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Abstract
Motivation: Defining the full domain of protein functions belonging to an organism is a complex challenge that is due to the huge heterogeneity
of the taxonomy, where single or small groups of species can bear unique functional characteristics. FunTaxIS-lite provides a solution to this chal-
lenge by determining taxon-based constraints on Gene Ontology (GO) terms, which specify the functions that an organism can or cannot per-
form. The tool employs a set of rules to generate and spread the constraints across both the taxon hierarchy and the GO graph.

Results: The taxon-based constraints produced by FunTaxIS-lite extend those provided by the Gene Ontology Consortium by an average of
300%. The implementation of these rules significantly reduces errors in function predictions made by automatic algorithms and can assist in cor-
recting inconsistent protein annotations in databases.

Availability and implementation: FunTaxIS-lite is available on https://www.medcomp.medicina.unipd.it/funtaxis-lite and from https://github.
com/MedCompUnipd/FunTaxIS-lite.

1 Introduction

The sequence data for many species has increased significantly
due to the progress in omics sciences. However, characterizing
the functional aspects of taxonomy poses substantial chal-
lenges. To address this, the Gene Ontology Consortium has
collaborated internationally to provide ontologies describing
unequivocally gene functions (GO terms) which are integrated
in a direct acyclic graph. While GO-encoded annotations are
independent of species, many of these annotations represent
functions and biological processes that are not universally
present across all taxa. The absence of explicit formalization
regarding the specific protein functions that a particular spe-
cies can exhibit (referred to as taxon constraints) can lead to
improper functional transfers between proteins of different
species, solely based on shared sequence similarities.
Considering that protein/gene information in databases typi-
cally includes the species of origin, it becomes feasible to im-
plicitly partition the GO graph based on taxonomic criteria.
In this context, two types of taxonomic constraints can be
identified: positive (“only-in-taxon”) and negative (“never-in-
taxon”) relationships. Positive relationships define GO terms
that can solely annotate a specific taxon, while negative rela-
tionships indicate GO terms that can never be applied to a
taxon. The need to create taxonomic constraints appeared
clear with the growth of the databases accumulating issues in
the protein annotations due to the percolation of errors (Gilks

et al. 2005). These problems persist not only in the protein
annotations created automatically and labeled as “Inferred
from Electronic Annotation” (IEA), which amount to 98% of
the total annotations available, but also in manually curated
protein functions. In GOA release of June 2023, for instance,
“chloroplast thylakoid” (GO id: GO:0009534) is used to an-
notate two proteins Q38AK2 and Q4Q1E9 belonging to
Trypanosoma brucei brucei and Leishmania major, respec-
tively with the manually reviewed code Inferred from
Biological aspect of Ancestor (IBA). These parasitic protozo-
ans, that cause the sleeping sickness (Trypanosoma) and leish-
maniasis (Leishmania) in humans, lack chloroplasts. For these
reasons, since 2010, the Gene Ontology Consortium has de-
veloped a manually validated list of taxonomic constraints,
specifying them at various levels of the ontology. However,
manually defining constraints for over 40 000 GO terms and
hundreds of thousands of species is a demanding task and
present coverage of both species and GO terms is poor. To ad-
dress this challenge, we have developed FunTaxIS-lite as an
enhanced and faster version of its predecessor, FunTaxIS
(Falda et al. 2016). FunTaxIS-lite enables the inference of
functional peculiarities and similarities between different
taxa, determining the presence or absence of specific functions
in the vast majority of organism/species. The tool aims at:
(i) being as broader as possible in covering the taxonomic tree
and the GO graph, (ii) helping function prediction tools to
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discard wrong predicted annotations for the species under
study, and (iii) helping database curators to fix potential
issues of annotations in databanks.

2 FunTaxIS-lite pipeline

FunTaxIS-lite automatically assigns GO constraints to specific
taxa and is able to integrate both the constraints defined by
the GO Consortium (GOC) (Ashburner et al. 2000, The Gene
Ontology Consortium 2021) and those manually curated by
the user. This ensures a refined and tailored annotation pro-
cess for exploring functional peculiarities across the taxo-
nomic tree. The input files of the tool are the GOA database,
the taxonomy database from NCBI, and the GO graph in
Web Ontology Language (OWL) format. A breakdown of the
main steps of the FunTaxIS-lite pipeline are herein explained
(for further details, see Supplementary Material S1).

• Gene Otology Annotation (GOA) database cleaning step:
GOA annotations undergo a cleaning process. The tool
removes: annotations with no biological data available
(“ND” evidence code), annotations stating that a protein
does not perform a specific function (“NOT” evidence
code), root GO terms (GO:0005575, GO:0008150, and
GO:0003674) and annotations related to the tags
“RNAcentral” and “environmental samples.”

• Taxonomic Reference Nodes determination: a list of
highly annotated taxonomic reference node which are
used to group organisms based on common biological
traits, is established. The objective is to have a reliable set
of constraints for each species subsumed by these reference
taxa and to cover a broad range of the taxonomy
hierarchy.

• Grouping GOs and cumulative frequencies calculation:
GO annotations in the GOA database are grouped by
organisms and, for each organism, a list of associated GO
terms is generated. Each organism is traced back to its
closest reference parent node. Then, for each GO term in
the reference node, the cumulative frequency over its GO
descendants is calculated.

• Creation of “never_in” GO Taxon Constraints: only GO
terms with a cumulative frequency of at least 500 in the
whole GOA database are considered. GO terms with a cu-
mulative frequency of 0 in the reference taxon node are
marked as “never_in” for that node and for all its descen-
dant species. This means that the GO term (and all of its
descendant GO terms in the GO graph) cannot be used to
annotate any protein product in any species that belongs
to the reference taxon node.

• Merging automatic, GOC, and manual constraints: in the
final step, the automatic constraints generated by the
FunTaxIS-lite program are combined with the GOC con-
straints, with the latter taking precedence in case of con-
flicts. The GOC constraints are defined as “never_in” or
“only_in”, where “only_in” constraints specify that cer-
tain GO terms are restricted to a specific taxon. These con-
straints are converted into “never_in” for all of the species
except those where the “only_in” is specified and added to
the existing constraints. Moreover, a list of “manual con-
straints” is made based on direct observation of annota-
tion issues that can be created by the end-user following a
simple syntax in a configuration file. These constraints
have the highest priority in the pipeline.

3 FunTaxIS-lite web server

FunTaxIS-lite is a freely accessible web site (https://www.med
comp.medicina.unipd.it/funtaxis-lite) and downloadable tool
(https://github.com/MedCompUnipd/FunTaxIS-lite). Browsing
the web site, the user can visualize and/or download the list of
all prohibited GO terms (“never_in”) in tabular format by look-
ing for taxa via taxonomic id or taxon name. FunTaxIS-lite tool
can also be installed and run locally, allowing the user to explore
different options and to add custom manual constraints to gen-
erate from scratch the lists of “never-in” terms. The parameters
which can be customized are the database files from which the
constraints are generated (GO graph file, GOA file, NCBI tax-
onomy files), the list of manual constraints and the cutoff on the
cumulative frequency threshold.

4 FunTaxIS-lite vs FunTaxIS old version

FunTaxIS-lite is faster and more user-friendly than the previ-
ous version. One of the principal changes that differentiates it
from FunTaxIS is the user’s capability to add the manually
validated constraints to the automatically generated con-
straints, as well as those supplied by the GOC.

The main changes are:

• The number of “reference taxon nodes” has been ex-
panded from 50 to 171 thanks to a new automated selec-
tion process based on the quantity and diversity of
annotations at specific taxonomic nodes. The growth of
the GOA dataset over time has also enabled this expan-
sion of “reference taxon nodes.” The uneven distribution
of annotations across taxa in the GOA has forced us to in-
troduce two categories of reference taxonomic nodes:
“Reliable” (70) and “Unreliable” (101). The “Reliable”
nodes represent high-confidence nodes in the taxonomic
hierarchy that group well-annotated branches. They owe
their robustness to the inclusion of extensively studied
model organisms with rich functional information. On the
other hand, the “Unreliable” nodes group poorly anno-
tated taxonomic branches with limited available knowl-
edge for which the tool is able to define a small but usable
set of constraints.

• Simplification of calculations. Within the tool, we have
made the selection of “never_in” GO terms more efficient
by removing the previous fuzzy logic that didn’t provide
any effective contribution.

• Completely revisited the integration of GOC constraints
due to the introduction of the novel manual constraints
and resolution of potential conflicts among manual and
automatic constraints.

• A more user-friendly, light, and effective web site has been
developed, offering rapid access to the “never_in” GO list
corresponding to any species within the taxonomic tree.
All the taxon-constraints are precomputed and loaded
into the database, which is periodically updated by our re-
search group, according to the latest releases of GO,
GOA, and Taxonomy databases.

5 Benchmark datasets and assessment

The “functional domain” created by FunTaxIS-lite refers to
a collection of Gene Ontology (GO) terms that establish the
defined boundaries within which the species can exert its
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own functions. We performed a “species-centric” assessment
by designing a benchmark where a similarity search based
on DIAMOND (Buchfink et al. 2015) and our automatic
function prediction tool Argot (Lavezzo et al. 2016) have
been challenged to annotate the proteins coming from four
different species in a classical blind test. The four species
have been chosen as representatives of highly different taxo-
nomic ranks: the plant Amborella trichopoda (tax id:
13333), the lobe-fin bony fish Latimeria chalumnae (tax id:
7897), the bacterium Pseudomonas fluorescens SBW25 (tax
id: 216595), and the yeast S. kudriavzevii IFO 1802 (tax id:
226230). UniProt protein database (2023_03) has been used
for the similarity searches (DIAMOND) and Argot predic-
tions. Proteins attributed to the taxonomic group Bacteria
have been excluded from UniProt for P.fluorescens, whereas
proteins associated with the taxon node Eukaryotes have
been eliminated for A.trichopoda, S.kudriavzevii IFO 1802,
and L.chalumnae before using Argot and DIAMOND. This
strategy has been chosen to put DIAMOND and Argot
methods under probative test conditions where only dis-
tantly related species are available in the protein databank.
Annotations obtained from these two methods were filtered
using the constraints generated by FunTaxIS-lite and by
PANNZER (Törönen and Holm 2022), for comparative
purposes. The “species-centric” benchmark involves aggre-
gating all the predicted annotations obtained from any pro-
tein belonging to the species under evaluation in a single
non-redundant set of GO terms. Since a GO term can be as-
sociated with multiple target proteins, its score has been de-
fined as the highest score obtained by the prediction tool for
that particular GO term. This ensures that the highest confi-
dence is considered for every function attributed to a certain
species, while eliminating GO term redundancy. To evaluate
the performance, we used the official metrics used in the
Critical Assessment of protein Function Annotation chal-
lenge (CAFA) (Zhou et al. 2019): Fmax that is the harmonic
mean of precision and recall measures, the weighted Fmax

(wFmax) that considers the information content (ic) of each
GO term to calculate the Fmax and the minimum semantic
distance (Smin) from the remaining uncertainty (ru) and mis-
information (mi) (Jiang et al. 2016). The details of the met-
rics are reported in Supplementary Material S1. We have
evaluated the metrics for each subontology of GO:
Biological Process (BP), Cellular Component (CC), and
Molecular Function (MF).

6 Results

The constraints generated by FunTaxIS-lite encompass not
only its own constraints but also those from GOC. We have
conducted a thorough investigation to determine the extent of
our automatic taxonomic constraints compared to those pro-
vided by GOC, and the differences between them are minimal.
The majority of the manually curated GOC constraints are
also present in our tool alone. Moreover, our approach,
which relies on propagation rules over both the taxonomy
and the GO graph, along with the extensive coverage of the
taxonomic hierarchy, has enabled us to expand the GOC con-
straints by an average of 300% in every taxon node consid-
ered by GOC (see Supplementary Table S1).

When compared with its predecessor version, FunTaxIS-lite
always performs better in all the tested scenarios (Table 1)
and in any metrics used (see also Supplementary Table S2).

The detailed comparison of taxonomic filters applied to
DIAMOND and Argot results is presented in Fig. 1 for
P.fluorescens SBW25. The results for A.trichopoda,
L.chalumnae, and S.kudriavzevii IFO 1802 are available in
Supplementary Material. The baseline is established by plot-
ting the unfiltered set of GO terms from both Argot and
DIAMOND, providing a reference to evaluate the improve-
ments achieved by applying the FunTaxIS-lite and
PANNZER filters. The combination of Argot and FunTaxIS-
lite filters (argot_FT) demonstrates superior performance in
each subontology, as measured by Fmax and wFmax. For the
best Smin metric, the performance of the DIAMOND þ
FunTaxIS-lite filters (diamond_FT) is slightly better in BP,
while the DIAMOND þ PANNZER filters (diamond_PZ)
outperform in CC, and Argot þ FunTaxIS-lite filters perform
better in MF. In general, FunTaxIS-lite performs well across
all species used in this study, enhancing the assessment metrics
of both DIAMOND and ARGOT unfiltered predictions on
average, respectively, by 8.32% and 5.88% for A.trichopoda;
by 8.63% and 5.58% for L. calumniae; by 22.21% and
42.08% for P.fluorescens SBW25; by 7.22% and 2.64% for
S. kudriazevii IFO 1802 (for more detailed results see
Supplementary Table S2). Performances measured with
FunTaxIS-lite filters are overall better than those with
PANNZER filters except few cases. PANNZER shows a
slight advantage over both wFmax and Smin for CC in
P.fluorescens SBW25 and L.calumniae. This could be attrib-
uted to our strategy, which considers deeper taxonomic nodes
compared to PANNZER, enabling the inclusion of IEA anno-
tations in our lists. Further analysis of this effect is presented
in Section 7.

Table 1. Comparative analysis of FunTaxIS-lite and FunTaxIS.a

Species Ns Tool Fmax wFmax Smin

A.trichopoda BP FT_lite 0.665 0.591 37 367
FT_old 0.633 0.562 38 003

MF FT_lite 0.778 0.711 10 801
FT_old 0.733 0.664 12 421

CC FT_lite 0.499 0.417 7171
FT_old 0.485 0.406 7187

L.chalumnae BP FT_lite 0.555 0.483 46 399
FT_old 0.537 0.467 46 945

MF FT_lite 0.764 0.707 9736
FT_old 0.718 0.659 11 148

CC FT_lite 0.522 0.456 5830
FT_old 0.518 0.453 5832

P.fluorescens SBW25 BP FT_lite 0.801 0.757 8905
FT_old 0.702 0.64 16 887

MF FT_lite 0.845 0.807 4417
FT_old 0.823 0.781 5302

CC FT_lite 0.668 0.604 936
FT_old 0.508 0.422 2298

S.kudriavzevii IFO 1802 BP FT_lite 0.778 0.732 8559
FT_old 0.773 0.727 8633

MF FT_lite 0.822 0.784 3415
FT_old 0.815 0.776 3534

CC FT_lite 0.559 0.499 3077
FT_old 0.557 0.497 3080

a The table shows the performance comparison between FunTaxIS-lite
(FT_lite) and the previous version (FT_old). The results for A.trichopoda,
L.chalumnae, P.fluorescens SBW25, and S.kudriavzevii IFO 1802 are
reported. The metrics Fmax, wFmax, and Smin have been calculated for the BP,
MF, and CC subontologies for each species. The best performing filter
between FunTaxIS-lite and old FunTaxIS is highlighted in bold. The table
exclusively presents Argot results as the performances of DIAMOND are
found to be identical.
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7 Discussion

The process of functional annotation of genes and proteins
largely depends on automated tools (over 98% of annotations
are IEA), which perform functional transfer between highly
(and experimentally) studied organisms and other, less
known, species. This process must be tightly regulated, to
avoid the erroneous transfer of functions that are not present
in the functional domain of the recipient organism. On the
other hand, if functional transfer between species is not
allowed, the annotation coverage of millions of proteins pre-
sent in UniProt databank would be marginal. The generation
of functional constraints for the entire taxonomy is a chal-
lenging task, particularly due to biases inherent in functional
databases and the limited availability of experimental studies.
To ensure a wide coverage of the constraints over the taxon-
omy, the exploitation of experimental annotations alone is
not sufficient, making it necessary to rely also on electroni-
cally inferred functions. Additionally, experimental annota-
tions are not always reliable, as we pointed out with some
examples in the introduction section to achieve this accom-
plishment, we have developed FunTaxIS-lite, which provides
information about allowed/forbidden annotations at the spe-
cies level for almost the entire taxonomy. To mitigate the
biases of functional databases, we have employed two com-
plementary strategies. Firstly, we have considered as many

model organisms as possible, thereby increasing the granular-
ity of the functional domains. Secondly, we have restricted the
generation of constraints to functions that are adequately rep-
resented in GOA, excluding highly specific functions that may
be associated exclusively with a single model organism. The
significant difference in the number of “never_in” constraints
provided by FunTaxIS-lite compared to GOC is noteworthy.
This outcome is a direct result of the strategic approach we
have implemented, which involves exploring both the taxon-
omy and the Gene Ontology (GO) graph. As a result, we not
only obtain more fine-grained constraint lists but also capture
a larger amount of information embedded in the databases.

The improvement in prediction performance when filters
are applied shows a great difference between P.fluorescens
SBW25 and all other species. After careful investigation, we
have identified two main factors that are responsible for this
effect. Firstly, the benchmarking approach involved excluding
all proteins related to Bacteria and its taxonomic descendants
from the database during the prediction process, which led to
a much higher number of incorrect annotations (False
Positives hits) compared to the other three species. In addi-
tion, generating “never-in” filters for bacterial species has
proven to be less challenging than for other taxonomic nodes
due to the reduced functional variability within the taxonomic
node Bacteria. The combined effect of these two factors,

Figure 1. Comparison of evaluation metrics of FunTaxIS-lite and PANNZER. (A) This panel shows the performances for the species P.fluorescens SBW25

(tax ID: 216595). We have evaluated wFmax for each subontology (BP, CC, and MF) starting from the GO terms extracted by the protein hits found by

DIAMOND (dashed line) and Argot (solid line). Performances have been evaluated without filtering (unfilt) and using both FunTaxIS-lite (FT) and PANNZER

(PZ) taxonomic constraints. In Panel B, the Smin evaluation is reported for each subontology.
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(i) high quality filters and (ii) predictions with a very high
background noise, has contributed significantly to the marked
increase in prediction performance for P.fluorescens SBW25
compared to the other three species. This has been observed
both for FunTaxIS-lite and PANNZER filters.

In comparison with PANNZER, which is another tool with
similar purposes, FunTaxIS-lite displays better performance
on most of the tested settings, with differences that are likely
due to the different logical approaches of the two algorithms.
FunTaxIS-lite defines a list of prohibited GO terms for many
different nodes across the taxonomy, while PANNZER define
the GO terms that are allowed for only highly generic taxon
nodes and inherited by all their descendants. This approach,
although valid in many cases, can sometimes lead to wrong
outcomes. To make an example, we have found that some
GO terms predicted for the species evaluated in the bench-
mark were not purged by the PANNZER filters. For example,
both Argot and DIAMOND erroneously reported the GO
term “GO:0009521” photosystem for the species
P.fluorescens SBW25. This GO term is correct for some pro-
karyotes (cyanobacteria, for example), but this is not true for
Pseudomonadales, belonging to a completely different branch
of prokaryotes. The PANNZER filters are also too stringent
in a few cases, as they purge correct GO terms from the
ground truth. For example, the term “GO:0006147” guanine
catabolic process is vastly present in many bacteria, including
Pseudomonadales, as IEA annotations (>25 000) and is thus
reasonably associated with bacteria, but disallowed by
PANNZER non-IEA based filters.

8 Conclusions

To summarize, the taxonomic filters generated by FunTaxIS-
lite are useful for both curators and biologists. They can be
used in different scenarios. (i) Investigating specific functions
oddly absent in some taxa. (ii) Spotting possible errors in the
database. If a particular function is reported for a taxon, but
it is not allowed by the taxonomic filters, then it is possible
that the annotation is incorrect. (iii) Refining the output of au-
tomatic protein function prediction tools. Automatic protein
function prediction tools use a variety of sources of informa-
tion to predict the functions of proteins. However, these tools
can sometimes make mistakes. By using the taxonomic filters,
it is possible to remove some false positive annotations from
the output of these tools, which can improve the accuracy of
the predictions. As shown in the results comparing the unfil-
tered versus filtered results of Argot, the taxonomic filters can
significantly improve the accuracy of automatic protein func-
tion prediction tools.
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