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Abstract
Context: Visceral (VAT) and subcutaneous adipose tissue (SAT) function as endocrine organs capable of influencing metabolic health across 
adiposity levels.
Objective: We aimed to investigate whether metabolites associated with VAT and SAT impact metabolic health through metabolite 
concentrations.
Methods: Analyses are based on 1790 participants from the population-based Rhineland Study. We assessed plasma levels of methionine (Met), 
branched-chain amino acids (BCAA), aromatic amino acids (AAA), and their metabolic downstream metabolites with liquid chromatography-mass 
spectrometry. VAT and SAT volumes were assessed by magnetic resonance imaging (MRI). Metabolically healthy and unhealthy phenotypes 
were defined using Wildman criteria.
Results: Metabolically unhealthy participants had higher concentrations of BCAA than metabolically healthy participants (P < 0.001). In meta-
bolically unhealthy participants, VAT volumes were significantly associated with levels of L-isoleucine, L-leucine, indole-3-lactic acid, and indole-
3-propionic acid (in log SD units: β = 0.16, P = 0.003; β = 0.12, P = 0.038; β = 0.11, P = 0.035 and β = −0.16, P = 0.010, respectively). Higher 
concentrations of certain BCAA and AAA-downstream metabolites significantly increased the odds of cardiometabolic risk markers. The relation 
between VAT volume and cardiometabolic risk markers was mediated by BCAA (indirect effects 3.7%-11%, P = 0.02 to < 0.0001), while the ef-
fect of VAT on systemic inflammation was mediated through higher kynurenine concentrations (indirect effect 6.4%, P < 0.0001).
Conclusion: Larger volumes of VAT in metabolically unhealthy individuals are associated with altered concentrations of circulating BCAA and 
AAA-downstream metabolites, increasing the odds of cardiometabolic risk markers. This suggests that these metabolites are involved in the 
mechanisms that underlie the relationship of abdominal VAT with metabolic health.
Key Words: branched-chain amino acids, aromatic amino acids, metabolites, cardiometabolic risk markers, visceral adipose tissue, subcutaneous adipose 
tissue
Abbreviations: 3-IAA, indole-3-acetic acid; 5-HIAA, 5-hydroxyindole-3-acetic acid; 5-HT, serotonin; AAA, aromatic amino acid; BCAA, branched-chain amino 
acid; BMI, body mass index; DA, dopamine; HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homeostasis model assessment of insulin resistance; hsCRP, 
high-sensitivity C-reactive protein; I3A, indole-3-carboxaldehyde; ILA, indole-3-lactic acid; IPA, indole-3-propionic acid; Kyn, kynurenine; KYNA, kynurenic acid; 
OR, odds ratio; Phe, phenylalanine; ROI, region of interest; SAT, subcutaneous adipose tissue; T2D, type 2 diabetes; Trp, tryptophan; Tyr, tyrosine; VAT, visceral 
adipose tissue; XA, xanthurenic acid.

Obesity is worldwide one of the major risk factors for car-
diovascular diseases, type 2 diabetes (T2D), different types of 
cancer, and a high rate of mortality (1, 2). However, there is 
a growing awareness that obesity is a heterogeneous condi-
tion, and that risk profiles for metabolic and cardiovascular 
disease vary widely among individuals with the same body 
mass index (BMI). Thus, risk stratification of individuals ac-
cording to their metabotype, that is, grouping according to 
similarities in metabolic profile, becomes crucial (3, 4) Among 
individuals with high BMI, a subset can be considered meta-
bolically healthy as they have a healthy metabolic profile char-
acterized by high insulin sensitivity, favorable lipid profile, low 

pro-inflammatory cytokine levels, and normal blood pressure. 
Conversely, there are also individuals who are metabolically 
unhealthy despite a low BMI (5, 6). The variation of meta-
bolic health across obesity groups is mainly due to differences 
in abdominal fat distribution (7) such as visceral (VAT) and 
subcutaneous abdominal adipose tissues (SAT) (8). Larger 
SAT and VAT have been associated with future conversion to 
metabolically unhealthy from a healthy phenotype (9). One 
important mechanism by which VAT and SAT are involved in 
the progression from a metabolically healthy to a metabolically 
unhealthy phenotype is by changes in the functionality of the 
adipocytes through their ability to expand (10). Hypertrophic 
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adipocytes are characteristic of an unhealthier mechanism of 
adipocyte expansion. They cause a cascade of metabolic dys-
function by promoting insulin resistance and glucose intoler-
ance and they induce inflammation by secreting high levels of 
pro-inflammatory cytokines (11, 12). Furthermore, the higher 
release of free fatty acids by hypertrophic adipocytes leads 
to hepatic lipid accumulation and hypertriglyceridemia (13). 
Nevertheless, the connection between abdominal fat and meta-
bolically unhealthy phenotype is yet not totally understood 
and could be explained by other factors such as metabolomic 
biomarkers. Metabolomics has emerged as a powerful tool 
for assessing perturbations in metabolic pathways and for 
determining biomarkers that are associated with specific health 
conditions or diseases. Metabolomic biomarkers are a measure 
of exposure and susceptibility to specific outcomes and allow us 
to classify at-risk/diseased individuals (14). It has been shown 
that there are differences in circulating levels of branched-chain 
amino acids (BCAA) and aromatic amino acids (AAA) across 
metabolic phenotypes (15-17). Furthermore, BCAA and AAA 
have been associated with metabolic abnormalities and obesity 
in cross-sectional studies (18, 19), and could predict the de-
velopment of diabetes (20, 21) and cardiovascular diseases in 
longitudinal studies (22).

Evidence from animal and human adipose tissue studies 
suggests that the adipose tissue is an important determinant 
of BCAA and AAA oxidation and metabolism (23-25).

In particular, the route of tryptophan (Trp) catabolism 
through the kynurenine (Kyn) pathway degrades Trp into 
several metabolites with toxic and inflammatory effects. The 
kynurenine pathway can be upregulated in the adipose tissue by 
activating indoleamine 2,3-dioxygenase (IDO) (24, 25), a rate-
limiting enzyme that breaks down Trp into downstream prod-
ucts such as Kyn, kynurenic acid (KYNA) and xanthurenic acid 
(XA) (26). Thus, increased activity of the kynurenine pathway 
in the adipose tissue is reflected in the higher circulation of toxic 
Trp-derived metabolites. On the other hand, gene expression of 
enzymes involved in the catabolism of BCAA in the adipocytes 
(23, 27, 28) reportedly decreases mainly in VAT compartments 
(23), which leads to a significant increase in circulating levels of 
BCAA in persons with high levels of VAT.

To our knowledge, few studies have investigated the rela-
tionship between abdominal adipose tissue and methionine 
(Met). Two animal studies showed that a diet restricted on Met 
was associated with a reduction of VAT accumulation and hep-
atic triglyceride synthesis. Furthermore, in the VAT adipocytes, 
lipogenesis and fatty acid oxidation increased, and there was 
an improvement in insulin sensitivity (29, 30). Similar results 
were further replicated in humans with metabolic syndrome 
(31). Additionally, some authors showed that the uptake of 
Met was diminished in the VAT of obese subjects, reflecting an 
increased release of Met in the circulation (32, 33). Therefore, 
circulating metabolites could constitute the biological link be-
tween adiposity and metabolic diseases.

Thus, we aimed to understand whether known metabolites 
associated with VAT and SAT impact metabolic health and 
how they are involved in the link between abdominal VAT 
and SAT with cardiometabolic risk markers.

Methods
Study Population
We selected the first 2000 participants from the Rhineland 
Study, who participated between March 2016 to April 2019 

and for whom blood samples and abdominal MRI data were 
available, for further metabolomic analysis as described below.

The Rhineland Study is an ongoing community-based co-
hort study in Bonn, Germany, that started in 2016. One of its 
central aims is to find biomarkers and multimodal biomarker 
profiles to identify individuals at risk for neurodegenerative 
and other age-related diseases. Participants in the Rhineland 
Study are recruited from 2 municipal districts in Bonn and are 
primarily Caucasians of European descent. Inclusion criteria 
are age of 30 years or older and sufficient command of the 
German language to provide written informed consent.

At baseline examination, participants completed an 8-hour 
in-depth multidomain phenotypic assessment of anthro-
pometry, physical activity and fitness, cardiovascular health, 
brain imaging, cognitive testing, neurologic functioning, 
ophthalmologic health and functioning, and other sensory 
systems. No financial incentives were offered for study par-
ticipation (34). The study was approved by the Medical 
Faculty Ethics Committee of the University of Bonn and con-
ducted following the Declaration of Helsinki. We obtained 
informed written consent from all the participants before they 
underwent any of the examinations.

Blood Samples
Overnight fasting plasma samples were collected in 2 × 10 mL 
EDTA tubes from all participants between 7:00 and 9:30 
a.m. and directly processed. The plasma was centrifuged 
within less than 10 minutes after blood withdrawal for 10 
minutes at 2000g at 20 °C (brake of the centrifuge set off to 
avoid platelet activation). Automated aliquoting (Hamilton 
Microlab Star) of the plasma was done within less than 35 
minutes after centrifugation into 500-µL aliquots. All aliquots 
were directly cooled (10 °C) during the process. The aliquots 
were placed into a chest freezer (−80 °C) within less than 45 
minutes after aliquoting.

Targeted Metabolomics
For metabolomics analysis, frozen plasma samples were 
shipped on dry ice to Fondazione Edmund Mach (FEM), in 
Trento Italy. Metabolomics analyses were done in 2 batches, 
with a 7-month time difference between batches.

Liquid chromatography–tandem mass spectrometry (LC-
MS/MS) targeted analyses were performed on 2000 frozen 
plasma samples; all samples were thawed at 4 °C. An aliquot 
of 50  µL was loaded on 96-well plates Ostro (Water) and 
20 µL of an internal standard mix in methanol were added 
(tryptophan-d5, tyrosine-d4, methionine-d4, serotonin-d4, 
kynurenic acid-d5, 5-hydroxyindole-acetic acid-d5 and 
dopamine-d5 at 2.5 ppm; final concentration in the extracted 
and recovered sample: 0.5 ppm).

Ultra-High Performance Liquid Chromatography-
Electrospray Ionization-Triple-Quadrupole-Mass 
Spectrometry Analysis
The detection was performed on a Waters Xevo Triple 
Quadrupole–mass spectrometer (MS) equipped with 
electrospray ionization (ESI) source and coupled on-line with 
an Aquity UHPLC (Waters). The MS operated in positive 
and negative ion modes. Separations were performed on a 
Water UPLC HSST3 (150 × 2.1 mm I.D., 1.8 μm particle size, 
100 Å pore diameter) purchased from Waters. Mobile phase 
A was water containing 0.1% formic acid, mobile phase B 
was acetonitrile with 0.1% formic acid. The gradient started 
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at 5% B and was maintained for 0.5 minutes; then %B was 
increased to 10% at 2.5 minutes, to 15% at 3.5 minutes, to 
25% at 4.5 minutes, to 35% at 5.5 minutes, to 45% at 6.5 
minutes, to 55% at 7 minutes and then to 100% B at 7.5 min-
utes. Final conditions were kept for 3 minutes and then the 
column was re-equilibrated for 4 minutes. The flow rate was 
0.3 mL/min, the injection volume was 2 μL, the column oven 
was set at 40 °C and the sample tray temperature was 5 °C. 
With this method, we are able to quantify 3 BCAAs, L-valine 
(Val), L-isoleucine (Ile), and L-leucine (Leu); as well as 13 aro-
matic amino acids and their metabolic downstream products; 
5-hydroxyindole-3-acetic acid (5-HIAA), serotonin (5-HT), 
indole-3-acetic acid (3-IAA), indole-3-carboxaldehyde (I3A), 
indole-3-lactic acid (ILA), indole-3-propionic acid (IPA), 
kynurenic acid (KYNA), kynurenine (Kyn), xanthurenic acid 
(XA), L-tryptophan (Trp), L-phenylalanine (Phe), L-tyrosine 
(Tyr), dopamine (DA), and L-methionine (Met). Further de-
tails of the methods are described elsewhere (35).

Biochemical and Clinical Measurements
Fasting insulin, high-density lipoprotein cholesterol (HDL-C), 
triglycerides, glucose, and high-sensitivity C-reactive protein 
(hsCRP) were measured on the day of blood withdrawal ac-
cording to standard procedures at the University Hospital 
Bonn (UKB). HsCRP was measured by high-sensitivity 
assay (Dimension Vista System, Siemens Healthcare 
Diagnostics GmbH).

We used the homeostatic model assessment to calculate in-
sulin resistance (HOMA-IR), as glucose levels (mmol/L) × in-
sulin levels (mU/L)/22.5.

Systolic and diastolic blood pressure were measured 3 times 
in sitting position, with 10 minutes intervals, in a resting 
and quiet environment. The mean of the blood pressure was 
obtained from the mean of the last 2 measurements.

Metabolic Health Classification
Metabolic health was defined using Wildman et  al cri-
teria (5), which include 6 cardiometabolic risk markers 
defined as follow: 1)  elevated blood pressure: systolic/dia-
stolic blood pressure ≥ 130/85  mm Hg or antihypertensive 
medication use; 2)  elevated triglyceride level: fasting tri-
glyceride level ≥ 150  mg/dL; 3)  low HDL-C level: HDL-C 
level < 40 mg/dL in men or < 50 mg/dL in women or lipid-
lowering medication use; 4)  systemic inflammation: hsCRP 
level > 0.1  mg/L; 5)  elevated glucose level: fasting glucose 
level ≥ 100  mg/dL or antidiabetic medication use; 6)  in-
sulin resistance: HOMA-IR > 5.13. Metabolically unhealthy 
phenotype was defined when participants had ≥ 2 of the 
above cardiometabolic risk markers, and metabolically 
healthy when < 2 cardiometabolic risk markers were present.

Abdominal Fat Segmentation
Abdominal MR image acquisition was performed using 
a 2-point Dixon sequence at 2 different sites, both with 
identical 3T Siemens MAGNETOM Prisma MR scanners 
(Siemens Healthcare, Erlangen, Germany). Data were ac-
quired during a single breath-hold in a supine position with 
arms at the sides.

Abdominal MRI-fat variables were extracted from the pre-
dicted segmentation maps of the Fat-SegNet pipeline, a fully 
automated deep learning pipeline that accurately segments 
VAT and SAT inside a consistent anatomically defined ab-
dominal region (36).

The segmented area was defined from the lower bound of 
the twelfth thoracic vertebra to the lower bound of the fifth 
lumbar vertebra. We calculated the height of the region of 
interest segmented (height of ROI) measuring the segmented 
slices on the Z-axis.

Total Energy and Protein Intake
We assessed dietary intake with a self-administered semi-
quantitative food frequency questionnaire (FFQ) (37). To 
calculate protein and energy intakes, we used an algorithm 
developed by The Institute of Nutritional and Food Sciences 
at the University of Bonn, utilizing as reference the German 
Food Code and Nutrient Data Base (version 3.02).

Statistical Analysis
We compared differences in the adjusted mean concentration 
of metabolites and clinical characteristics between metabol-
ically healthy and metabolically unhealthy participants with 
analysis of covariance (ANCOVA) adjusting for age, sex, and, 
additionally, BMI.

For further analyses, all metabolite concentrations were 
log-transformed to obtain approximately normal distribu-
tions. We applied rank-based inverse normal transformed due 
to skewness of the metabolite residuals. Outliers in metabol-
ites were identified as concentrations above or below 3 times 
the interquartile range (IQR) before the rank-based inverse 
normal transformation.

We used multivariable linear regression to assess the as-
sociation of VAT and SAT with metabolite concentrations, 
independent of BMI. In every model, we considered single 
metabolites as the dependent variable, and VAT and SAT as 
the main independent variables, adjusting for BMI, age, sex, 
batch effect, and height of the ROI. In additional analyses, 
we further adjusted the linear regression models for dietary 
total energy and protein intake. To account for multiple com-
parisons, we adjusted P values for multiple testing using the 
Benjamini-Hochberg method (38). We evaluated whether the 
association of VAT and SAT with metabolite concentrations 
differed between sexes by including sex-VAT and sex-SAT 
interaction terms in the models.

To analyze the association of metabolite concentration with 
presence of cardiometabolic risk markers we used logistic re-
gression models. We first adjusted for age, sex, BMI, batch 
effect, and smoking. Subsequently, we additionally included 
VAT and SAT to evaluate whether the associations of metab-
olites with cardiometabolic risk markers were independent of 
abdominal adiposity. In additional analyses, we further ad-
justed the logistic regression models for dietary total energy 
and protein intake.

To investigate whether the effects of metabolites on 
cardiometabolic risk markers differed between sexes, we 
added sex-metabolite interaction terms to our models.

The effect sizes from the linear and logistic regression 
models (beta coefficients and odds ratio [OR]) can be inter-
preted as standardized effect sizes due to the inverse rank 
normalization (1-SD increased in log standardized units of 
metabolites). All models were adjusted for age, sex, BMI, 
batch effect, smoking, VAT, SAT, and the height of the ROI.

Mediation Analysis
To investigate whether the association of abdominal fat with 
cardiometabolic risk markers is mediated through circu-
lating metabolites, we performed a causal mediation analysis. 
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Since VAT rather than SAT is strongly associated with higher 
odds of cardiometabolic risk markers, we considered VAT 
as the main independent variable to calculate the direct and 
indirect effect. All models were adjusted for sex, age, BMI, 
batch effect, and SAT. To evaluate the indirect effect, which 
depicts how much of the effect of VAT on cardiometabolic 
risk markers is mediated through metabolite concentration, 
we applied the product method (39). We used bootstrapping 
to assess whether the mediation effect was statistically signifi-
cant (different from zero) (40).

Results
From the 2000 study participants with metabolomics ana-
lyses, we excluded participants with extreme values in me-
tabolite concentration (n = 152) and cardiometabolic risk 
markers (n = 44), as well as those participants without valid 
data on abdominal MRI-fat segmentation (n = 14), leaving 
1790 participants who were included in the analyses. Table 
1 shows the descriptive characteristics of the participants 
stratified by metabolic health phenotypes. Independently of 
age and sex, metabolically unhealthy participants had signifi-
cantly higher concentrations of Val, Leu, Ile, Tyr, Phe, Kyn, 
Kyn/Trp, KYNA, I3A, and lower concentrations of IPA. 
When we further adjusted the mean differences for BMI, only 
concentrations of Val, Ile, and Leu remained statistically sig-
nificantly higher in metabolically unhealthy compared with 
metabolically healthy participants.

Figure 1 depicts the association of VAT and SAT volumes 
with metabolite concentration in metabolic health pheno-
types, independently of age, sex, and BMI. We observed sig-
nificant associations of VAT with Ile, Leu, ILA, and IPA (in 
log standard deviation units per L increase in VAT: β = 0.16, 
P = 0.002; β = 0.12, P = 0.02; β = 0.11, P = 0.02; β = −0.16, 
P = 0.005, respectively), only in metabolically unhealthy par-
ticipants. Findings were also similar after adjustment for total 
diet energy and protein intake (data not shown)

The association of circulating metabolites with the pres-
ence of cardiometabolic risk markers without and with ad-
justment for VAT and SAT are shown in Fig. 2A and Fig. 2B. 
We observed a considerable reduction of the strength of the 
associations of metabolites with cardiometabolic risk markers 
after accounting for abdominal fat and BMI in the models. 
However, levels of some of the BCAA metabolites, such as Ile 
and Leu, remained statistically significantly associated with an 
increased odds of hypertriglyceridemia (OR per 1 SD increase 
in concentration = 1.39 [95% CI, 1.19-1.62]; OR = 1.34 
[95% CI, 1.15-1.56]), low HDL-cholesterol (OR = 1.25 [95% 
CI, 1.08-1.45]; OR = 1.19 [95% CI, 1.03-1.37]), glucose im-
pairment (OR = 1.32 [95% CI, 1.13-1.54]; OR = 1.23 [95% 
CI, 1.06-1.42]), and insulin resistance (OR = 1.95 [95% CI, 
[1.50-2.58]; OR = 1.74 [95% CI, 1.33-2.28]).

After adjusting for BMI and abdominal fat, higher levels 
of Tyr and Phe were associated with a significantly increased 
odds of insulin resistance (OR = 1.83 [95% CI, 1.42-2.36; 
OR = 1.42 [95% CI, 1.10-1.83]), whereas only Trp break-
down products (Kyn, Kyn/Trp, and ILA) were significantly 
associated with higher odds of systemic inflammation. Higher 
levels of ILA were associated with an increased odds of 
hypertriglyceridemia (OR = 1.26 [95% CI, 1.07-1.49]), in-
sulin resistance (OR = 1.38 [95% CI, 1.04-1.82]) and sys-
temic inflammation (OR = 1.26 [95% CI, 1.10-1.44]), but 
with lower odds of low HDL-cholesterol (OR = 0.81 [95% 

CI, 0.69-0.95]). We further observed that higher IPA levels 
were associated with lower odds of glucose impairment 
(OR = 0.80 [95% CI, 0.69-0.92]). Findings were also similar 
after adjustment for total diet energy and protein intake (data 
not shown)

We found no significant sex effects except for the re-
lation between 5-HT and hypertriglyceridemia (Psex-
interaction < 0.001), where per SD increase 5-HT 
concentration the odds of having hypertriglyceridemia de-
creased with 29% (P = 0.002) in women but increased by 
24% (P = 0.027) in men.

Table 2 shows the associations where we found a signifi-
cant mediation effect of metabolite concentrations in the rela-
tionship between VAT and cardiometabolic risk markers. Ile 
and Leu were the main metabolites with significant mediation 
effects for hypertriglyceridemia, low HDL-C, glucose impair-
ment, and insulin resistance. For systemic inflammation, Kyn 
was the only metabolite that showed a statistically significant 
mediation effect, with 6.4% of the effect of VAT volumes on 
the increased risk of systemic inflammation being mediated 
through increases in concentrations of Kyn levels.

Discussion
We found that levels of BCAA metabolites differ between 
metabolically unhealthy and metabolically healthy parti-
cipants, regardless of BMI. Moreover, in metabolically un-
healthy participants, VAT rather than SAT was implicated 
in altered metabolism of some of the BCAA and AAA me-
tabolites. We further observed that independently of abdom-
inal and general adiposity, higher circulating concentrations 
of BCAA and AAA-downstream metabolites were associated 
with a greater likelihood of the presence of cardiometabolic 
risk markers, especially of insulin resistance. Causal analysis 
revealed that several of these metabolites partly mediated 
the link between abdominal VAT and cardiometabolic risk 
markers.

Some previous studies in smaller samples have evaluated 
how metabolites differ across metabolic phenotypes in obese 
individuals, using different criteria of metabolic syndrome 
(41, 42) and metabolically health definition (15, 43) to classify 
healthy and unhealthy status. One study including 78 women 
showed that metabolically unhealthy obese participants had 
higher concentrations of BCAA, Tyr, and Phe compared with 
obese metabolically healthy (41). Likewise, metabolically un-
healthy overweight/obese subjects showed significantly higher 
Kyn levels and Kyn/Trp ratio in comparison with healthy in-
dividuals (42). Other studies, however, found no differences in 
BCAA, Phe, and Tyr levels between metabolically healthy and 
metabolically unhealthy obese subjects (15). Furthermore, 
those metabolites were similarly associated with the odds of 
metabolically healthy and unhealthy phenotypes in obesity 
(43). Our study extended the prior work by demonstrating 
that BCAA metabolites levels are significantly higher in meta-
bolically unhealthy individuals independently of adiposity 
levels in a large cohort study.

We found a significantly stronger effect of VAT than 
SAT on abnormal plasma metabolite levels. This is in line 
with previous studies, performed in 40 to maximally 491 
healthy individuals, showing that VAT rather than SAT 
was associated with plasma BCAA and AAA levels (44-46). 
Moreover, it fits with findings from a longitudinal study of 
diet-induced weight loss, which reported that a decreased 

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/article/107/7/e2896/6553197 by U
niversita degli Studi di Trento user on 20 July 2022



e2900 The Journal of Clinical Endocrinology & Metabolism, 2022, Vol. 107, No. 7

VAT mass was significantly associated with a reduction in 
BCAA levels independently of weight loss after 2 years of 
follow-up (47).

Some studies have investigated abdominal fat tissue–specific 
differences in the up/downregulation of the metabolism of 
BCAA and AAA (23-25). They concluded that mainly in VAT, 
the expression of catabolizing enzymes for BCAA and certain 
AAA is altered. Piro et  al (33) reported that pathologically 
obese people had lower concentrations of BCAA in the VAT 
tissue than healthy participants but had increased production 
of BCAA catabolites. That suggests that an impaired BCAA 
catabolism in VAT boosts higher plasma circulation of these 

metabolites. Moreover, the functionality of adipose tissue can 
also differ across metabolic health phenotypes. Genes related 
to BCAA catabolism reportedly are more downregulated 
in the abdominal adipose tissue of metabolically unhealthy 
obese compared to metabolically healthy obese individuals 
(15, 48). Thus, in the metabolically healthy phenotype, the 
abdominal adipose tissue is characterized by the mainten-
ance of mitochondrial function and absence of inflammation, 
while in the metabolically unhealthy phenotype the adipose 
tissue is more dysfunctional (48). Our results could comple-
ment this approach in a large population-based study since 
we found that only in metabolically unhealthy participants, 

Table 1. Characteristics of the study population.

 Metabolically 
healthy  
(n = 1017) 

Metabolically 
unhealthy  
(n = 773) 

Adjusted for age and sexa Adjusted for age, sex, and 
BMIa

Mean difference  
[95% CI] 

P value  
 

Mean difference  
[95% CI] 

P value  
 

Women, n (%) 621 (58.0) 341 (44.1) −0.7 [−0.9 to −0.6] <0.001 −0.7 [−0.9 to −0.5] <0.001

Age, years (SD) 50.1 (12.4) 60.1 (13.7) 10.3 [9.0 to 11.5] <0.001 10.7 [9.3 to 12.0] <0.001

BMI, kg/m2 (SD) 24.0 (3.4) 27.5 (4.1) 3.6 [3.2 to 4.0] <0.001 3.6 [3.2 to 4.0] <0.001

VAT, L (SD) 1.0 (0.8) 2.3 (1.2) 1.0 [0.9 to 1.1] <0.001 0.4 [0.4 to 0.5] <0.001

SAT, L (SD) 2.6 (1.3) 3.7 (1.6) 1.3 [1.2 to 1.5] <0.001 0.2 [0.1 to 0.3] <0.001

Total energy intake, kcal/day (SD) 2507 (821) 2545 (859) −18.9 [−99 to 61.1] 0.642 −7.2 [−95.4 to 81] 0.873

Protein intake, g (SD) 79.5 (24) 81.4 (26) 0.9 [ −1.5 to 3.3] 0.461 0.8 [−1.8 to 3.4] 0.552

Met, Umol (SD) 11.5 (2.78) 11.5 (2.8) −0.02 [−0.3 to 0.3] 0.87 −0.04 [−0.3 to 0.3] 0.79

Val, Umol (SD) 50.7 (21.3) 54.7 (22.9) 4.6 [2.4 to 6.8] <0.001 2.9 [0.5 to 5.4] 0.02

Leu, Umol (SD) 56.9 (13.8) 62.3 (15.4) 4.3 [2.9 to 5.6] <0.001 2.5 [1.03 to 3.9] 0.001

Ile, Umol (SD) 27.1 (7.2) 30.3 (8.2) 2.6 [1.9 to 3.3] <0.001 1.7 [0.9 to 2.4] <0.001

Tyr, Umol (SD) 32.4 (8.9) 36.2 (9.8) 2.6 [1.6-3.5] <0.001 0.9 [−0.1 to 1.9] 0.09

Phe, Umol (SD) 32.5 (8.0) 34.3 (8.4) 1.1 [0.3 to 1.9] 0.01 0.1 [−0.7 to 1.0] 0.77

DA, Umol (SD) 0.02 (0.01) 0.02 (0.01) −0.0 [−0.0 to 0.0] 0.58 −0.0 [−0.0 to 0.0] 0.27

XA, Umol (SD) 0.3 (0.07) 0.3 (0.07) 0.0 [0.0 to 0.01] 0.16 0.0 [−0.01 to 0.01] 0.54

Trp, Umol (SD) 30.7 (7.5) 31.4 (7.5) 0.6 [−0.1 to 1.4] 0.10 0.2 [−0.6 to 1.0] 0.63

Kyn, Umol (SD) 1.5 (0.6) 1.7 (0.6) 0.09 [0.03 to 0.2] 0.002 0.01 [−0.05 to 0.08] 0.71

Kyn/Trp, Umol (SD) 0.04 (0.01) 0.05 (0.02) 0.0 [0.0 to 0.0] 0.01 −0.0 [−0.0 to 0.0] 0.88

KYNA, Umol (SD) 0.03 (0.01) 0.03 (0.02) 0.002  
[0.0006 to 0.003]

0.007 −0.0 [ −0.0 to 0.0] 0.82

IPA, Umol (SD) 1.4 (0.9) 1.2 (0.8) −0.2 [−0.3 to −0.1] <0.001 −0.9 [−0.2 to 0.01] 0.07

ILA, Umol (SD) 0.8 (0.3) 0.9 (0.4) 0.03 [−0.0 to 0.06] 0.08 0.0 [ −0.03 to 0.04] 0.81

I3A, Umol (SD) 0.05 (0.02) 0.05 (0.02) 0.0 [0.0 to 0.0] 0.01 0.0 [−0.0 to 0.0] 0.11

3-IAA, Umol (SD) 2.02 (1.0) 2.1 (1.2) −0.03 [−0.1 to 0.08] 0.62 −0.03 [ −0.1 to 0.09] 0.58

5-HT, Umol (SD) 0.1 (0.07) 0.1 (0.06) −0.0 [−0.01 to 0.0] 0.27 0.0 [ −0.01 to 0.01] 0.98

5-HIAA, Umol (SD) 0.02 (0.01) 0.02 (0.01) −0.0 [−0.0 to 0.0] 0.12 −0.0 [−0.0 to 0.0] 0.12

Prevalence of cardiometabolic risk factors 

Hypertension, N (%) 248 (24.4%) 656 (84.8%)     

Hypertriglyceridemia,  
N (%)

25 (2.6%) 294 (38.7%)     

Low HDL-C, N (%) 35 (3.4%) 290 (37.5%)     

Glucose impairment, N (%) 34 (3.3%) 279 (36.1%)     

Insulin resistance, N (%) 0 (0%) 103 (13.8%)     

Systemic inflammation, N (%) 197 (20.5%) 550 (72.5%)     

Data are presented as mean (SD) or frequencies (%). Characteristics and mean metabolite concentrations were compared using an ANCOVA test.
aWhen applicable.
Abbreviations: 3-IAA, indole-3-acetic acid; 5-HIAA, 5-hydroxyindole-3-acetic acid; 5-HT, serotonin; DA, dopamine; I3A, indole-3-carboxaldehyde; IPA, 
indole-3-propionic acid; ILA, indole-3-lactic acid; Ile, L-isoleucine; Kyn, kynurenine; Kyn/Trp, kynurenine/tryptophan ratio; KYNA, kynurenic acid; Leu, 
L-leucine; Met, L-methionine; Phe, L-phenylalanine; SAT, subcutaneous adipose tissue; Trp, L-tryptophan; Tyr, L-tyrosine; Val, L-valine; VAT, visceral 
adipose tissue; XA, xanthurenic acid. 
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larger VAT was associated with an increased level of several 
circulating metabolites.

We found that BCAA, AAA, and AAA-downstream me-
tabolites were strongly associated with higher odds of 
cardiometabolic risk markers, independently of the well-
known effects of VAT and SAT. The strongest effects were 
for insulin resistance, mainly by high concentrations of 
BCAA, Tyr, Trp, and XA metabolites. BCAA and certain 
AAA-downstream metabolites have been largely associated 
with insulin resistance in some population studies (20-22), 
suggesting that high concentrations of these metabolites are 
strong markers of an early manifestation of T2D.

To further elucidate possible mechanisms, an animal study 
showed that BCAAs lead to insulin resistance by activation 
of the mechanistic target of rapamycin (mTOR) and P70-S6 
kinase 1 (S6K-1) in exposure to a high-fat diet (49), resulting 
in insulin resistance through the phosphorylation of insulin 
receptor substrate 1 (IRS-1) (50). On the other hand, in a 
human study, it was observed that elevated concentrations 
of BCAA could induce insulin resistance in human skeletal 
muscle by the direct inhibition of muscle glucose transport 
and/or phosphorylation with a subsequent reduction in rates 
of glycogen synthesis (51). Furthermore, the accumulation of 
toxic intermediates from the BCAA oxidation and impair-
ment of mitochondria functionality may also be involved 
in the association between BCAA and insulin resistance 
(50). Moreover, few studies have investigated the mechan-
isms linking AAA with insulin resistance. One study showed 
that beta-cell function is affected by oral Tyr and its derived 
breakdown metabolites such as DA (52). Certain Trp down-
stream metabolites such as XA and KYNA have been asso-
ciated with an impaired production, release, and biological 
activity of insulin. One intermediate pathway of Trp metab-
olism is the Kyn–nicotinamide adenine dinucleotide (NAD). 
Downregulation of the NAD pathway leads to the produc-
tion of XA and KYNA and a decreased formation of NAD 
leads to inhibition of synthesis and secretion of insulin and 
the death of pancreatic beta cells (53).

In addition to insulin resistance, prior epidemiological studies 
have also evaluated a wider number of cardiometabolic risk 
markers as outcomes of impaired metabolite concentrations 
(54, 55). For instance, circulating levels of BCAA and AAA 
metabolites were associated with dyslipidemia, high blood 
pressure (54), and with a higher odds ratio of T2D, metabolic 
syndrome, and dyslipidemia after a 4-year follow-up period 
(55). This fits our observations that higher circulating concen-
trations of BCAA, AAA, and AAA-downstream metabolites 
were not only associated with insulin resistance, but also with 
the presence of other cardiometabolic risk markers, albeit to 
a lesser extent.

We found no sex differences for the associations be-
tween metabolite concentrations and cardiometabolic risk 
markers, except for the association of 5-HT levels with the 
odds of having hypertriglyceridemia. Higher 5-HT levels 
were associated with a significantly lower likelihood of 
hypertriglyceridemia in women, and a significantly increased 
likelihood in men. Serotonin (5-HT) is a metabolite from the 
hydroxylation pathway of Trp catabolism associated with en-
ergy homeostasis, appetite regulation, and depressive symp-
toms. Furthermore, 5-HT also participates in the regulation 
of hepatic lipid balance (56) and induces lipolysis of stored 
triacylglycerol increasing plasma levels of free fatty acids 
and glycerol (57). To the best of our knowledge, there are no 
population-based studies showing sex differences on the as-
sociation of 5-HT levels with hypertriglyceridemia. One pos-
sible explanation, however, could lie in the different genetic 
architecture of 5-HT between men and women which may 
impact the variation on susceptibility to different phenotypes 
(58). Nonetheless, research on the molecular mechanism by 
which 5-HT associates with cardiometabolic risk markers in 
men and women is scarce. Therefore, we can not completely 
exclude that our finding of a sex-dependent association of 
5-HT with hypertriglyceridemia, could have been spurious.

We observed that although BCAA had an abdominal fat–in-
dependent effect on the odds of some of the cardiometabolic 
risk markers, Ile and Leu partially mediate the association 

Figure 1. Association of VAT and SAT with metabolite concentrations stratified by metabolic health phenotypes. Models were adjusted for age, sex, 
BMI, batch effect, height of the ROI, VAT, and SAT simultaneously. Multiple testing was performed using the Benjamini and Hochberg method to adjust 
P values. Abbreviations: 3-IAA, indole-3-acetic acid; 5-HT, serotonin; 5-HIAA, 5-hydroxyindole-3-acetic acid; DA, dopamine; I3A, indole-3-carboxaldehyde; 
IPA, indole-3-propionic acid; ILA, indole-3-lactic acid; Ile, L-isoleucine; Kyn, kynurenine; Kyn/Trp, kynurenine/tryptophan ratio; KYNA, kynurenic acid; Leu, 
L-leucine; Met, L-methionine; Phe, L-phenylalanine; SAT, subcutaneous adipose tissue; Trp, L-tryptophan; Tyr, L-tyrosine; Val, L-valine; VAT, visceral adipose 
tissue; XA, xanthurenic acid.
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of VAT with hypertriglyceridemia, low HDL-C, glucose im-
pairment, and insulin resistance. These results suggest that 
BCAA are associated with metabolic health in 2 ways; acting 
as mediators between the connection of high VAT accumula-
tion and cardiometabolic risk markers, and having an indi-
vidual contribution for a higher odds of cardiometabolic risk 
markers. We also observed that Kyn was the only metabolite 
that partly mediated the association of VAT with systemic in-
flammation. Menni et al (59) analyzed the mediation effect of 
VAT in the association of BCAA with insulin resistance and 
showed that 19.4% to 46.6% of the variance of HOMA-IR 
explained by BCAA metabolites was through high VAT mass. 
Our results, however, support the hypothesis that altered 
metabolite concentrations are a consequence of a disrupted 
metabolism in adipocytes, and biologically, they could me-
diate the relationship between VAT and cardiometabolic risk 
markers.

Several limitations of this study should be considered. 
First, we based our analysis on cross-sectional data, which 
does not allow us to draw causal conclusions on whether 
high VAT volumes are the cause of disruptions in metabolite 
concentrations and whether metabolites have a causal ef-
fect on higher odds of cardiometabolic risk markers. Second, 
we identified metabolites in plasma and did not have tissue-
specific information to draw more precise inferences on the 
effects of VAT and SAT metabolism. As a strength of our 
study, we consider the large and homogenous study popula-
tion, including men and women from a broad spectrum of 
ages. Second, the targeted metabolomic approach performed 
in our study allowed us to quantify a large number of known 
metabolites with high sensitivity and accuracy. In a sensi-
tivity analysis, we found neither influence of total energy 
and total protein intake on the associations of VAT and SAT 
with metabolites concentration, nor in the association of 

Figure 2. Odds ratio of cardiometabolic risk markers per increase in metabolite concentration. A) Logistic regression model adjusted for age, sex, 
smoking status, batch effect, and BMI. B) Additionally, models were adjusted for VAT, SAT, and height of the ROI. The horizontal lines crossing the 
squares and circles shapes represent the 95% CI. Abbreviations: 3-IAA, indole-3-acetic acid; 5-HT, serotonin; 5-HIAA, 5-hydroxyindole-3-acetic acid; DA, 
dopamine; I3A, indole-3-carboxaldehyde; IPA, indole-3-propionic acid; ILA, indole-3-lactic acid; Ile, L-isoleucine; Kyn, kynurenine; Kyn/Trp, kynurenine/
tryptophan ratio; KYNA, kynurenic acid; Leu, L-leucine; Met, L-methionine; Phe, L-phenylalanine; SAT, subcutaneous adipose tissue; Trp, L-tryptophan; 
Tyr, L-tyrosine; Val, L-valine; VAT, visceral adipose tissue; XA, xanthurenic acid. * P value < 0.05, ** P value < 0.01, *** P value < 0.001. Ω P value for 
sex-interaction < 0.001.
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metabolite concentration with the odds of cardiometabolic 
risk markers (data not shown).

This is the first large-scale study highlighting the import-
ance to include the simultaneous analysis in human plasma, 
by liquid chromatography–tandem mass spectrometry, of the 
metabolites belonging to Trp, BCAA, and AAA pathways. 
Several of these, as depicted in Fig. 1, emerged as potentially 
useful clinical markers to understand the link between the ab-
dominal VAT and metabolic health risk markers. We also used 
a validated method to accurately quantify abdominal fat from 
MRI images that enable us to compare the metabolic activ-
ities of VAT and SAT volumes as different fat compartments. 
We considered as outcomes different cardiometabolic risk 
markers (prior state of disease) that allow identifying individ-
uals before the onset of a disease. This study incites the fur-
ther integration of genetic and lifestyle information to help to 
elucidate causal effects of metabolites on cardiometabolic risk 
markers and to understand the mechanism behind changes in 
VAT metabolism impact circulating metabolites.

Conclusion
In summary, we have shown that in metabolically unhealthy 
individuals, VAT is associated with an altered BCAA and 
AAA metabolism, as reflected in circulating concentrations. 
BCAA, AAA, and AAA-downstream metabolites are im-
portant biomarkers in metabolic health abnormalities, and 

they are also partial mediators in the connection between 
VAT and cardiometabolic risk markers. Thus, these metab-
olites may provide a better insight into the biological mech-
anisms that underlie the relationship of abdominal VAT with 
metabolic health.

Financial Support
This work was supported by grants from the JPI HDHL on 
“Biomarkers for Nutrition and Health”, “HEALTHMARK”, 
by the Federal Ministry of Education and Research, Germany 
(grant number 01EA1705B), and the Italian Ministry of 
Education, University and Research, MIUR, (grant number 
CUP D43C17000100006); the “Competence Cluster 
Nutrition Research” funded by the Federal Ministry of 
Education and Research (FKZ: 01EA1809C); and the 
Deutsche Forschungsgemeinschaft (DFG, German Research 
Foundation) under Germany’s Excellence Strategy (EXC 
2151–390873048) and through SFB1454—project number 
432325352.

Author Contributions
O.R.X. contributed to the study concept and design, analysis, 
and interpretation of the data, drafting and revising the manu-
script. A.A. implemented the metabolomic analysis, contrib-
uted to the interpretation of data, and critical revision of the 

Table 2. Mediation effect of metabolites in the relation of VAT with cardiometabolic risk factors.

Cardiometabolic  
risk markers 

Metabolite Direct effect  
(95% CI) 

Indirect effect  
(95% CI) 

Proportion mediated, %  
(95% CI) 

P value 

Hypertriglyceridemia Ile 0.053  
(0.04 – 0.06)

0.004  
(0.002 – 0.01)

6.5  
(3.1 – 11.0)

<0.001

 Leu 0.054  
(0.05 – 0.06)

0.002  
(0.0008 – 0.001)

4.03  
(1.6 – 8.0)

<0.001

 ILA 0.055  
(0.05 – 0.06)

0.009  
(0.00007 – 0.002)

1.7  
(0.3 – 4.0)

0.02

Low HDL-C Ile 0.044  
(0.03 – 0.05)

0.003  
(0.001 – 0.01)

6.7  
(2.0 – 14.0)

0.002

 Leu 0.045  
(0.003 – 0.08)

0.002  
(0.0001 – 0.004)

3.7  
(0.2 – 9.0)

0.02

Systemic inflammation Kyn 0.037  
(0.02 – 0.04)

0.002  
(0.0007 – 0.005)

6.4  
(2.0 – 11.0)

<0.001

Glucose impairment Ile 0.036  
(0.02 – 0.05)

0.003  
(0.002 – 0.01)

8.8  
(3.2 – 18.0)

<0.001

 Leu 0.037  
(0.02 – 0.05)

0.002  
(0.0003 – 0.001)

4.6  
(0.7 – 11.0)

0.02

 IPA 0.036  
(0.02 – 0.05)

0.002  
(0.0007 – 0.001)

6.3  
(1.9 – 13.0)

0.004

Insulin resistance Ile 0.009  
(0.006 – 0.013)

0.001  
(0.0005 – 0.002)

11.0  
(5.8 – 18.0)

<0.001

 Leu 0.010  
(0.008 – 0.013)

0.0007  
(0.0002 – 0.001)

6.5  
(2.5 – 12.0)

0.002

 ILA 0.011  
(0.007 – 0.015)

0.0003  
(0.00002 – 0.001)

2.5  
(0.2 – 6.0)

0.02

 Tyr 0.010  
(0.007 – 0.013)

0.0008  
(0.0003 – 0.002)

7.8  
(3.2 – 14.0)

<0.001

 Phe 0.011  
(0.007 – 0.01)

0.0003  
(0.00002 – 0.001)

2.6  
(0.4 – 6.0)

0.02

Models for mediation analysis were adjusted for age, sex, BMI, VAT, SAT, height of ROI, and batch effect.
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