also contradict the hypothesis that the
degree of model fit has no noticeable influence on the
results. Here, all ML models implemented in jModelTest
and ranging in complexity from JC to GTR + I + G
uniformly recovered the same phylogenetic artifact—
the branch supporting plastids as sister to T. erythraeum.
The branch was also recovered in the tree built from
compositional distances, which indicates a probability
of a systematic error in the placement of these lineages
in the corresponding phylogenetic trees. The error
was confirmed by application of a site- and lineage-
heterogeneous model (CAT-BP), which provided the best
fit to the observed data under the most powerful test
considered here. In the tree recovered under the CAT-
BP model (Fig. 4), plastids formed a sister group to
the deep-branching cyanobacterium G. lithophora. In this
tree, the branches leading to plastids and Trichodesmium
were divided by seven internal branches. The above
results indicate that the recommendation to abandon
time-consuming model evaluations (Abadi et al. 2019)
based on assumed similarity of the trees, which can be
obtained with various models can only lead to confusion
and unfounded expectations.

There is no reason to restrict assessment of fit to any
group of models. Model selection methods that cannot
explore available model space can only provide a limited
perspective on the efficiency of better-fitting models in
recovery of phylogenetic relationships. This drawback of
the current model selection methodology can promote
misconceptions. The methodological recommendations
put forward by Abadi et al. (2019) highlight this point
and illustrate the need to change the current approach
to model fit assessment. The presented analyses indicate
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that examination of the discrepancies between substitu-
tion models and data can be a useful procedural addition
to a standard phylogenetic protocol. The observations
reported here encourage that introduction of the pro-
posed T test into a broad phylogenetic practice can help
to avoid errors in phylogeny reconstruction.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.4f4qrfjc8.
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