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a b s t r a c t

Two microchips, each with four identical microstructured sensors using SnO2 nanowires as sensing
material (one chip decorated with Ag nanoparticles, the other with Pt nanoparticles), were used as a
nano-electronic nose to distinguish five different gases and estimate their concentrations. This innova-
tive approach uses identical sensors working at different operating temperatures thanks to the thermal
gradient created by an integrated microheater. A systemwith in-house developed hardware and software
was used to collect signals from the eight sensors and combine them into eight-dimensional data vectors.
These vectors were processed with a support vector machine allowing for qualitative and quantitative
discrimination of all gases after calibration. The system worked perfectly within the calibrated range
(100% correct classification, 6.9% average error on concentration value). This work focuses on minimizing
the number of points needed for calibration while maintaining good sensor performance, both for
classification and error in estimating concentration. Therefore, the calibration range (in terms of gas
concentration) was gradually reduced and further tests were performed with concentrations outside
these new reduced limits. Although with only a few training points, down to just two per gas, the system
performed well with 96% correct classifications and 31.7% average error for the gases at concentrations
up to 25 times higher than its calibration range. At very low concentrations, down to 20 times lower than
the calibration range, the system worked less well, with 93% correct classifications and 38.6% average
error, probably due to proximity to the limit of detection of the sensors.

© 2023 Vietnam National University, Hanoi. Published by Elsevier B.V. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The state of lock-down due to the Covid-19 outbreak during the
first half of 2020 that has brought much cleaner air and water to
many countries, once again clearly demonstrated that the rapid
industrialization and urbanization cause environmental problems.
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It is not only the global pollution that drives climate change, but
also the local pollution that affects people's breathing, both outdoor
and indoor, and therefore their health.

Monitoring gaseous components in air is increasingly important
for many purposes, such as medical diagnosis [1], quality control of
food [2], monitoring of industrial and agricultural processes [3] and
security against terrorism [4], among others. Quick detection and
precise estimation of different gases have always been a goal for
research in the gas sensor field. Making the system affordable and
portable is another important goal that is difficult to reconcile with
performance. Microstructured sensors using metal oxide semi-
conductors (MOS) have been intensively investigated and devel-
oped in the last decades, showing their potential for these goals [5].
The main properties of MOS as sensing materials are high
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Fig. 1. Optical microscope image of a multisensor chip. The bright patterns are the
heater (dark red arrow) and the sensor electrodes (inside the squares). The darker
areas are the substrate.
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sensitivity and stability. Other important properties are low cost of
fabrication, low power consumption and tiny size, making them
suitable for integration into small portable devices such as smart-
phones, or even into wearable devices.

After first being based on thick and then thin films, the latest
generation of MOS gas sensors is based on nanostructures for the
purpose of improving their performance. Nanowires (NWs) are the
most used nanostructures because of their good physical and
chemical properties [6,7]. The sensing properties of MOS nano-
structures can be tuned by controlling their size and shape [8e10].
However, resistive sensors based on MOS have two intrinsic
drawbacks: high working temperature (typically higher than
200 �C) and poor selectivity. The former issue can generally be
mitigated in two ways: decorating the surface of the MOS nano-
structures with metallic nanoparticles (NPs), or integrating a
micro-heater onto the sensor chip. The decorated catalytic metal
NPs increase the sensing properties of the MOS nanomaterial,
allowing it to be used at a lower operating temperature [11,12],
while an on-chip integrated micro-heater greatly reduces the po-
wer consumption. The latter issue can be overcome by combining
the sensors made of different MOS in arrays like in an electronic
nose [13,14]. Electronic noses have recntly drawn large attention in
the scientific literature [15,16], but their size, cost and complexity
(each material requires different connectors and specific working
conditions) are significantly larger than those of gas sensing sys-
tems based on a single MOS sensing material.

For this reason, we have recently proposed an alternative to
electronic noses consisting of identical sensors made of the same
nanomaterial but working at different temperatures [17]. We have
tested different configurations in which the thermal gradient can
be temporal (different responses obtained from the same sensor at
different powers, sequentially) [18] or spatial (several responses
obtained simultaneously, as in traditional electronic noses) [19].
Obviously, several sensors working in parallel make the measure-
ments much faster and suitable for real-time applications. This sort
of “simplified electronic nose” balances the simplicity and afford-
ability of a MOS chemiresistor with the selectivity of a traditional
electronic nose.

In this work, two multisensor chips based on a single MOS
(SnO2) NWs are used, one decorated with Ag NPs and the other
with Pt NPs. Each chip consists of four resistive sensors and an
integrated micro-heater and can work similarly to an electronic
nose. Unlike the pioneeringworks of Sysoev [20,21], this innovative
design (Fig. S1, Supplementary Material) is enabled by an inte-
grated point heater that provides the thermal gradient and nano-
structured materials that enhance the response intensity.

Furthermore, support vector machine (SVM) algorithms are
used in this work as the core of the measurement system to provide
classification and quantitative estimation of the measured gases.
The performance of this type of miniaturized device within its
calibration range has already proved very good (perfect classifica-
tion, average error of 14.3%) [17].

On the other hand, minimizing the number of measurements
required for calibration is very important for manufacturing com-
panies. Therefore, in this work, the system performance was
studied while reducing the calibration interval in order to under-
stand how many training points are needed and how well the
system works far from the calibration range.

2. Experimental

2.1. Fabrication of the sensors with on-chip synthesized SnO2 NWs

The sensors were fabricated using an on-chip approach,
described in detail in [17] and summarized here: first, multilayered
2

electrodes and heater were patterned using standard UV photoli-
thography and sputtering. Fig. 1 shows an image of the center of the
sensor chip seen through an optical microscope. In this design, the
heater is the tiny meander indicated by the dark red arrow, while
the four sensors are shown inside the dark red-red-orange-yellow
squares, indicating decreasing temperature.

The darker parts in Fig. 1 are the glass substrate, while the
brighter parts are the heater and the sensor electrodes, consisting
of (from bottom to top) Cr/Pt/Au/ITO layers with thicknesses of 5/
80/5/20 nm, respectively. The Au layer acts as a seeding catalyst for
the growth of the SnO2 NWs, while the ITO at the top prevents the
growth of NWs upwards, thus forcing them to sprout from the
edges of the electrodes.

The whole sensing system including the heater and the four
sensors is about 100 � 300 mm2. The heater, the electrodes and the
distances of the sensors from the heater were optimized using
COMSOL Multiphysics® simulations (Fig. S1, Supplementary
Material).

Once themetal contacts were patterned, the devicewas inserted
into a horizontal quartz tube furnace to grow the SnO2 NWs by
chemical vapor deposition (CVD). The patterned substrate was
positioned on top of an alumina boat with Sn powder (purity 99.9%)
and the temperature was increased to 750 �C while nitrogen was
flowing. This maximum temperature was then kept for 10 minwith
an oxygen flow of 400 sccm, then the furnace was switched off for
cooling down naturally.

The surface decoration of the SnO2 NWs with silver and plat-
inum nanoparticles was achieved by sputtering at a power of 10 W
for 40 and 60 s, respectively. The sputtering was followed by an
annealing at 600 �C in air for 4 h in order to improve the contact
between the NPs and the NWs, and to stabilize the nanomaterial.
2.2. Nanomaterial characterization

Structure, morphology and composition of the metal-decorated
NWs were examined by X-ray diffraction (XRD, CuKa), field-
emission scanning electron microscopy (FE-SEM, Hitachi, S-4800),
Energy-dispersive X-ray spectroscopy (EDX), and transmission
electron microscopy (TEM, Philips, CM 200).
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2.3. Gas sensors measurements

The two multisensor chips, one decorated with Ag NPs and one
with Pt NPs, were connected to an Arduino Mega 2560 microcon-
troller board. The board with a mounted sensor chip is shown in
Fig. S2, where a pen also is visible for comparison of their small
sizes.

The sensing systemwas dynamically tested with different gases
(acetone, ammonia, ethanol, hydrogen and hydrogen sulfide)
diluted with dry air for different concentrations. The concentration
range for each gas was chosen so that it includes the strictest
exposure limit value set by American institutions [22], as can be
seen in Table 1.

Since all five gases tested are reducing, the sensor response in
this paper is defined as S¼Ra/Rg, where Ra is the sensor resistance in
air and Rg is the resistance in the presence of the target gas.
2.4. Classification and quantification with machine learning
algorithms

The eight response values from the resistive sensors were
combined in one single 8-dimensional (8D) point (vector). Principal
component analysis (PCA) was used to reduce the eight dimensions
down to three, in order to visualize the points qualitatively [23].
Notably, this algorithm was used only to help the reader to un-
derstand the relations between the points from the different gases,
while the algorithms used all the eight original dimensions to
classify and quantify the gases.

The classification was performed by a support vector classifier
(SVC) [24,25], while the quantification was carried out by a support
vector regressor (SVR) [26,27]. Both methods, which are attracting
a growing interest in the field of sensors, pertain to support vector
machines [28e31] and are supervised methods. This means that the
algorithms need a first set of data (in this case 8D vectors consisting
in eight response values with two labels: gas and concentration) in
order to develop a model, which then is used to compare the new
unlabeled data and classify/quantify them. The concentrations used
to train the multisensor system and to test its performance are
shown in Table 2.

Initially, the concentrations were used alternately (starting from
the extremes) to train and test the system, in order to study its
sensing performance within the calibration range (see section 3.4
and Table S0 in Supplementary Material).

To test the system beyond the calibration range (at higher and
lower concentrations) the configurations shown in Tables S1e7 and
S8e11 in Supplementary Material were used (see further in section
3.5 and 3.6).

The Python code used to obtain the gas classification and con-
centration estimate is provided at the end of the Supporting
Material.
Table 1
Exposure limits by the American Conference of Governmental Industrial Hygienists (ACGI
parts per million.

Gas Minimum concentration tested
[parts per million]

ACG
[par

Acetone 84 250
Ammonia 10 25
Ethanol 30 1000
Hydrogen 10 e

Hydrogen sulfide 0.02 1

a American Conference of Governmental Industrial Hygienists (ACGIH).
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3. Results and discussion

3.1. Material characterization of Ag- and Pt-decorated SnO2 NWs

Typical SEM images of the Ag-decoratedNWs are shown in Fig. 2a
and b. As can be seen in Fig. 2a (low magnification), the nanowires
are long, thin and smooth. Fig. 2b (high magnification) shows clearly
that the AgNPs are evenly distributed on the surface of the NWs, and
this is important for their sensing properties [32,33].

The average diameter of the NWs is 94 ± 37 nm, while their
average length is 38 ± 12 mm. The TEM image in Fig. 2c shows an Ag
NP on the surface of a nanowire. The nanoparticle is round with a
diameter of about 18 nm, while the nanowire has a diameter
around 55 nm.

The EDX spectrum in Fig. S3 demonstrates that the decorated
SnO2 NWs only consist of tin, oxygen and silver. The very small
amount of silver is also confirmed by XRD analysis of the same
sample, as shown in Fig. S4.

Fig. 3a shows a low magnification SEM image of Pt-decorated
SnO2 NWs, while Fig. 3b shows the same at higher magnification.
Also here, the Pt nanoparticles on the surface of the NWs can be
seen clearly. The average length and diameter of the NWs are
35 ± 10 mm and 86 ± 32 nm, respectively, as estimated from several
SEM images. As can be seen in Fig. 3b, the platinum nanoparticles
are evenly distributed. Figugre 3c shows a few Pt nanoparticles on
the surface of a SnO2 nanowire.
3.2. From dynamic response to machine learning algorithms

As mentioned above, the sensor responses calculated from the
raw signals (dynamic resistances) of the eight sensors (Fig. S7,
Supplementary Material) were combined into 8D vectors and used
as input for the machine learning algorithms. The netbook receives
all the eight signals from the sensors at the same time, in parallel.
Each 8D vector resumes a thermal fingerprint (sensor response as a
function of working temperature), as previously reported in
[34,35].

A first set of these 8D vectors is given to the system together
with two labels: 1) the gas being measured and 2) its concentration
in parts per million (ppm). These data are given to a support vector
classifier with a linear kernel, acting as the brain of the sensing
system. The algorithm uses this first set of labeled data to build a
model (a map of the 8D space), that will be used to compare all new
data and classify them. The training points pertaining to the same
gas are used also to train a support vector regressor in 8D, which
will be used to estimate the concentration of any new measure-
ment, once it is classified. The construction of these models by the
SVM can be considered analogous to the calibration for a traditional
resistive sensor. Once the system is calibrated in this way, any new
measurement data is transformed into an 8D vector without labels,
which is compared with the model (8D labeled map) and classified.
H) together with the minimum andmaximum concentrations tested in this paper, in

IHa 8-h Time Weighted Averages
ts per million]

Maximum concentration tested
[parts per million]

12,600
300
6000
400
2.4



Table 2
Measured concentration (used as training or testing point) for each gas.

Gas Concentration [parts per million]

Acetone 84 252 420 840 2520 4200 5880 8400 12,600
Ammonia 10 30 50 70 100 150 200 250 300
Ethanol 30 90 150 300 600 1500 2400 3000 3600 6000
Hydrogen 10 30 50 100 150 200 250 300 350 400
Hydrogen sulfide 0.02 0.04 0.1 0.2 0.4 0.8 1.4 2.0 2.4

Fig. 2. a) and b) SEM images of Ag decorated SnO2 NWs; c) TEM image of a nanowire with a silver NP on its surface.

Fig. 3. a) SEM image of Pt decorated SnO2 NWs; b) high magnification SEM image, showing the Pt nanoparticles on the NWs surface; c) TEM image of platinum NPs on a nanowire
surface.
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Once the new data is classified as a certain gas, the same 8D vector
is also used by the regressor associated with that gas classification,
in order to estimate its gas concentration.

3.3. Three-dimensional visualization with principal components
analysis

Since it is impossible to see the 8D points or the model created
by the support vector machine in the 8D space, PCA is used to
4

visualize the relationships between the points coming from mea-
surements of different gases, as shown in Fig. 4.

The PCA algorithm reduces the dimensionality of the data while
keeping asmuch information as possible and it is attracting interest
as qualitative method applied to gas sensors [36e38]. Here, PCA is
used to reduce eight dimensions to three. The information con-
tained in the first three principal components shown in Fig. 4 is
very high (the sum is 91.6%), therefore the figure gives a good idea
of the spatial relationships between the 8D points. As mentioned



Fig. 4. PCA of the 8D data, showing the relationships between the different groups of points related to different gases.
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before, this is an adaptation only for human perception, while the
support vector machine fully works in 8D space, with 100% of the
information.

Each point in Fig. 4 corresponds to a measurement of a certain
gas at a certain concentration performed by the eight sensors
simultaneously, and thus contains an entire fingerprint of the gas
being measured [34,35]. Each point in Fig. 4 is colored to see to
which gas it refers. The numbers in the figure represent the gas
concentration in ppm. Not all values are indicated, however, due to
lack of space. Each group of points relating to a gas is well separated
from the others, indicating that a good classification is possible. The
points relating to the gases are arranged along lines, rather than in
small clouds. This does not allow the use of unsupervised distance-
based methods, such as various types of clustering [39,40], forcing
the use of supervised methods, and therefore a sort of calibration.
On the other hand, it helps the regressor to estimate the concen-
tration of any newmeasurement, as will be shown in the following
sections. Fig. 4 provides some interesting observations, such as the
lines from the various gases seem to lead to a commonpoint. In fact,
this common origin is pure air, to which all gases tend if extremely
diluted. It should be stressed that some gases are almost over-
lapping close to the origin (acetone, ethanol and hydrogen), while
ammonia is a little further away and hydrogen sulfide is distant
from all other gases. As will be seen in the next sections, this
qualitative analysis is reflected in the quantitative performance of
the multisensor system.
5

3.4. Classification of gases and estimation of their concentration
within the calibration range

As explained above, after calibration of the system with a first
set of labeled data from different gases (train set), new measure-
ments were made where the system did not knowwhich gas it was
or its concentration (test set). Using a classifier and then a regressor,
the system was able to identify the gas and estimate its concen-
tration, as reported in [20]. The classification of the multisensor
system was perfect (100% of correct classifications) and the quan-
tification was very good, with an overall error of 6.9%.

Since each gas was tested in a different concentration range
according to its hazard thresholds, it is difficult to identify a com-
mon trend in a plot of error as a function of the gas concentration
(Fig. S8, Supplementary Material). Therefore, in Fig. 5, the sym-
metric mean absolute percentage error (SMAPE) is shown as a
function of the normalized concentration, i.e. the minimum train
concentration for every gas becomes 0, while the maximum train
concentration becomes 1. The aim is to understand if there is a
trend that depends on the distance from the edges of the range on
which the system was calibrated.

A U-shaped trend was expected for all gases, as the model built
by the system is less robust when approaching the limits of the
calibration range. Instead, an L-shaped trend was obtained, in
which the error increased a lot only towards the left edge, that
corresponds to low concentrations. This asymmetrical trend can be



Fig. 5. Symmetric mean absolute percentage error on estimation of gas concentration
as a function of the normalized gas concentration.
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explained by the fact that going towards low concentrations, in
addition to approaching the limit of the calibration range, the
system is also approaching the limit of detection (LoD) of the
sensors that compose the multisensor system.

For the points within the concentration range from >0.08 to 1.0
in Fig. 5, very low average errors for all the gases could be calcu-
lated: 3.9%, 3.0%, 3.6%, 3.5% and 3.0% for acetone, ammonia, ethanol,
hydrogen and hydrogen sulfide, respectively, and 3.3% for all
together. This means that the system was able to perfectly distin-
guish each gas (the color of each point corresponds to a specific
measured gas, without any misclassification) and estimate very
well its concentration.
3.5. Classification of gas and estimation of its concentration above
the calibration range

The goal of this step was to test how well the multisensor sys-
tem works at concentrations higher than those used for its cali-
bration. For this purpose, we gradually reduced the upper limit of
the calibration range in a series of seven experiments for each gas,
according to the seven configurations in Tables S1e7
(Supplementary Material). From one configuration to the next,
the calibration interval is reduced by one concentration on the right
(higher concentrations), which is added to the test concentrations.
The classification and quantification (error on the concentration
estimate) were evaluated as a function of the distance from the
calibration range.

Fig. 6 shows a confusionmatrix and a graph for each of the seven
configurations in Tables S1e7. The confusion matrices on the left
show how well the points of the various gases were classified, and
how often they were confused with other gases. The total number
in each column of a confusion matrix is the number of test points
for that gas. This number increases by three with each subsequent
configuration. These three points are the three repetitions of the
samemeasurement (same gas at the same concentration) that were
eliminated from the calibration range and added to the test data. As
can be seen, the classification is perfect for all gases in the first three
configurations. In the third configuration (Tables S1e3 in Sup-
porting Material) the maximum tested concentration is 2e4 times
(depending on the gas) higher than the maximum calibration
concentration. In subsequent configurations, only the classification
of acetone gets worse, falling to 75 and 73.3%, then to 55.6 and
6

finally to 28.6% in the weakest configuration (i.e. only two training
points and a testing concentration 50 times larger than the
maximum calibration concentration). All other gases are classified
correctly, even at concentrations 60 times higher than the upper
calibration limit (8, 10, 40 and 60 times higher for hydrogen,
ammonia, ethanol and hydrogen sulfide, respectively). The risk for
acetone to confusewith ethanol could be seen qualitatively in Fig. 4,
and obviously a shorter and more distant calibration range in-
creases the probability for misclassification.

The graphs next to the confusion matrices show the true con-
centration on the X axis, and the concentration estimated by the
multisensor system on the Y axis. Each configuration shows three
points more than the previous one, for each gas (the points taken
from training and added to testing). Since the sensors are very
stable and thus the results are repeatable, the points may overlap.
Round colored dots indicate that the gas has been correctly clas-
sified, while crosses indicate misclassifications.

As configurations change by losing a calibration concentration
(Fig. 6 aeg, corresponding to Tables S1e7 in Supplementary Ma-
terial) i.e. moving the maximum calibration concentration away
from the test points, the quantification gets worse.

In the last three configurations, the points at higher concen-
trations deviate more from the diagonal. The multisensor system
obviously better quantifies measurements close to the calibration
range. A reduced calibration (fewer training points) is reflected on
all points, not only on the most distant ones: in Fig. 6eeg, for
example, all the red points relating to H2S deviate more and more,
not only because they are further away from the trained interval,
but also because the calibration is done with fewer points and is
therefore less accurate.

To better understand the trend of the concentration error as a
function of the configuration (i.e. the calibration range and the
distance of the test points from it), the error made by the multi-
sensor on each point is presented for each gas in Fig. 7. The seven
graphs in each panel (aee, each relating to a gas) refer to the seven
configurations used (Tables S1e7, Supporting Material). Here, the
vertical green lines indicate the training concentrations used to
calibrate the system, and the light-green background indicate the
calibration range. Test points outside the calibration interval are
indicated as dots or crosses. The colored round dots indicate
correctly classified points, while the crosses indicate misclassified
points, in the same way as in Fig. 6. Colored dots and crosses, to be
read on the left scale, indicate the symmetric absolute percentage
error calculated using the gas concentration estimated by the
multisensor system. Since three repetitions were made for each
measurement, three symbols (which may overlap) are present at
each test concentration. The black squares and lines, to be read on
the right scale, are the percentage of correct classification at that
test concentration.

Notably, in Fig. 7 the points of the three repetitions of each
measure in some cases are quite distant from each other. This can
be explained by the fact that the 8-dimensional regression greatly
amplifies any small distance, although the response differences are
small.

The points do not always have the same trend as the calibration
range narrows and thus moves away from them. An increased error
was expected as the distance increases. However, classification and
regression in eight dimensions are operations that introduce
random statistical errors that can be comparable or even larger
than those intrinsic to the resistive sensors.

All gases show a perfect classification and a low error in the top
three configurations of each panel. Four gases are correctly classi-
fied in all configurations, whereas acetone is misclassified
(confused with ethanol) when the measurement is too far from the
calibration interval (at a concentration three times higher than the



Fig. 6. Confusion matrices (left) and estimated concentrations of gases versus their true concentrations (right), corresponding to the configurations with low concentration
calibration ranges (Tables S1e7 in Supplementary Material).
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calibration limit). Hydrogen sulfide has a measurement incorrectly
classified in the penultimate configuration, probably because of a
statistical error, since only one of the three repetitions is mis-
classified. Nevertheless, it is correctly classified in the last config-
uration, albeit a more difficult condition, at a concentration of 60
times higher than the maximum calibration concentration (2.4 vs
0.04 ppm). Ammonia is correctly classified up to a concentration of
10 times higher than the upper limit of the calibration range (300 vs
30 ppm), ethanol 40 times higher (6000 vs 150 ppm) and hydrogen
up to 8 times more (400 vs 40 ppm). Thus, the only gas that has
classification problems is acetone when the testing points are at
concentrations of ten times higher than the calibration interval
(2520 vs 252 ppm).

In the final and worst configuration, the error in the concen-
tration estimation is 34.0, 17.6, 41.1, 41.1 and 57.5% for acetone,
7

ammonia, ethanol, hydrogen and hydrogen sulfide, respectively, for
an overall error of 39.0%. However, it should be remembered that
the multisensor works up to concentrations of 60 times higher than
the upper calibration limit.

3.6. Classification of gas and estimation of its concentration below
the trained range

The system was also tested for concentrations below the cali-
bration range, with only four configurations (Tables S8e11, Sup-
plementary Material) and the results are shown in Fig. 8.

The confusion matrices show that ethanol classification en-
counters problems already with the easiest configuration.

In themore difficult configurations, also hydrogen and ammonia
are classified in part incorrectly, while acetone and hydrogen



Fig. 7. Symmetric absolute percentage error of concentration estimations for each gas,
as the calibration concentration range is reduced, for concentrations higher than the
maximum calibration concentration.
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sulfide are always classified correctly. All the misclassified gases in
the four matrices are confused with acetone.

The graphs next to the confusion matrices in Fig. 8 show that
many symbols are further away from the diagonal than those in the
first configurations in Fig. 6, meaning that concentrations below the
calibration range are more difficult to estimate than those above.
This is also evident from the average error reported above each
graph.

To better understand the trend of the error as a function of the
configuration, the error made by the multisensor on each point is
8

calculated and shown in Fig. 9. In many cases the error increases as
the calibration range moves away from the test points. The three
points for each repeated measurement seem in general reproduc-
ible (overlapping or very close to each other). The plots in Fig. 9
clearly show that the performance of the multisensor system de-
creases as the testing concentrations move away from the calibra-
tion interval. With the shortest and farthest training range (bottom
plot in each panel, worst condition), the classification is correct in
93.3% of cases (100% for all gases, but 66.7% for ethanol).

Three gases (ammonia, ethanol and hydrogen) can be mis-
classified, especially at much lower concentrations than their
trained range. Ethanol is always misclassified at its lowest con-
centration (20 times lower than the calibration range) and in one
single case at 150 ppm (bottom plot of Fig. 9c, when the lowest
concentration of the calibration range was 600 ppm), while
hydrogen is sometimes misclassified at its lowest concentration
(10 ppm). Ammonia is partially misclassified in one case at its
lowest concentration (7 times lower than the calibration interval),
while acetone and hydrogen sulfide are never misclassified down
to their minimum test concentration, respectively of 30 and 20
times lower than the calibration range limit.

In the worst configuration (the lowest graph in each panel) 116
out of 120 points are classified correctly, for a percentage of 96.7%.

The symmetric mean absolute percentage error in this config-
uration is 20.4, 6.6, 16.8, 11.1 and 40.6% relatively for acetone,
ammonia, ethanol, hydrogen and hydrogen sulfide without ac-
counting for the four misclassified points (on which the error
makes no sense). The average error over all gases is 19.3%.

3.7. Comparison of the concentration estimations outside the
trained range

Previous sections have shown that the system classifies well the
gases, both at much higher (60 times higher) and much lower (30
times lower) concentrations than the calibration limits. The esti-
mation of the gas concentrations is also good, with a relatively
small SMAPE. In both classification and quantification, the perfor-
mance of the multisensor system is better at concentrations above
the upper limit of the calibration range than below the lower limit.

Fig. 10 compares the extensions at lower and higher concen-
trations. The concentrations (x axis) were normalized to the lowest
calibration concentration (in the graph on the left) and the highest
(in the graph on the right) so that the gases could be compared.

Fig. 10 clearly shows that the trends on the two sides of the
calibration interval are not symmetrical. On the right it tends to the
expected U shape (the right half of a U), while on the left the error is
larger and does not show any conceivable trend, depending more
on the specific gas. This discrepancy can be explained by the
intrinsic asymmetry in the response of the resistive sensors that
make up the sensing system: as the distance from the lower limit of
the calibration range increases (i.e. concentration goes towards
zero), the multisensor system approaches the intrinsic limit of
detection of the resistive sensors.

3.8. Comparison with scientific literature

A comprehensive comparison of the multisensor performance
investigated here with that of the devices in the literature is diffi-
cult, since the electronic noses based on metal oxide nanowires are
a recent field of study and there are still few papers reporting
quantitative results [41].

However, Table 3 reports the results of the devices most similar
to the multisensor fabricated and studied in this work.

The table shows that the multisensor are the best within the
calibration range, but are also good outside the calibration range,



Fig. 8. Confusion matrices (left) and estimated gas concentration versus true gas concentrations (right), at concentrations lower than the calibration range.
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Fig. 9. Symmetric absolute percentage error of concentration estimates for each gas, as a function of the calibration concentration range and the distance from it, for concentrations
lower than the minimum training concentration.
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Fig. 10. Symmetric mean absolute percentage error of concentration estimates for each gas, as a function of the distance from the calibration range (normalized respectively to the
lower and upper limit of the calibration interval).

Table 3
Comparison between the performance of the multisensor manufactured and those of the devices in the literature.

Materials Gas or sample detected Concentration
(ppm)

Method Classification
(%)

Concentration error (%) Ref.

SnO2 þ Ag, Pt CH3COCH3, NH3, H2, H2S, C2H5OH 0.02e12,600 SVM 100 14.3 [17]
SnO2 þ Ag H2S, H2, NH3, C2H5OH, CH3COCH3 0.25e10,000 SVM 100 15.3 [18]
NiO H2, CO, CO2, C2H5OH 5e10,000 SVM 100 14.8 [19]
SnO2 þ Pt CH3COCH3, benzene, C2H5OH, H2,

toluene
0.1e100 SVM 100 14.1 [35]

ZnO, CuO NWs
þ Pd, Ag

H2, CO, NO2 200 LDA 95 No [42]

SnO2 H2, CO, NO2, C2H5OH, CH3COCH3,
NH3, toluene

1e50 SVM 94.3 24.5 [43]

CeSnO2 CH3COCH3, NH3, CO, C2H5OH, H2,
toluene

1e50 KNN, Extra
Trees, MLP

100 36.0 [44]

SnO2 CH3COCH3, NH3, C2H5OH, H2, NO2 5e250 SVM 100 7.6 [45]
ZnO 95 9.2
ZnO NH3, CO2, H2S 0.5e1000 RF 99.8 No [46]
ZnO, SnO2, TiO2 þ Au cheese not applicable PLS 82.05 not applicable [47]
SnO2, CuO þ Au cheese not applicable ANN 84.1 not applicable [48]
SnO2 fish, pork not applicable SVM 95.2 not applicable [49]
SnO2 chicken not applicable RF 95.42 not applicable [50]
SnO2 breath not applicable XGBoost 52.1 not applicable [51]
SnO2 þ Pt, Ag CH3COCH3, NH3, C2H5OH, H2, H2S 0.02e12,600 SVM 100 6.9 (inside the calibration range) This work

96 31.7 (25 times higher than calibration)
93 38.6 (20 times lower than calibration)
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both at concentrations up to 25 times higher and at concentrations
down to 20 times lower than the calibration interval, especially
regarding gas classification.

4. Conclusions

An innovative multi-sensor system based on resistive sensors
working in the thermal gradient from an integrated heater has been
used. The system, consisting of two chips, each with four sensors
based on metal-decorated SnO2 nanowires, was tested to measure
five reducing gases (acetone, ammonia, ethanol, hydrogen, and
hydrogen sulfide). The device, completely home-made, light, and
portable (smaller than a smartphone), was able to distinguish all
the tested gases and estimate their concentrations. When used for
measurement of concentrations within the calibration range, the
system showed excellent performance with 100% correct classifi-
cations and an average concentration error of 6.9%.
11
The purpose of this work, however, was to find out how much
the calibration range could be reduced while maintaining good
sensor performance. The results showed that even after training
the systemwith few points (down to only two points for each gas),
the system worked very well with 98% correct classifications and
16.4% average error for concentrations of more than six times
higher than its trained range, and with 96% correct classifications
and 31.7% average error for concentrations up to 25 times higher
than its calibration range. Below the calibration range, however,
system performance decreases, with 93% correct classifications and
38.6% mean error up to concentrations 20 times lower than its
calibration limit.

The experiments showed that with a simple and fast calibration
step, the sensing system was able to classify and quantify all the
tested gases over a wide range of concentrations. These results
show that the miniaturized sensor system with support vector
machine algorithms can be calibrated quickly with a few points but
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still can provide good performance, both in terms of classification
and quantification.
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