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Abstract: The Maillard reaction (MR) involves interactions between reducing sugars and amino acids
or proteins during heating, producing Maillard reaction products (MRPs) that influence food flavour,
aroma, and colour. Some MRPs exhibit antioxidant properties, prompting interest in their potential
as natural food preservatives. This study aimed to develop a method for detecting and identifying
antioxidant MRPs using high-pressure liquid chromatography (HPLC) coupled with high-resolution
mass spectrometry (HRMS). By improving chromatographic conditions, the separation of antioxidant
MRPs was optimised using known antioxidant MRPs as reference signals. This work also examined
the effects of pH, reaction time, and different sugar–amino acid combinations on the production
and composition of antioxidant MRPs. Results indicated that neutral to basic pH facilitated faster
reactions, with pH 7 selected as optimal. A library of 50 m/z signals for potential antioxidant MRPs
was created, and the best combinations of amino acids and sugars for their production were identified.
These findings pave the way for more precise analyses of antioxidant MRPs, with future research
focusing on isolating and characterising specific MRPs to understand their structures and mechanisms,
ultimately contributing to the development of functional foods with natural antioxidant properties.

Keywords: Maillard reaction; antioxidants; food preservatives; high-resolution mass spectrometry

1. Introduction

The Maillard reaction (MR) is a complex series of chemical reactions that occur between
reducing sugars and amino acids or proteins during heating. This reaction leads to the
formation of Maillard reaction products (MRPs) that are responsible for flavours, aromas,
and colour formation in food [1–3]. Furthermore, some MRPs have been reported to possess
antioxidant activity, offering potential health and food maintenance benefits [4–6]. Indeed,
MR can be considered a potential way to obtain natural antioxidant compounds from
widely common molecules, especially reducing sugars and amino acids, present in food
and food waste. In the food chain, antioxidant compounds represent an important class of
food preservatives because they prevent oxidative deterioration of food, thereby extending
its shelf life and maintaining quality.

Moreover, natural food preservatives have gained attention from the scientific com-
munity due to increasing concerns about the health impacts of synthetic additives, the rise
of the clean label trend, and the growing demand for sustainable food practices. As con-
sumers seek safer and more wholesome options, there is a need for alternative preservation
methods derived from natural sources [7].

Although the antioxidant activity developed with MR in both model systems and real
food has been widely studied using mainly antioxidant assays like the spectrophotometric
assay based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) change of colour, ferric reducing
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power assay (FRAP), or oxygen radical absorbance capacity assay (ORAC) [3,5,8], limited
information is available regarding their structure and composition. Moreover, although
the influence of important variables like pH, type of reducing sugar, amino compounds,
or time of reaction on MR has been extensively studied in previous literature [9], their
influence on the production and composition of antioxidant MRPs is not well understood.

Accordingly, the general aim of this work was to define the optimal MR conditions to
obtain, on an industrial scale, antioxidant MRPs from solutions of amino acids and sugars, with
the objective of producing natural food antioxidants. Initially, an analytical method was devel-
oped to enable the detection and, when possible, identification of potential antioxidant MRPs.
This was feasible using High-Pressure Liquid Chromatography (HPLC) coupled with High-
Resolution Mass Spectrometry (HRMS). After proper optimisation of the chromatographic
method, it allowed the separation and detection of a large selection of molecules produced
during MR. To develop and optimise the analytical method, HRMS signals corresponding to
10 known antioxidant MRPs (KAMs) were used as references [10,11].

Additionally, the influence of pH, time of reaction, and different sugars and amino acids
on the production, composition, and structure of KAMs was studied using the previously set
signals as an index to evaluate which conditions produced the maximum yield of KAMs.

Since MR is very complex and KAMs may not represent all the antioxidants produced
during the reaction, it became essential to increase the number of signals studied to eval-
uate the influence of variables (pH, time, and reagent composition) on the production
of additional potential antioxidant MRPs (PAMs). Therefore, through untargeted HPLC-
HRMS analyses of a mix of sugars and amino acids at pH 7, a pool of ions corresponding
to PAMs was selected and monitored during the reaction with a radical initiator, which
caused a decrease in the corresponding signals. Once the signals corresponding to PAMs
were selected, their production was monitored in MR samples with different pH, time of
reaction, and combinations of common sugars and amino acids in food, allowing for a more
comprehensive evaluation of each variable’s influence on the production of PAMs.

2. Results and Discussion
2.1. Optimisation of Chromatographic Method

The optimisation of the chromatographic method was done using as a reference the signals
corresponding to KAMs reported in Table 1. Some compounds were tentatively identified
based on m/z values and fragmentation profiles (MS2) compared with the literature, while for
others (indicated in Table 1 with *), the identification was confirmed with standard reagents.
For 1-methyl-2-pyrrole-carboxaldehyde and 2-acetyl-1-methylpyrrole, three different peaks
were detected. In both cases, all had the same m/z and fragmentation patterns, suggesting
the isomeric nature of the molecules responsible for the peaks. Since no standard compounds
were available, all three peaks were considered in the following integration of areas. This
choice was supported by the fact that in the presence of a radical initiator, all three peaks
decreased, indicating that the molecules represented by the peaks are potential antioxidants
and corroborating the hypothesis that these molecules are isomers.

Table 1. Antioxidant compounds produced by MR and reported in the literature, with exact mass,
theoretical and measured m/z, ionisation, and literature reference. * Compounds verified with
analytical standards. DDMP: dihydro-dihydroxymethylpyrone.

Compound Theoretical
m/z

Measured
m/z ∆ppm Retention

Time Ionisation Reference

Maltol * 127.03897 127.03859 0.00038 13.27 [M + H]+ [10]
Maltol isomer 127.03897 127.03905 0.00008 10.98 [M + H]+ [10]

2-acetylpyrrole * 110.06004 110.06005 0.00001 18.79 [M + H]+ [10]
Sotolon * 129.05462 129.04928 0.00534 14.56 [M + H]+ [10]

Norfuraneol * 115.03897 115.03938 0.00041 9.25 [M + H]+ [10]
Furaneol 129.05462 129.06004 0.00542 12.62 [M + H]+ [10]
DDMP 145.04954 145.05029 0.00075 10.50 [M + H]+ [10]

2-pyrrolecarboxaldehyde 96.04439 96.04450 0.00011 4.00 [M + H]+ [11]
1-methyl-2-pyrrole

carboxaldehyde 110.06004 110.06099 0.00095 6.00 [M + H]+ [11]

2-acetyl-1-methylpyrrole 124.07569 124.07662 0.00093 9.30 [M + H]+ [11]
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In Figure 1, the extracted ion chromatograms (EIC) referring to the m/z of the best
separation obtained for the KAMs are reported. The same figures obtained with different
columns are available in the supporting information (Figure S1).
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identifications with standard compounds.

The final conditions selected after the optimisation of the method and applied in all the
subsequent experiments are reported here: the Dionex IonPac NS2 column (4 × 150 mm,
5 µm particle size Thermo Fisher Scientific, USA) was used for the analysis. The column
temperature was kept constant at 30 ◦C. The mobile phases were Milli-Q water with 0.5%
formic acid (v/v) (A) and acetonitrile with 0.5% formic acid (v/v) (B). Before injection, the
samples were diluted 1:10 with Milli-Q water, and the injection volume was set to 2 µL.
The analysis was conducted at a constant flow rate of 0.35 mL·min−1 using the following
gradient for optimal chromatographic separation: from 0 to 1 min, 5% of eluent B; from
1 to 10 min, 15% eluent B; from 10 to 15 min, 35% eluent B; from 15 to 21 min, 5% eluent B.

2.2. Influence of Initial pH on Antioxidant Production in MR

The influence of pH at different reaction times was evaluated. In literature it is
reported that basic pH favours the MR, while at acidic pH the reaction is slowed down [12].
The production of 10 KAMs and 5-hydroxymethylfurfural (HMF) was monitored every
20 min in amino acid and reducing sugar solutions at pH 6, 7, and 8 using HRMS. HMF
was evaluated because it is a known MRP considered to be a health hazard [13], and its
production is considered negative. The samples were compared by analysing the areas
of the integrated peaks corresponding to the analytes of interest. As reported in Figure 2,
at pH 6, the lowest production of antioxidant compounds but the highest production of
HMF was detected. This result agrees with previous literature where HMF production is
reported to be induced by acidic pH [14]. The low development of antioxidant compounds
at pH 6 increased at pH 7 and 8. In particular, most of the analysed antioxidant compounds
show similar kinetics of production in the first part of the reaction (40 min) at pH 7 and 8.
This result suggests that their mechanism of formation is favoured by neutral and basic
pH. Although, some of them, like DDMP (dihydro-dihydroxymethylpyrone), norfuraneol,
and maltol isomer, seem to decrease in concentration after the first part of the reaction,
particularly at basic pH. This could indicate that these compounds are MR intermediates
and further react and degrade, especially at basic pH, where the reaction is favoured. The
development of some other KAMs, like sotolon and maltol, seems to be more induced by
neutral pH than basic.
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Figure 2. Kinetics of production of 10 KAMs at pH 6, 7, and 8. The sum of the signals of the known
antioxidant MRPs (KAMs) and the kinetics of production of 5-hydroxymethylfurfural (HMF) are also
reported. Measurements were performed in duplicate with a relative standard deviation (RSD) lower
than 10%. (*) indicates the confirmed identifications with standard compounds.

2.3. Influence of Amino Acids and Sugars on Antioxidant Production in MR

The influence of amino acids and sugars on the production of KAMs was evaluated keeping
the pH constant at 7 and testing all the 20 amino acids and 6 sugars in binary combinations. All
the samples obtained were analysed using HPLC-HRMS, and the peaks corresponding to the
m/z signals of the KAMs and HMF were integrated to obtain areas for comparison.

Figure 3 displays the normalised values for each antioxidant compound, where the
highest recorded area for each compound is set to 100, and the areas for all other samples are
normalised relative to this maximum. The values are color-coded based on their numerical
value. The experiments were performed in duplicate, and the relative standard deviation
(RSD) measured was lower than 20%.

Here are some observations on the analysis of this heatmap. Firstly, it is evident that
HMF is mainly produced in the presence of acidic reagents such as glutamic and aspartic
acid. This result agrees with previous findings [12]. Secondly, the combination of amino
acids and sugars that allowed the highest total production of antioxidants was threonine
combined with disaccharides (maltose and lactose). In addition, maltol, as well as the
maltol isomer, are mainly produced with disaccharides, while their production is low
(maltol isomer) or absent (maltol) with monosaccharides. This result confirms the findings
available in the published literature [15].

Moreover, DDMP was produced with all combinations of amino acids and sugars,
except for arabinose, the only pentose sugar tested. This suggests that DDMP is an an-
tioxidant MRP produced only with hexose monosaccharides and disaccharides. On the
contrary, norfuraneol seems to be mainly produced in the presence of arabinose. Furaneol
originates in the presence of tryptophan, while the production of 2-acetyl-1-methylpyrrole
is high in MR with threonine and asparagine but low with cysteine, aspartic acid, proline,
and tyrosine. 2-pyrrole carboxaldehyde and 1-methyl-2-pyrrole are produced in all com-
binations, but not with proline (both) and with tyrosine and valine (1-methyl-2-pyrrole).
Sotolon shows a peak of production with lysine as the amino acid, even if it is produced
with almost all other amino acids. Finally, 2-acetylpyrrole is highly produced in the reaction
with methionine but is almost not present with all other amino acids.
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In Figure 4, the Principal Component Analyses (PCA) of the dataset obtained from the
analysis of 120 binary combinations of amino acids and sugars, composed of 11 variables
(areas of HRMS peaks corresponding to KAMs and HMF) and 120 observations, is shown.
The main differentiation that was obtained regarding the sugar composition, where on the
left, samples with monosaccharides (arabinose, fructose, galactose, glucose) are separated
from samples containing disaccharides (maltose and lactose), on the right. Moreover, it
is possible to understand the variables responsible for this separation, in particular it is
evident that maltol, maltol isomer, DDMP, and 2-acetylpyrrole are mainly present in MR
samples with disaccharides as reagents, while all the other molecules are characteristic of
MR between amino acids andmonosaccharides.
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2.4. Consumption of Reagents in MR

Sugars and amino acids consumption in a mix sample containing all 20 amino acids
and sugars was evaluated to have a more complete understanding of which are the most
reactive compounds, and which are less. This information is fundamental to develop
further applications of MR as a source of antioxidant compounds.

In Figure 5, the percentage of consumption of amino acids and reducing sugars before
0 min, after 60 min, and 120 min of MR is reported. As evidenced, the most consumed,
and therefore reactive amino acids are arginine, asparagine, lysine, and glutamine. This
result was expected since it is known that the amino groups of amino acids are the reactive
moieties in MR [16], and the most consumed amino acids present amino groups in the side
chain. The most consumed sugars, on the other hand, are arabinose, maltose, and lactose.
Interesting result is that the disaccharides (lactose and maltose) were consumed more than
monosaccharides like glucose and galactose. This aspect can be explained by the thermal
degradation of disaccharides at 140 ◦C, which produces glucose and galactose as products
(monosaccharides present in maltose and lactose), thereby increasing their concentration
even as they are consumed by MR.
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Figure 5. Percentage of consumption of amino acids (a) and reducing sugars (b) at pH 7 before the
MR (0 min) and after 60 and 120 min of MR. Measurements were performed in duplicates, and RSD
was lower than 5%.

2.5. Untargeted Approach to Create a Library of Potential Antioxidant MRPs

To have a more exhaustive idea of the real potential antioxidant molecules produced
through MR, an untargeted approach using HRMS was used. The MR sample obtained
from a mix of 20 amino acids and sugars was incubated with a radical initiator (AAPH) to
detect, using HRMS, the m/z that were produced by MR that also decreased after incubation
with the radical initiator. In fact, if a signal decreases in the presence of the radical initiator,
it means that the corresponding molecule was oxidised by the radical initiator, suggesting
its potential antioxidant properties. Compound Discoverer software was used to analyse
the data corresponding to the amino acid and sugar solution before the heating process,
after the heating process (and MR), and after 1 and 2 h of incubation with the radical
initiator. Figure 6 shows the trend of peak areas during the experiment corresponding to
m/z of interest. Peaks were selected when their signals were low before MR, increased after
MR, and then decreased after incubation with the radical initiator.

During the creation of the library, the 10 KAMs also resulted showing the same box-
plot reported in Figure 6, as expected, and in Table 2 the KAMs are reported, ordered
based on the percentage of degradation in the presence of the radical initiator: the higher
the percentage of degradation, the quicker the oxidation reaction, and the stronger the
antioxidant. Moreover, the best combination of amino acids and sugars to obtain each spe-
cific compound is reported, highlighting the possible condition to be followed to produce
specific antioxidant MRPs.
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Table 2. KAMs, ordered based on the percentage of degradation after 1 h of incubation with the
radical initiator. m/z, retention time, and the best amino acid × sugar combination to obtain each
specific compound are also reported.

Compound % of Degradation after 1 h
with Radical Initiator Theoretical m/z Retention

Time (min) Best AA × Sugar

2-pyrrolecarboxaldehyde 88% 96.0444 4 Glutamine × arabinose
Norfuraneol 70% 115.039 9.25 Aspartic acid × arabinose

Furaneol 69% 129.055 12.62 Lysine × galactose
1-methyl-2-pyrrole

carboxaldehyde 60% 110.06 6 Threonine × maltose

DDMP 42% 145.05 10.5 Threonine × maltose
2-acetyl-1-methylpyrrole 38% 124.076 9.3 Threonine × arabinose

Maltol 35% 127.039 13.27 Lysine × maltose
Maltol isomer 31% 127.039 10.98 Tryptophan × arabinose

2-acetylpyrrole 29% 110.06 18.79 Methionine × fructose
Sotolon 13% 129.055 14.56 Lysine × galactose

Using this approach, the first library obtained, based only on m/z signals and not MS2
fragmentation patterns, included 170 m/z signals of potential antioxidants that underwent
further selection based on the MS2 fragmentation patterns, obtaining 77 interesting signals.
At last, the intensity of signals (areas that were lower than 106 counts * min after MR were
excluded) was used to create the final library, which includes 50 m/z signals and is available
in the supporting information (Table S1).

Study of Variable Influence on Antioxidant MRPs Production Using the Library Created

The HRMS spectra obtained from previous experiments (Sections 2.2 and 2.3) were re-
processed with Compound Discoverer software specifically looking for the signals included
in the library created.

In Figure 7, the total areas of the HRMS peaks corresponding to the 50 m/z signals
present in the library are reported for each sample at different pHs. It is interesting to
note that at pH 7, the highest amount of potential antioxidants is produced, as previously
evidenced with the KAMs, but an increase in signals is also observed at pH 6. This result
may mean that, even if at pH 6 the KAMs do not develop, probably some other potential
antioxidants are produced.
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The spectra corresponding to the binary combinations of amino acids and sugars were
also reprocessed, leading to Figure 8a, where S values are shown, divided into ranges
(range 1: from 0 to 25 percentile; range 2: from 25 to 50 percentile; range 3: from 50 to
75 percentile; range 4: from 75 to 100 percentile). The table containing all the S values
calculated for each sample is available in the Supplementary Material (Table S2). They were
obtained by summing the areas of HRMS peaks corresponding to the 50 m/z signals present
in the library for each combination of amino acids and sugars, each corrected as described
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by Equation (1). This approach allows the analysis of the combinations of amino acids
and sugars, not only considering which pair produces the highest amount of antioxidant
molecules but also taking into consideration the tendency of degradation of these PAMs in
the presence of a radical initiator. The formula used to process the data is reported below:

S = ∑
(

An
%Dn

)
(1)

where S is the final value corresponding to each sample plotted in the graph, An is the area
of each peak recorded with HRMS, and %Dn is the percentage of degradation of the peak,
calculated as the difference of peak areas * 100 after 1 h of incubation with a radical initiator.
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The PAMs present in samples belonging to range I are the ones degrading faster with
a radical initiator, compared to the others. PAMs belonging to range IV, instead, are the
ones degrading slower, and are, therefore, more stable in presence of a radical initiator.

As evidenced in Figure 8b, some interesting aspects are revealed. The first one regards
the presence of PAMs derived from proline in range I. This means that most of the PAMs
produced by proline are very reactive in scavenging radicals and, therefore, quickly de-
graded. This is interesting because, if compared to the sum of the intensity of the signals
produced, not weighted for their % of degradation (available in Figure S2), proline samples
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are in the average of production, but not the highest producer of PAMs. On the contrary,
tryptophane and arginine PAMs belong mostly to range IV, indicating that they are not so
reactive with the radical initiator.

Unfortunately, no other patterns regarding the presence of amino acids or sugars can
be drawn based on the production and reactivity of PAMs.

In Table 3, the PAMs included in the library are reported, ordered based on the %
of their degradation after 1 h in presence of the radical initiator AAPH. Moreover, the
best combination of amino acid and sugar to obtain each compound, based on the data
previously presented, is reported. These results give an idea of the optimal conditions to be
maintained if the production of one of the specific PAMs is the aim.

Table 3. PAMs, ordered based on the percentage of degradation after 1 h of incubation with radical
initiator. m/z, retention time, and the best amino acid × sugar combination to obtain each specific
compound are also reported.

Name % Degradation after
1 h with AAPH m/z RT [min] Best AA × Sugar

Unknown 1 96.2 230.1140 8.41 Arginine × fructose
Unknown 2 93.0 199.1077 10.36 Asparagine × fructose
Unknown 3 92.6 154.0497 4.39 Glycine × arabinose
Unknown 4 91.1 124.0757 10.12 Asparagine × glucose
Unknown 5 91.0 164.0818 5.07 Arginine × arabinose
Unknown 6 86.8 170.0811 4.59 Leucine × galactose
Unknown 7 86.0 135.0552 9.21 Histidine × maltose
Unknown 8 83.3 230.1140 6.76 Arginine × fructose
Unknown 9 82.5 212.1028 3.10 Histidine × glucose

Unknown 10 79.7 230.1140 4.13 Arginine × fructose
Unknown 11 79.6 127.0390 6.97 Tryptophan × arabinose
Unknown 12 79.2 151.123 6.65 Leucine × lactose
Unknown 13 77.1 124.0757 8.39 Threonine × fructose
Unknown 14 74.8 140.0706 4.61 Threonine × arabinose
Unknown 15 74.5 119.0350 4.73 Valine × galactose
Unknown 16 73.8 127.0389 3.93 Aspartic acid × lactose
Unknown 17 72.1 154.0498 4.72 Glycine × arabinose
Unknown 18 69.1 212.1034 8.03 Arginine × fructose
Unknown 19 65.0 184.1085 4.72 Arginine × fructose
Unknown 20 64.5 123.0914 3.48 Glycine × fructose
Unknown 21 63.7 135.0553 8.77 Histidine × maltose
Unknown 22 59.7 110.0600 5.15 threonine × maltose
Unknown 23 58.1 166.0861 10.08 Phenylalanine × lactose
Unknown 24 56.2 124.0756 10.56 Asparagine × arabinose
Unknown 25 53.8 127.0389 10.12 Tryptophan × maltose
Unknown 26 53.6 123.0915 3.71 Glycine × fructose
Unknown 27 53.1 110.0600 5.61 Threonine × arabinose
Unknown 28 51.7 230.1141 5.53 Arginine × galactose
Unknown 29 51.6 196.0224 7.01 Glutamine × lactose
Unknown 30 49.9 110.0600 6.38 Leucine × galactose
Unknown 31 47.3 164.0817 6.20 Histidine × fructose
Unknown 32 47.1 143.0349 3.78 Glutamic acid × lactose
Unknown 33 42.0 144.0807 15.71 Tryptophan × galactose
Unknown 34 39.5 124.0757 8.06 Threonine × arabinose
Unknown 35 39.3 124.0756 4.34 Alanine × maltose
Unknown 36 38.2 210.1127 8.29 Threonine × maltose
Unknown 37 37.6 124.0756 15.82 Alanine × fructose
Unknown 38 35.6 169.0972 3.27 Serine × galactose
Unknown 39 34.4 127.039 3.76 Serine × lactose
Unknown 40 31.3 124.0757 7.49 Glutamine × fructose
Unknown 41 30.0 212.1035 6.82 Arginine × fructose
Unknown 42 28.3 217.0971 17.69 Tryptophan × arabinose
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Table 3. Cont.

Name % Degradation after
1 h with AAPH m/z RT [min] Best AA × Sugar

Unknown 43 25.5 144.0807 13.62 Tryptophan × galactose
Unknown 44 25.0 144.0807 17.69 Tryptophan × arabinose
Unknown 45 22.0 124.0757 8.63 Asparagine × arabinose
Unknown 46 21.0 143.0350 6.95 Tryptophan × arabinose
Unknown 47 20.1 230.1139 8.12 Arginine × fructose
Unknown 48 14.9 95.06033 3.11 Glycine × galactose
Unknown 49 12.2 151.1229 6.06 Valine × galactose
Unknown 50 10.0 143.035 5.25 Methionine × fructose

3. Materials and Methods
3.1. Analytical Methods
3.1.1. HPLC-HRMS Analyses

The samples were analysed using a Dionex UltiMate3000 HPLC system (Thermo Fisher
Scientific, Waltham, MA, USA) equipped with two binary pumps and an autosampler with
a temperature control system. The detector used was a Q-Exactive Orbitrap high-resolution
mass spectrometer (HRMS, Thermo Fisher Scientific, Waltham, MA, USA). The heated
electrospray source (HESI) was operated in positive and negative ionisation mode with
a capillary voltage of 2.50 kV and a capillary temperature of 330 ◦C. The full MS scan
was acquired from 50 to 750 m/z with a resolution of 70.000 full width at half maximum
(FWHM) at 200 m/z, an automatic gain control (AGC) target of 3 × 106 and a maximum
injection time of 100 ms. Data-dependent MS analyses (MS2) were conducted to obtain
the fragmentation patterns of targeted and untargeted species. In this case, the AGC
target was set at 1 × 105, the maximum injection time was 50 ms, and the resolution
was 17,500 FWHM with an isolation window of 4.0 m/z. The spectrometer was calibrated
prior to analyses with Pierce LTQ Velos ESI-positive and negative calibration solution
(Thermo Fisher Scientific, Waltham, MA, USA). The data were collected and analysed
using Chromeleon 7.3, Compound Discoverer 3.3.3.200, and Mass Frontier 8.3 software
(ThermoFisher Scientific, Waltham, MA, USA).

3.1.2. Amino Acids Quantification

Amino acids were quantified using HPLC coupled with a fluorescence detector (FLD)
after derivatisation with ortho-phthalaldehyde (OPA) as described by [17]. Briefly, the
measurements were performed using an HPLC 1260 Infinity system (Agilent Technologies,
Santa Clara, CA, USA) equipped with a fluorescence detector (Ex = 336 nm, Em = 445 nm).
Separation was carried out with sodium acetate 0.05 M (pH 6.9; eluent A) and methanol (elu-
ent B) using a Chromolith Performance RP-18e 100 × 4.6 mm column (Merck, Darmstadt,
Germany) with a Guard Cartridge Chromolith RP-18e 10 × 4.6 mm (Merck, Darmstadt,
Germany) at 40 ◦C. The flow rate was set at 2 mL·min−1. The analytical gradient for eluent
B was as follows: 0% from 0–1 min, 20% from 1–11 min, 40% from 11–16 min, 100% from
16–25 min, 10% from 25–27 min, 0% from 27–30 min. The samples (10 µL), after proper
dilution (1:50) with Milli-Q water, adjustment of pH to 7, and filtration with 0.2 nm polyte-
trafluoroethylene (PTFE) filters, were kept at 10 ◦C by the autosampler. The derivatisation
was automatically carried out by the instrumentation, with the introduction of 10 µL of
sample into the loop, addition of 10 µL derivatising solution, mixing for 1 min, and injection.
The derivatising mix was 4.5 g·L−1 of OPA (Sigma-Aldrich, St. Louis, MO, USA) in sodium
tetraborate 0.1 M, adjusted to pH 10.5, 10% methanol, and 2% 2-mercaptoethanol. Agilent
OpenLab CDS 3.1 software was used for data acquisition and processing. Quantification
was obtained with external amino acids standard calibration curves and internal standard
(β-glutamic acid) as a control.
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3.1.3. Sugars Quantification

The chromatographic separation and quantification of sugars were performed accord-
ing to the method developed by [18]. The system used was an ICS 5000 ion chromatographer
(Dionex, Thermo Fisher Scientific, Waltham, MA, USA) equipped with an eluent generator,
an autosampler, a quaternary gradient pump, a column oven, and a pulsed amperometric
detector (PAD) consisting of a gold working electrode and a palladium reference electrode.
Separation of sugars (both monosaccharides and disaccharides) was performed by injecting
5 µL of sample onto a CarboPac PA200 3 × 250 mm analytical column, preceded by a
CarboPac PA200 3 × 50 mm guard column (Dionex, Thermo Fisher Scientific, Waltham,
MA, USA). The column stationary phase consisted of a hydrophobic polymeric pellicular
resin bonded to quaternary ammonium as an anion-exchange resin functional group. Both
columns were operated at a constant temperature of 30 ◦C. The flow rate was adjusted
to 0.4 mL·min−1 using an eluent generator that allowed the automatic preparation of
potassium hydroxide (KOH) eluent by controlling the electrical current applied for the
electrolysis of deionised water. Isocratic KOH elution at 0.1 mM was carried out from
0 to 18 min, followed by gradient elution from 0.1 to 100 mM from 18 to 21.5 min, and held
until 27.5 min. The KOH concentration was then reduced to 0.1 mM, allowing the column
to equilibrate for 5 min. Deionised water was continuously purged with helium to avoid
the formation of carbonates. Sugar detection was performed using PAD with the working
pulse potential quaternary curve (Table 4) with respect to a palladium reference electrode.

Table 4. PAD potentials and duration with Ag/AgCl electrode as reference.

Time (s) Potential (V vs. Ag/AgCl) Integration

0.00 1.35 Off
0.20 1.35 On
0.40 1.35 Off
0.41 −1.15 Off
0.42 −1.15 Off
0.43 1.45 Off
0.44 1.15 Off
0.50 1.15 Off

3.2. Sample Preparation and Maillard Reaction

In all the MR experiments, 5 mL of each sample were placed in a 10 mL Pyrex flask
sealed with a PTFE hermetic plug and heated in an oven set at 140 ◦C. This temperature
was chosen because it is sufficient to guarantee the active form of the sugars, with an open
chain, allowing a faster reaction [19]. The samples were then cooled in an ice bath and kept
at −20 ◦C prior to analyses for a maximum of one week.

3.2.1. Optimisation of Chromatographic Method

The optimisation of the chromatographic method to analyse the antioxidant com-
pounds produced by MR consisted mainly of testing different HPLC columns using as
reference the HRMS signals of 10 known antioxidant molecules produced by MR on a mix
of amino acids and sugars. The columns and eluents were selected based on the chemical
characteristics of the known antioxidant molecules.

The columns tested were: Acclaim Trinity P1 3 µm 2.1 × 100 mm (Thermo Fisher
Scientific, USA); Raptor Biphenyl 2.7 µm 3 × 150 mm (Restek Corporation, Bellefonte, PA,
USA); Ionpac NS2 5 µm 4 × 150 mm (Thermo Fisher Scientific, Waltham, MA, USA); Eclipse
XDB-C8 µm 4.6 × 150 mm (Agilent Technologies, Santa Clara, CA, USA); and Poroshell
120 HILIC-Z 2.7 µm 2.1 × 100 mm (Agilent Technologies, Santa Clara, CA, USA).

The samples analysed were obtained by heating for 90 min at 140 ◦C a water solution
containing equimolar concentrations of 20 amino acids (1.25 mM), equimolar concentrations
of 6 sugars (4 mM), and phosphate salts to obtain a phosphate buffer solution (PBS) 0.1 M,
pH 7. The concentrations of reagents were chosen to achieve a comparable amount of
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reactive amino groups from amino acids and reactive hydroxyl groups from sugars. Since
acid compounds are produced during the MR, the pH level usually decreases [12]; therefore,
a buffer solution was used to keep the pH as constant as possible.

3.2.2. Influence of Initial pH on Antioxidants Production in MR

Once the chromatographic method to detect and separate the KAMs was optimised,
the influence of initial pH on antioxidant production in MR was investigated. Three
different initial pH were tested: pH 6, pH 7, and pH 8. PBS 0.1 M was used to maintain the
pH as constant as possible. Experiments were performed in duplicate. The solutions were
prepared in bulk (50 mL), and then six Pyrex flasks with hermetic plugs for each sample
were filled with 5 mL. The samples were heated at 140 ◦C for 120 min, and every 20 min a
sample was collected and analysed to evaluate antioxidant and 5-hydroxymethylfurfural
(HMF) production. HMF was evaluated because it is a known MRP considered to be a
health hazard [13], and its production is considered as negative.

3.2.3. Influence of Amino Acids and Sugar Composition on Antioxidant Production in MR

The influence of sugar and amino acid composition on KAMs production was evalu-
ated. The amino acids and sugars tested, the most common in food, are reported in Table 5.
Since only reducing sugars react in MR [20], non-reducing sugars like sucrose and trehalose
were not tested, even though they are common in food samples.

Table 5. Amino acids and reducing sugars tested, with abbreviations.

Amino Acids Reducing Sugars

Arginine (arg) Histidine (his) Lysine (lys) Glucose (glu)

Aspartic acid (asp) Glutamic acid (glu) Serine (ser) Galactose (gal)
Threonine (thr) Asparagine (asn) Glutamine (gln) Fructose (fru)
Cysteine (cys) Glycine (gly) Proline (pro) Arabinose (ara)
Alanine (ala) Valine (val) Isoleucine (Ile) Maltose (mal)
Leucine (leu) Methionine (met) Phenylalanine (phe) Lactose (lac)
Tyrosine (tyr) Tryptophan (trp)

All the amino acids and sugars were combined one-to-one, for a total of 120 different
combinations. All the experiment were conducted in PBS 0.1 M at pH 7, with equimolar
concentrations of amino acids and sugars (25 mM), except for tyrosine, which was tested at
a concentration of 2 mM (always equimolar with sugars) due to its low solubility in water.
The samples were kept at 140 ◦C for 90 min and then cooled and analysed with HPLC
coupled with HRMS to detect antioxidant compounds and HMF.

3.2.4. Consumption of Reagents in MR

Amino acid and sugar consumption (with respect to the non-heated sample) was
evaluated in MR samples obtained by heating in an oven at 140 ◦C a mix solution of all
20 amino acids and 6 sugars at pH 7 for 60 min and 120 min to evaluate which compounds
are the most reactive. The mix solution contained equimolar concentrations of 20 amino
acids (1.25 mM), equimolar concentrations of 6 sugars (4 mM), and phosphate salts (PBS
0.1 M, pH 7).

3.2.5. Untargeted Approach to Create a Library of Potential Antioxidant MRPs

The MR is a very complex reaction, and MRPs are a wide group of molecules with
different bioactivity. Because of these, to obtain a more comprehensive idea of the influence
of the variable studied on the production of PAMs, an untargeted approach was used to
create a library of m/z that represents the main potential molecules produced by MR. To
do so, the MR samples were incubated with a radical initiator (AAPH) that activated the
oxidation of all potential antioxidants. In a 10 mL volumetric flask, 1 mL of MR sample was
added to 100 mM of 2,2′-Azobis(2-methylpropionamidine) dihydrochloride (AAPH) radical



Molecules 2024, 29, 4820 14 of 15

initiator in water. The mixture was then separated into four 2 mL vials and incubated at
37 ◦C for 2 h, taking a sample after 1 h. At 37 ◦C, the radical initiator starts the oxidation
process, and the potential antioxidant compounds are oxidised. This method is based on
a previously published study [21] that demonstrated that the peak areas of compounds
with potential antioxidant activity in HPLC chromatograms are significantly reduced or
disappear after incubation with AAPH, which can release ROO0at 37 ◦C [21]. Once cooled
in ice, the samples were analysed using HPLC coupled with HRMS, and all the spectra
were processed using Compound discover software 3.3.3.200 (Thermo Fischer Scientific).

The library of m/z obtained was then used to reprocess, using Compound discover soft-
ware, all the spectra and information obtained from previous experiments
(Sections 3.2.2 and 3.2.3). This approach allowed to obtain a clearer, even if complex,
idea of how reaction variables like pH and reagent composition influence antioxidant
production in MR.

4. Conclusions

In conclusion, this study elucidated the significant influence of some key variables
in MR, such as pH, time, and reagent composition, on antioxidant compound production
through the development of a method for the detection and quantification of these com-
pounds. The way for more precise and comprehensive analyses of antioxidant MRPs has
been paved, and the next crucial step in this research would be to identify within the large
group of new MRPs identified here (PAMs), the molecules with the highest antioxidant
activity. This will involve isolating MRPs and characterising their structures and mech-
anisms of action. Such efforts will not only enhance our understanding of the Maillard
reaction’s contribution to food chemistry but also open new avenues for the development
of functional foods that valorise these natural antioxidants.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29204820/s1. Figure S1: Extracted ion chromatograms
(EIC) referring to m/z of known antioxidant MRPs are reported for all the tested and discarded
columns; Table S1: m/z PAMs library with retention times, reference ion and main MS2 fragments
when available; Table S2: S values obtained as described in the manuscript (eq. 1) corresponding to
each sample and divided in ranges based on the percentile; Figure S2: Sum of areas of HRMS peaks
corresponding to the 50 m/z signals present in the library for each combination of amino acids and
sugars. In yellow, the samples with amino acids that contain a nitrogen atom in the side chain; in
blue, all the others.
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