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A B S T R A C T

Forest disturbances have a major impact on ecosystem dynamics both at local and global scales. Accordingly, it
is important to acquire objective information about the location, nature and timing of such events to improve
the understanding of their impact, update forest management policies and disturbance mitigation strategies. To
this date, remotely sensed data have been widely used for the detection of stand replacing disturbances (SRD)
such as windthrows and wildfires. In contrast, less effort has been devoted to the detection of non-stand
replacing disturbances (NSRD), typically characterized by slower and gradual temporal dynamics. To address
this gap, we propose a method for the automated detection of both SRD and NSRD. The proposed method can
detect both past and recent disturbances, with a monthly temporal resolution, in a near real-time fashion by
processing new images as they are acquired. Differently from existing approaches that handle the time series
as a one-dimensional (1D) temporal trajectory, the method analyzes the sequence of images by organizing
them in a two-dimensional (2D) grid-like structure. This representation allows us to model both the intra- and
inter-annual variations of the time series taking advantage of the annual cyclical nature of the plant phenology.
The method has been tested on study areas attacked by bark beetles achieving a user’s accuracy and producer’s
accuracy of 0.91±0.08 and 0.81±0.07 (with 95% confidence intervals) for the disturbed areas, respectively.
1. Introduction

Forests are continuously affected by changes that can be grouped
under the umbrella term of forest disturbances. Locally, disturbances af-
fect both the environment and the social and economic spheres (Hlásny
et al., 2019; Brecka et al., 2018). In terms of global scale effects,
disturbances affect the carbon flux between the biosphere and the
atmosphere (Hirsch et al., 2004; Kurz et al., 2008). In recent years,
the frequency and severity of disturbances have increased (Seidl et al.,
2017) with climate change likely being one of the drivers of such
increment (Seidl et al., 2011; Senf and Seidl, 2021). Therefore, it is im-
portant to gather objective information regarding the nature, location
and extent of forest disturbances (Tyukavina et al., 2017) to estimate
damages, define possible mitigation strategies and update management
policies. On a larger scale, modeling disturbances is important to
estimate their effect on carbon fluxes (Liu et al., 2011; Gong et al.,
2022) in the context of carbon accounting programs (Kurz et al., 2009;
Waterworth and Richards, 2008).

Remote sensing is an ideal technology for forest disturbances moni-
toring. In the past, due to data scarcity and accessibility related both to
costs and technical limitations (Turner et al., 2015), most approaches
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for forest disturbance detection were based on change detection meth-
ods that use pairs or few images (Coops et al., 2007; Frolking et al.,
2009). In recent years, the open data policies for archives (e.g., Landsat
archive) and new data sources (e.g., ESA Sentinel program) consider-
ably increased the data availability. This has led to an increased interest
in multitemporal information analysis (Bovolo and Bruzzone, 2015)
applied to forestry applications (Wulder et al., 2019). In this regard,
several methods exploit time series for forest disturbance detection,
especially considering archival datasets such as Landsat (Kennedy et al.,
2010; Zhu and Woodcock, 2014; Hermosilla et al., 2015; Giannetti
et al., 2020). Most of these approaches use annual composites generated
using different approaches (White et al., 2014) which however strongly
limit the temporal resolution of the detection. Other studies (Zhu and
Woodcock, 2014) exploit all the available images to explore seasonal
trends using sinusoidal time series models enabling the near real-time
disturbance detection at sub-annual temporal resolution.

When considering near real-time disturbance detection, the
S2 constellation can potentially be a superior open data source com-
pared to Landsat (Lima et al., 2019) due to the shorter revisit time (up
to two-three days at mid latitudes) and smaller pixel spacing (up to
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10 m). In particular, the S2 spatial resolution allows for the detection of
smaller patches of disturbances and it is more suited to the fragmented
forests of central and southern Europe. Moreover, the shorter revisit
time is suited for a continuous monitoring (Mulverhill et al., 2023) at
sub-annual scale. Several methods for forest disturbance detection with
S2 images have been developed (Löw and Koukal, 2020; Francini et al.,
2021; Huo et al., 2021), including some using both S2 and Landsat
data (Zanetti et al., 2022; Zhang et al., 2021). In this regard, great
interest has been devoted to the harmonized Landsat Sentinel (HLS)
dataset which provides a collection of Landsat and S2 harmonized
images (Claverie et al., 2018; Mulverhill et al., 2023).

While several approaches can detect non-stand replacing distur-
bances (NSRD), most of the effort has been devoted to stand replacing
disturbances (SRD). This is due to both design choices and the greater
availability of SRD reference data that make them a favored choice
for validation (Coops et al., 2020). SRD have very distinctive spectral
signature dynamics and spatial patterns associated with a clear change
of land cover. Therefore, SRD can be easily separated from natural
amplitude variations associated with the phenological cycle (Coops
et al., 2007). In contrast, NSRD exhibit gradual and small magnitude
variations, with varying degrees of impact on forests (Coops et al.,
2020). This characteristic increases the difficulty of discriminating true
NSRD from noise and natural phenological oscillations (Gao et al.,
2020). Accordingly, there is the need of methods that exploit the high
revisit frequency of satellites constellation (e.g., S2) to model vegeta-
tion dynamics to detect NSRD. In particular, it is important to consider
the annual/seasonal repetitive nature of the time series associated
with the phenological cycle. This can be taken into account fitting
temporal trajectories that model the cyclical nature (e.g., sinusoidal
curve). However, the fitting can require very long time series to reliably
estimate the model parameters (Francini et al., 2022), it may overfit
in the case of missing data and it can be a computationally intensive
operation (Zhu and Woodcock, 2014).

The aim of this paper is to address these challenges by developing
and validating a method for the automated detection of SRD and NSRD
using multi-year optical time series. The method is based on a represen-
tation of the sequence of images in a grid-like structure (Bruzzone and
Bovolo, 2014; Bertoluzza et al., 2017) that enables the analysis of the
time series in a 2D domain representing both the intra- and inter-annual
variations. This representation exploits the annual cyclical nature of
plants to reduce the impact of phenology and analyzes both variations
(i.e., both directions of the 2D grid) to increase the sensitivity to subtle
NSRD. Moreover, by analyzing also the intra-annual variations, the
method can perform the monitoring at sub-annual scale, processing
new images as they are acquired, thus improving the temporal res-
olution (i.e., monthly) as opposed to methods based only on annual
images (Hermosilla et al., 2015; Francini et al., 2021).

2. Materials

2.1. Study area

The study area covers the entire forested area (390 000 ha) of the
province of Trento, Italy, located in the Southern Alps (Fig. 1(a)). It
is characterized by a very complex and heterogeneous terrain mor-
phology with altitudes ranging from 65 to 3764 m above sea level.
In terms of species composition, 67% of the forests are conifers dom-
inated, i.e., Silver fir (Abies alba Mill.), Norway spruce (Picea abies
(L.) Karst.), European larch (Larix decidua Mill.), Austrian pine (Pinus
nigra J.F.Arnold) and Scots pine (Pinus sylvestris L.), with the remaining
33% being composed by broadleaves including European beech (Fagus
sylvatica L.), Hop hornbeam (Ostrya carpinifolia Scop.), oaks (Quercus
sp.) and maples (Acer sp.) (Rodeghiero et al., 2010).
2

Fig. 1. Dataset overview: (a) Location of the province of Trento (in green) with the S2
tiles in blue. (b) Position of the point-based dataset with the sample units labeled as
attacked showed as orange circles. (c–d) Location and detail of the four study sites of
the polygon-based dataset. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

2.2. Reference data

To evaluate the performances of the proposed method, we exam-
ined the NSRD related to the infestation of the Norway spruce bark
beetle (Ips typographus L.), which spread following the Vaia storm that
struck the North East of Italy in October 2018 (Giovannini et al.,
2021). Two reference datasets were created by photointerpretation of
Planet basemaps (PB) monthly composites (Planet Team, 2017–), which
were derived from images captured by the PlanetScope constellation
between June 2018 and August 2022. The photointerpretation was
carried out by three interpreters, including two remote sensing experts
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and a forester, to ensure independent evaluations and avoid decision
ties (McRoberts et al., 2018). The first dataset is point-based and serves
to provide a quantitative validation of the method’s performance. The
second dataset is polygon-based and aims at providing a qualitative
evaluation from an operational point of view.

2.2.1. Point-based dataset
The aim of the point-based dataset is to provide a statistically

rigorous accuracy assessment. It was therefore designed and collected
as a probability sample of points. First, to ensure adequate spatial
coverage of the study area (see Fig. 1(b)) while limiting the amount
of manual analysis required (Olofsson et al., 2014), we chose to focus
exclusively on areas dominated by Norway spruce, which is the species
attacked by bark beetle. This was done also since no fine spatial detail
tree species map is available making it impossible to select all Norway
spruce areas. Consequently, we used a forest inventory map of the
province of Trento that defines the tree species composition, in terms
of proportion, of each parcel. We selected all the forest parcels with
at least 95% of Norway spruce (i.e., ≈26 000 ha of the total 130 000
ha of Norway spruce in the province). Although this is a map which
is regularly updated by the forest service and assumed to have only
small errors, no data regarding map accuracy are available. At least
some minor errors should be expected. The statistical analysis of the
point dataset was therefore conditional on the selected area. Thus, the
Norway spruce dominated area was our sampling frame and in the
statistical analysis it was assumed to be defined without error. Note
that an implication of this assumption is that the results will be valid
only for the sampled area. The parcels were systematically sampled
using a uniformly spaced grid of points every 400 m. Each point was
independently inspected by the three interpreters and classified as ei-
ther attacked or healthy. Despite the photointerpretation process being
independent, the interpreters maintained continuous communication
to address and discuss challenging cases. The resulting classifications
were combined using a majority rule approach, which yielded 1278
(94.7%) healthy points and 71 (5.3%) attacked points. Fig. 1(b) shows
the sample distribution with most of the outbreaks concentrated in the
northeastern portion of the province.

2.2.2. Polygon-based dataset
The polygon-based dataset was developed to evaluate the method’s

performance in detecting individual outbreaks and determining the
timeliness of detection compared to manual photointerpretation. These
aspects are crucial from the forest practitioners perspective, as they
offer a measure of the method’s effectiveness in real-world scenarios.
We selected four study sites (Fig. 1(c)) covering a total area of 1600
ha, each with distinct terrain morphology characteristics. Please note
that although these study sites are not representative of the entire study
area, they are situated in its northeastern part, which has been the
most severely affected by outbreaks. The manual delineation process
was conducted as follows: (1) one interpreter delineated all polygons,
(2) the other two interpreters reviewed the reference data to add
any missing polygons and update polygon boundaries, and (3) each
polygon was assigned the earliest date (year and month) when the
attack was detectable in the PB. The delineation activity resulted in
194 polygons with a minimum, maximum and average area of 0.02,
1.36 and 0.22 ha, respectively (Fig. 1(d)). These statistics highlight the
more fragmented nature of forest disturbances in the Alps compared to
other ecosystems (Hermosilla et al., 2019). Finally, randomly sampled
healthy forest areas were used to create 63 polygons for comparison
3

with attacked areas.
2.3. Multispectral satellite imagery

The optical images were acquired by the S2 constellation from June
2018 to August 2022. Although S2 imagery was chosen as the primary
data source for this study due to the advantages discussed in Section 1,
it is worth noting that other data sources, such as Landsat or Planet,
can also be used. We considered the months from June to October
for each year for a total of 857 images split across four S2 tiles: (1)
T32TPR (288 images), (2) T32TPS (287 images), (3) T32TQR (141
images) and (4) T32TQS (141 images). The rationale of using mainly
summer and early autumn images was to avoid false positives due
to snow or the effects of large variations in the start and end dates
of the growing season. Moreover, in temperate climates most of the
changes associated to NSRD occur during the growing season (Coops
et al., 2006). All images were processed with sen2cor to level 2A, i.e,
bottom of atmosphere (BOA). Cloud masking was applied with the
s2cloudless algorithm (Skakun et al., 2022) (with cloud probability
threshold set to 0.2). Finally, the Scene Classification Map provided
by the LA processing was used to discard all the areas of no interest
(e.g., snow and water pixels).

3. Methods

The proposed method comprises two main parts: (1) generating
temporally spaced composites to enable uniform comparisons across
different years, and, (2) performing a grid-based time series analysis
to detect variations associated with forest disturbances.

3.1. Monthly composites generation

To detect disturbances, we analyze the time series searching for de-
viations in the phenological trajectory of a vegetation index (i.e., spec-
tral index). Note that also one or multiple spectral bands can be
employed. Let 𝐈 =

{

𝐼𝑡
}𝑁
𝑡=1 be the time series of 𝑁 images where 𝑡 is

the acquisition date.
The proposed method analyzes the multi-year time series by per-

forming comparisons across multiple years (i.e., inter-annual analysis).
To this end, we compute composites obtaining a fixed number of images
per year, thus strongly simplifying the inter-annual analysis. Compos-
ites have several advantages (Paris et al., 2020) and have been widely
used in the detection of disturbances (Hermosilla et al., 2019; Giannetti
et al., 2020) and other forest changes such as afforestation (Cavalli
et al., 2023; Francini et al., 2023). However, these methods mainly use
annual composites limiting the temporal resolution of the detection. In
order to monitor intra-annual (i.e., within the individual year) varia-
tions, we must consider sub-annual composites. Accordingly, we select
a monthly time span for each composite given the temporal dynamics
of NSRD and the revisit frequency of the S2 constellation. Compared
to existing methods that update the disturbances map yearly, the use
of monthly composites substantially improve the temporal resolution
of the method. Let us focus on the images acquired during month 𝑚
and year 𝑦, i.e., the images for which 𝑡𝑠𝑦,𝑚 ≤ 𝑡 ≤ 𝑡𝑒𝑦,𝑚 where 𝑡𝑠𝑦,𝑚 and 𝑡𝑒𝑦,𝑚
are the start and end dates of the month. The composite image 𝑋𝑦,𝑚
is generated working pixel-by-pixel and collapsing all the values of the
pixel into one according to a median operator :

𝑋𝑦,𝑚 = 
({

𝐼𝑡|𝑡
𝑠
𝑦,𝑚 ≤ 𝑡 ≤ 𝑡𝑒𝑦,𝑚

})

. (1)

The result is a time series of monthly composites 𝐗 =
{

𝑋𝑦,𝑚
}

, (𝑌 𝑠 ≤
𝑦 ≤ 𝑌 𝑒, 6 ≤ 𝑚 ≤ 10) where 𝑌 𝑠 and 𝑌 𝑒 are the first and last year of
the time series, respectively, and 𝑚 ranges from the 6th (i.e., June) to
the 10th (i.e., October) month of the year. The values of masked pixels
(e.g., due to clouds) are computed as the average of the previous and
following composites or by using the nearest available composite if the

same pixel is masked for more consecutive months.
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Fig. 2. Example of temporal vegetation index profiles showing on the left Y-axis
(warm colors) the temporal trajectories of two consecutive years with a bark beetle
attack starting at the beginning of the summer of 2020. The right Y-axis (cold colors)
shows the values of the difference between adjacent months (intra-annual) for the
2020 trajectory and between the 2020 and 2019 series (inter-annual). The right Y-axis
is inverted.

Fig. 3. Monthly composites time series (from June to October and from 2018 to 2022)
represented in a grid format (rows correspond to years and columns to months). Each
position in the grid represents a monthly composite. The red dashed rectangle shows
an example of inter-annual analysis for one month (i.e., August). The green dashed
rectangle shows the monthly maps 𝐌 (result of the inter-annual analysis) that are
analyzed by the intra-annual analysis.
4

3.2. Time series analysis

In the second part, we explore the monthly composites time series
𝐗 searching for changes in the spectral index that can be attributed
to disturbances. To ensure applicability across the entire study area,
the method must be able to handle complex scenarios without relying
on condition-dependent parameters. However, detecting changes in 𝐗
between adjacent months (e.g., by computing the difference between
𝑋2020,6 and 𝑋2020,7) is strongly influenced by the speed and severity of
the disturbance, that may vary across space. In the case of NSRD, Fig. 2
shows that when considering short time spans, only a small variation
of the spectral index can be seen. Furthermore, following a substantial
impact observed during the initial phase (Coops et al., 2020), the
magnitude of variation gradually diminishes as the attack approaches
its conclusion. Consequently, if the disturbance goes undetected during
the phase of largest magnitude, it is very likely that the intra-annual
analysis will fail to identify it. To address this issue, we investigate
the information content of 𝐗 using both intra-annual and inter-annual
(e.g., 𝑋2020,7, 𝑋2021,7,… ) analyses. This can be visually represented
by organizing the composites in a grid representation where each
composite is assigned to a position defined by two coordinates, i.e.,:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑋2018,6 𝑋2018,7 … 𝑋2018,10
⋮ ⋮ ⋱ ⋮

𝑋2020,6 𝑋2020,7 … 𝑋2020,10
⋮ ⋮ ⋱ ⋮

𝑋2022,6 𝑋2022,7 𝑋2022,8

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(2)

According to this representation, shown in Fig. 3, we can perform the
analysis both in the vertical direction (inter-annual analysis) and in the
horizontal direction (intra-annual analysis).

3.2.1. Inter-annual analysis
First, we analyze each month individually comparing the values

of the composites across the different years. In this way we exploit
the annual cyclical nature of the dynamics of trees by comparing
composites that correspond to the same time of the year, and therefore
phenological phase, thus neutralizing or reducing its effects on the dis-
turbance detection. This has two additional advantages. Firstly, in the
case of disturbances, the difference computed over this interval tends to
have larger absolute values than when computed over a shorter period,
also for NSRD. Secondly, as the spectral values decrease compared
to the previous year, the difference becomes more pronounced over
time, as the changes from previous months accumulate (as shown by
the light cyan bars in Fig. 2). An extended comparison between inter-
and intra-annual analysis is presented in the Results and Discussion
sections.

Let us consider a generic month 𝑚′ and the subset of composites
𝐗𝑚′ =

{

𝑋𝑦,𝑚=𝑚′
}

, (𝑌 𝑠 ≤ 𝑦 ≤ 𝑌 𝑒). First, we compute the set of backward
differences 𝐗𝐵𝐷 =

{

𝑋𝐵𝐷
𝑦,𝑚′

}

, ((𝑌 𝑠 + 1) ≤ 𝑦 ≤ 𝑌 𝑒) at the pixel level,
where 𝑋𝐵𝐷

𝑦,𝑚′ = 𝑋𝑦,𝑚′ − 𝑋𝑦−1,𝑚′ . We then identify the first year 𝑦𝑓 that
exhibits a negative variation in the spectral index, compared to the
previous year, with an absolute value greater than a threshold 𝑇𝐻 .
Such a negative variation can be indicative of a disturbance.

Year 𝑦𝑓 − 1 is the last one before the vegetation index drops and
𝑋𝑦𝑓−1,𝑚′ can be considered as a reference value in pre-disturbance con-
ditions. We use this value to compute 𝐗𝑅𝐷 =

{

𝑋𝑅𝐷
𝑦,𝑚′

}

,
(

𝑦𝑓 ≤ 𝑦 ≤ 𝑌 𝑒),
where 𝑋𝑅𝐷

𝑦,𝑚′ = 𝑋𝑦,𝑚′ −𝑋𝑦𝑓−1,𝑚′ represents the vegetation index variation
from the reference year 𝑦𝑓 − 1. It is reasonable to expect that after
most disturbances, the vegetation index values will remain anomalously
small for several years. Five years is a typical temporal range used to
check for recovery after the disturbance event (Kennedy et al., 2012;
White et al., 2017; Hermosilla et al., 2019) in temperate climates.
Accordingly, we consider as disturbed areas only the pixels that show a
negative variation of the index from the reference year for at least three
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Table 1
Set of rules for the detection reliability.

Level Rule

Low Detection for one month
Medium Detection for two months in the same year
High Detection for more than two months or two different years

years. Given the first year of detection 𝑦𝑑 , the pixel is considered as
disturbed if 𝑋𝑅𝐷

𝑦,𝑚′ ≤ 𝑇𝐻 ∀ 𝑦𝑑 ≤ 𝑦 ≤ 𝑦𝑑+3. Note that if 𝑌 𝑒−𝑦𝑑 < 3, i.e., if
the number of years available in the time series after the first detection
is less than three, or zero in the case of near real-time detection, the
condition is still considered fulfilled. The analysis results in a map 𝑀𝑚′

in which each pixel represents the first year 𝑦𝑑 of detection or zero
otherwise. By applying the inter-annual analysis to each month, we
obtain the set of maps 𝐌 =

{

𝑀𝑚
}

, 6 ≤ 𝑚 ≤ 10.

3.2.2. Intra-annual analysis
In this second part, we analyze set 𝐌 at the pixel level searching

for temporal inconsistencies to reduce the false positives. In particular,
we consider two assumptions:

Temporal Continuity If a disturbance is detected at a given month
𝑚′, all the following months should also show a detection, i.e.,:

𝑀𝑚′ > 0 ⟺ 𝑀𝑚 > 0, ∀ 𝑚 > 𝑚′. (3)

Temporal Order If a disturbance is detected at a given month 𝑚′ at a
given year, the year of detection of the following months should
be equal to or smaller than the first one, i.e.,

𝑀𝑚′ > 0 ⟺ 𝑀𝑚′ ≥ 𝑀𝑚, ∀ 𝑚 > 𝑚′. (4)

These assumptions are based on the prolonged and continuous impact
in time of disturbances which should be reflected in the maps of 𝐌.

We estimate the first year (Fig. 4) and month of detection for each
pixel in the set 𝐌 and compute a detection reliability metric based
on three levels. The three levels are based on how long the candidate
disturbance has been detected, as shown in Table 1. The reliability met-
ric is important because the method processes new images as they are
acquired, which increases sensitivity to fluctuations in the time series
that are not associated with phenological deviations (e.g., atmospheric
haze) and can lead to false positives. Since false positives cannot be
removed until at least one new composite is generated and processed,
this metric helps evaluate the detection reliability from an operational
point of view.

3.3. Experimental setup

3.3.1. Spectral indices
We tested four indices commonly used for disturbance detection,

namely the NDVI, modified soil adjusted vegetation index 2 (MSAVI2),
normalized burned ratio (NBR) and normalized difference red edge
(NDRE) (Verbesselt et al., 2010; Matricardi et al., 2013; Hermosilla
et al., 2015; Eitel et al., 2011). This is to analyze the impact of different
spectral bands such as near-infrared (NIR), short wave infrared (SWIR)
and red edge, on the method performances. To assess the sensitivity of
the method to the threshold parameter, we considered different values
of 𝑇𝐻 , specifically 𝑇𝐻 = {−0.05,−0.1,−0.2}.

3.3.2. Evaluation strategies
The quantitative evaluation was performed on the points-based

dataset described in Section 2.2. We used the framework outlined
in Olofsson et al. (2014) for our evaluation, which is based on the esti-
mators presented in Card (1982). In contrast to the common approach
of reporting confusion matrix results in terms of sample unit counts,
we used an estimator to estimate the proportion of area for each cell
5

Fig. 4. Qualitative example of the method’s output: (a) Planet basemap (August 2022),
(b) first year of detection map.

in the confusion matrix. Specifically, we estimated the proportion of
true negatives, true positives, false negatives and false positives, where
negatives and positives correspond to the undisturbed and disturbed
classes, respectively. It should be noted that three interpreters per-
formed the photointerpretation in this work, which is on the lower end
of the recommended number (McRoberts et al., 2018) and fewer than
some studies (e.g., Powell et al., 2004). This relatively small number of
interpreters can introduce bias into the estimators of proportions and
of variance and standard error (McRoberts et al., 2018). For further
details, including all used estimators, please refer to the Appendix and
to Olofsson et al. (2014). In the following, we report the used metrics
with the number referring to the specific estimator in the Appendix
reported as [Eq: #]. We estimated the overall accuracy (OA), user’s
accuracy (UA), producer’s accuracy (PA) [Eqs.: (A.1), (A.2), (A.3)]
and their respective CIs [Eqs.: (A.6), (A.7), (A.8)]. Furthermore, we
estimated the disturbed area (DA) of Norway spruce forests attacked by
bark beetle [Eq: (A.5)], for the sampling frame of 26 000 ha, and cor-
responding CI [Eq: (A.9)]. For systematic sampling, the standard error
estimators from which the CIs are constructed under the assumption
of simple random sampling, usually overestimate the error (Olofsson
et al., 2014). Consequently, the chosen sampling design has likely
resulted in conservative estimates of CI.

The results of the NDVI/𝑇𝐻 = −0.1 combination, which provided
the largest values of accuracy metrics among all the tested combina-
tions, were compared with the respective estimates of OA and UA, PA
and area of the disturbed class of the other combinations. The compar-
ison was performed by two-sided t-tests (alpha = 0.05) testing the null
hypothesis of no significant difference between the reference estimate
(NDVI/𝑇𝐻 = −0.1) and the other respective estimates. In each test it
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was assumed that the estimates of the two combinations that were com-
pared, were independent. However, the compared estimates are likely
correlated because the various classifications were performed on the
same sample of observations. Ignoring the likely covariance between
the estimates will result in inflated variances of the differences, smaller
values of the test statistics and thus conservative results of the tests,
i.e., rejection of fewer null hypotheses than the chosen value of alpha
should indicate. On the other hand, since several tests were performed
on the same dataset and we wanted to observe if the tendency of a more
accurate classification of the reference combination was statistically
significant, the testing problem can be characterized as simultaneous
inference. When multiple tests are performed simultaneously, there will
be an increased probability of erroneous rejection of the null hypothe-
ses. A Bonferroni correction is often performed, which compensates for
the increased probability of erroneous rejection by adjusting the value
of alpha (Rupert, 1981). For all practical purposes, we considered that
the effect of ignoring the covariances of the estimates of the compared
classification combinations tended to balance the effect of ignoring the
increased probability of erroneous rejection on the test statistics.

Qualitative polygon level results are presented only for the NDVI/
𝑇𝐻 = −0.1 combination. Three cases were considered: (1) true positive
olygon (TPP) when, for a reference polygon, at least one pixel is a
rue positive; (2) false negative polygon (FNP) when, for a reference
olygon, all corresponding pixels are false negative; (3) false positive
olygon (FPP) for groups of connected pixels not included in any of the
eference polygons (i.e., all pixels are false positives). We considered a
olygon as TPP even with only one true positive since we are interested
n modeling the capabilities of the method in predicting the location of
ach outbreak (Radoux and Bogaert, 2017). Such results are presented
n terms of number of TPPs, FNPs, FPPs and the corresponding area
tatistics. To validate the timeliness of the detection, we compared the
stimated date of detection (year and month) with the one obtained by
hotointerpretation for each true positive pixel.

. Results

.1. Point-based dataset quantitative results

Table 2 shows the numerical results for the point-based dataset.
verall, NDVI/𝑇𝐻 = −0.1 achieved the most balanced results in terms
f UA (0.91) and PA (0.81), among all index/threshold combinations.
he combination MSAVI2/𝑇𝐻 = −0.05 achieved a similar estimate
or the PA (0.81) but a lower value for the UA (0.79). NBR/𝑇𝐻 =
0.02 achieved comparable results to NDVI/𝑇𝐻 = −0.1 in terms of
A but a significantly smaller value of PA. Finally, the NDRE/𝑇𝐻 =
0.01 combination resulted in the smallest values of accuracy metrics,
ompared to the other combinations.

In terms of disturbed area, the estimates range from 1359 to 2183 ha
ith half-width CIs ranging from 217 to 340 ha. The NDVI/𝑇𝐻 = −0.1
nd MSAVI2/𝑇𝐻 = −0.05 combinations provided the largest estimates.
ith respect to the NDVI/𝑇𝐻 = −0.1 area estimate, all other indexes

ave at least one combination that resulted in no significant difference
ccording to two-sided t-tests. Table 2 provides the estimated DRP, in
erms of percentage, ranging from 5.3% to 8.5%.

.2. Polygon-based dataset qualitative results

Focusing on the NDVI/𝑇𝐻 = −0.1, Fig. 5 compares the distribution
f the areas of all the reference polygons with the TPPs, FNPs and FPPs
learly highlighting how the last two groups are noticeably smaller
average area of 0.07 ha and 0.06 ha for FNPs and FPPs, respectively)
ompared to the reference average area of 0.22 ha. In terms of detection
imeliness, Fig. 6 compares the year and month of detection with the
eference values for all the 2578 disturbed pixels. The year difference
Fig. 6a) shows that there was agreement for 87.2% of the true positive
ixels with almost all of the remaining pixels showing a ±1 year error.
6

he month difference (Fig. 6b) is shown only the for 2247 pixels in
greement for the year of detection. The detection month of 86.9% of
he 2247 pixels (75.7% of all disturbed pixels) was within ±1 month
ith respect to the reference value.

To further evaluate the differences between intra- and inter-annual
nalysis, we extended the analysis presented in Section 3.2 and Fig. 2.
n details, we extracted the average temporal trajectory of all disturbed
194) and undisturbed polygons (63). We then computed the 5th per-
entile of all the intra- and inter-annual differences for each polygon.
he distribution of the percentile values of all the undisturbed and
isturbed polygons, for both the intra- and inter-annual differences, are
hown in the box plots of Fig. 7.

. Discussion

Table 2 indicates that NDVI/𝑇𝐻 = −0.1 provided the largest values
f UA and PA. Nevertheless, it should be noted that the accuracy
etrics values of multiple combinations showed no significant dif-

erence as highlighted by the t-test. Therefore, it is not possible to
efinitively determine a single optimal index, in terms of accuracy
etrics, based on the available results. Having said that, the literature
resents conflicting findings with different works that identify various
ndices or spectral bands as the most effective (Hermosilla et al.,
015; Huo et al., 2021; Bárta et al., 2022; Huo et al., 2023). Hence,
t could be beneficial to integrate multiple indices according to an
nsemble approach, exploiting the properties of the different parts of
he spectrum. Nonetheless, operational considerations should be taken
nto account. Unlike NBR and NDRE, which rely on 20 m resolution
ands in S2 imagery, the NDVI uses NIR bands with a smaller pixel size
f 10 m, providing higher native spatial detail. Additionally, the bands
sed for computing the NDVI are more common, compared to SWIR
nd red edge, in very fine spatial resolution satellite images (e.g., Planet
magery).

To better understand how well the method generalizes over the
ntire province of Trento, we compared the estimated DRP with the
stimate of the forest service. Thus, the assumption of this statistically
nformal comparison was that the proportion of disturbed areas would
e similar in the sampled study area and in all Norway spruce forests
n the province. The estimated area of attacked Norway spruce of the
orest service for the entire province by October 2022 is 9000 ha of
he total 130 000 ha which roughly corresponds to 6.9% of the total
rea. The proportion of sample units labeled as disturbed by the photo
nterpreters is 5.3%. The results of Table 2 show that for 10 out of
2 combinations the DRP is in the ±1.5% range of the forest service
stimate. This supports the hypothesis that the point-based dataset
s well representative of the entire province. Accordingly, while we
cknowledge that the dataset is not fully representative of the impact
f bark beetle attacks on the entirety of Trentino’s Norway spruce
opulation, it provides a reasonable approximation from an operational
tandpoint. This is highlighted by Fig. 1(b) that shows how the dataset
s distributed over the entire province.

The box plots of Fig. 7 confirm that the inter-annual analysis accen-
uates the spectral variation of disturbed areas to a greater extent than
he intra-annual analysis. Moreover, when compared to the undisturbed
alues, inter-annual values of disturbed areas show noticeably different
alues whereas the intra-annual difference is closely similar to the
ormer, strongly limiting the separability of disturbed and undisturbed
reas. For undisturbed areas, no relevant difference exists between
ntra- and inter-annual difference values. This demonstrates that the
nter-annual strategy emphasizes disturbed areas while minimizing the
mplification of natural spectral variations in healthy vegetation.

Nevertheless, the inter-annual analysis can be affected by a delay
r anticipation of the beginning and end of the growing season. For
xample, a delay in the season start can be detected as a disturbance
t the beginning of the season. This is because the vegetation index
f the usual growing season starting month will show smaller values
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Table 2
Estimates of accuracy, disturbed area (DA) with corresponding CIs and disturbed reference proportion (DRP) of the point-based dataset for all the
index/threshold combinations.

Spectral index TH value OA UA PA Estimated DA [ha] Estimated DRP [%]

Undisturbed Disturbed Undisturbed Disturbed

NDVI
−0.05 0.90 ± 0.01 0.97 ± 0.01 0.35 ± 0.09 0.92 ± 0.01 0.64 ± 0.10 1660 ± 340 6.4
−0.1 0.98 ± 0.01 0.98 ± 0.01 0.91 ± 0.08 0.99 ± 0.01 0.81 ± 0.07 2068 ± 217 8.0
−0.2 0.96 ± 0.01 0.96 ± 0.01 0.90 ± 0.13* 0.99 ± 0.01 0.34 ± 0.07 1513 ± 276 5.9

MSAVI2
−0.05 0.97 ± 0.01* 0.98 ± 0.01 0.79 ± 0.10* 0.98 ± 0.01 0.81 ± 0.07* 2183 ± 287* 8.5
−0.1 0.97 ± 0.01* 0.97 ± 0.01 0.92 ± 0.09* 0.99 ± 0.01 0.59 ± 0.08 1747 ± 246* 6.8
−0.2 0.95 ± 0.01 0.95 ± 0.01 0.82 ± 0.24* 0.99 ± 0.01 0.13 ± 0.04 1359 ± 292 5.3

NBR
−0.05 0.76 ± 0.01 0.97 ± 0.01 0.12 ± 0.04 0.77 ± 0.01 0.53 ± 0.11 1407 ± 315 5.5
−0.1 0.90 ± 0.01 0.98 ± 0.01 0.37 ± 0.08 0.91 ± 0.01 0.77 ± 0.09* 1657 ± 324 6.4
−0.2 0.97 ± 0.01* 0.98 ± 0.01 0.87 ± 0.10* 0.99 ± 0.01 0.66 ± 0.08 1776 ± 246* 7.0

NDRE
−0.05 0.89 ± 0.01 0.98 ± 0.01 0.32 ± 0.08 0.90 ± 0.01 0.71 ± 0.09* 1574 ± 320 6.1
−0.1 0.96 ± 0.01 0.98 ± 0.01 0.74 ± 0.12 0.98 ± 0.01 0.69 ± 0.08 1754 ± 272* 6.8
−0.2 0.95 ± 0.01 0.96 ± 0.01 0.92 ± 0.16* 0.99 ± 0.01 0.18 ± 0.04 1394 ± 286 5.4

* Identifies the estimates (OA and UA, PA and area of the disturbed class) that according to two-sided t-tests (alpha = 0.05) are not significantly
different from those of the NDVI/𝑇𝐻 = −0.1 combination.
o

compared to the previous year. However, in the following months
such false positive will no longer be detected as the index reaches its
nominal values. Then, due to the intra-annual analysis, the temporal
inconsistency will be eliminated. Focusing on the intra-annual analysis,
the reduction of the number of false positives due to the check for
temporal inconsistencies comes at the expense of a decreased sensi-
tivity to some disturbances. The criteria defined in Section 3.2.2 are
valid if the disturbance has a prolonged impact in time. This is not
the case for disturbances where vegetation shows a quick recovery
(e.g., after drought or frost). In these cases, the proposed method will
detect the disturbance during the event. However, if in the following
months the vegetation recovers sufficiently, the disturbance will no
longer be detectable and will be discarded by the intra-annual analysis.
Indeed, there is a trade-off between the sensitivity of the method to
short-lived disturbances and to false positives. It is worth noting that
full vegetation recovery usually takes from one to three years after
drought (Huang et al., 2018) and frost (Vitasse et al., 2019) events.
However, given the increasing risk of such events (Lamichhane, 2021),
the dynamics of short-lived disturbances should be further investigated
to improve their detection.

The results of Fig. 6 show that, in terms of timeliness of de-
tection, the proposed method can achieve comparable results to the
photointerpretation. It is noteworthy that both the proposed method
and the photointerpretation use monthly composites, thus limiting the
validation of the near real-time detection to the temporal resolution
of one month. While monthly mapping represents an improvement
compared to annual-scale methods, this temporal resolution may be
at the upper limit of the time frame required for the planning and
actuation of proactive forest management measures (Bárta et al., 2022;
Huo et al., 2021). Imagery with a shorter revisit interval, such as the
harmonized S2 and Landsat datasets like HLS (Claverie et al., 2018) and
Sen2Like (Saunier et al., 2022) could be used to improve the temporal
resolution. However, this comes at the expense of a degradation of
the S2 resolution to 30 m in HLS or the upscaling of Landsat data
in Sen2Like. Another improvement could be a hierarchical approach
where, after the proposed method has estimated the year and month of
detection, the individual images of the period of interest are analyzed
searching for the first image where the attack is detectable.

6. Conclusion

The analysis of multispectral time series data in the form of monthly
composites enables the mapping of historical and recent NSRD with
sub-annual temporal resolution. The proposed method has the potential
to provide a continuous and near real-time mapping of disturbances.
This is made possible by leveraging both inter- and intra-annual analy-
7

sis. The former analyzes inter-annual temporal trends, while the latter
Fig. 5. Box plots of the areas of the reference, true positive (TPPs), false negatives
(FNPs) and false positives (FPPs) polygons obtained with NDVI/𝑇𝐻 = −0.1. The number
f polygons of each category is show in brackets on the x axis.

Fig. 6. Difference between the estimated and reference detection dates (year and
month) for all the true positive pixels in terms of year and month. The month difference
is computed only for the 2247 pixels where estimated and reference year corresponds.



Remote Sensing of Environment 299 (2023) 113852D. Marinelli et al.

e
o
t
q
m
i
m

t
a
m
a
s
u
s

C

i
i
W
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nables mapping at a sub-annual temporal resolution and the removal
f temporal inconsistencies. This conclusion is supported by the quanti-
ative results obtained from the point-based dataset. Furthermore, the
ualitative results of the polygon-based dataset demonstrate that the
ethod can achieve comparable results to manual photointerpretation

n terms of timeliness of detection. From an operational standpoint, the
ethod detected 86.1% of the individual attacks.

The continuous and near real-time mapping of this method enhances
he characterization of temporal dynamics of NSRD. This knowledge
nd the use of the method in an operational scenario could assist forest
anagers in implementing management practices to improve resilience

nd response strategies to effectively react to changes. Future studies
hould focus on further improving the temporal resolution and to better
nderstand how early NSRD effects can be predicted from spaceborne
ensors.
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Appendix. Accuracy Estimators

In this section, the estimators used for the accuracy metrics and
areas are provided. Let 𝑢 and 𝑑 be the undisturbed and disturbed
classes, respectively. Let 𝐴𝑡𝑜𝑡 be the total area (26 000 ha in this work)
and 𝑊𝑢 and 𝑊𝑑 be the proportions of area mapped as undisturbed and
disturbed, respectively. The confusion matrix can be reported in terms
of sample units count (Table A.1a) and area proportion (Table A.1b).
𝑛𝑖𝑗 , with (𝑖, 𝑗) ∈ {𝑢, 𝑑}, is the counts of sample units with map class 𝑖
and reference class 𝑗 with 𝑖 and 𝑗 representing the rows and columns
f the confusion matrix, respectively. The same notation is used for the
rea proportion 𝑝𝑖𝑗 . The overall accuracy (OA), user’s accuracy (UA) of
ap class 𝑖 and producer’s accuracy (PA) of reference class 𝑗 are:

A =
∑

𝑗∈{𝑢,𝑑}
𝑝𝑗𝑗 , (A.1)

A𝑖 =
𝑝𝑖𝑖
𝑝𝑖⋅

, (A.2)

PA𝑗 =
𝑝𝑗𝑗
𝑝⋅𝑗

, (A.3)

respectively. The poststratified estimator of 𝑝𝑖𝑗 used in this work is:

�̂�𝑖𝑗 = 𝑊𝑖
𝑛𝑖𝑗 . (A.4)

𝑛𝑖⋅

https://doi.org/10.5281/zenodo.8426109
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Table A.1
Confusion matrix reported in terms of sample units count (a) or area proportion (b).

(a) Sample units count

Reference

𝐶𝑙𝑎𝑠𝑠𝑢 𝐶𝑙𝑎𝑠𝑠𝑑 Total

Map 𝐶𝑙𝑎𝑠𝑠𝑢 𝑛𝑢𝑢 𝑛𝑢𝑑 𝑛𝑢⋅
𝐶𝑙𝑎𝑠𝑠𝑑 𝑛𝑑𝑢 𝑛𝑑𝑑 𝑛𝑑⋅
Total 𝑛⋅𝑢 𝑛⋅𝑑

(b) Area proportion

Reference

𝐶𝑙𝑎𝑠𝑠𝑢 𝐶𝑙𝑎𝑠𝑠𝑑 Total

Map 𝐶𝑙𝑎𝑠𝑠𝑢 𝑝𝑢𝑢 𝑝𝑢𝑑 𝑝𝑢⋅ =
∑

𝑗∈{𝑢,𝑑} 𝑝𝑢𝑗
𝐶𝑙𝑎𝑠𝑠𝑑 𝑝𝑑𝑢 𝑝𝑑𝑑 𝑝𝑑⋅ =

∑

𝑗∈{𝑢,𝑑} 𝑝𝑑𝑗
Total 𝑝⋅𝑢 =

∑

𝑖∈{𝑢,𝑑} 𝑝𝑖𝑢 𝑝⋅𝑑 =
∑

𝑖∈{𝑢,𝑑} 𝑝𝑖𝑑

The estimated area of class 𝑗 is:

�̂�𝑗 = 𝐴𝑡𝑜𝑡 × �̂�⋅𝑗 . (A.5)

Since �̂�𝑖𝑗 is an estimate, this is the case also for the reported
ccuracy metrics. Accordingly, CIs are provided. These are computed
s ±1.96

√

𝑉 (𝑥) where 𝑉 (𝑥) is the variance of metric 𝑥. The variance of
OA is estimated as:

𝑉 (ÔA) =
∑

𝑖∈{𝑢,𝑑}
𝑊 2

𝑖
̂UA𝑖(1 − ̂UA𝑖)∕(𝑛𝑖⋅ − 1) (A.6)

The variance of UA of map class 𝑖 is estimated as:

𝑉 ( ̂UA𝑖) = ̂UA𝑖(1 − ̂UA𝑖)∕(𝑛𝑖⋅ − 1) (A.7)

The variance of PA of reference class 𝑗 is estimated as:

𝑉 ( ̂PA𝑗 ) =
1
�̂�2

⋅𝑗

[

𝑁2
𝑗⋅(1 − ̂PA𝑗 )2 ̂UA𝑗 (1 − ̂UA𝑗 )

𝑛𝑗⋅ − 1

+ ̂PA2
𝑗

∑

𝑖∈{𝑢,𝑑},𝑖≠𝑗
𝑁2

𝑖⋅

𝑛𝑖𝑗
𝑛𝑖⋅

(

1 −
𝑛𝑖𝑗
𝑛𝑖⋅

)

∕(𝑛𝑖⋅ − 1)

]
(A.8)

where �̂�⋅𝑗 =
∑

𝑖∈{𝑢,𝑑}
𝑁𝑖⋅
𝑛𝑖⋅

𝑛𝑖𝑗 is the estimated marginal total pixel counts
of reference class 𝑗. 𝑁𝑖⋅ is the total number of pixels of map class 𝑖.
Finally, the standard error for the area proportion estimator is:

𝑆(�̂�⋅𝑗 ) =

√

√

√

√

√

∑

𝑖∈{𝑢,𝑑}

𝑊𝑖�̂�𝑖𝑗 − �̂�2𝑖𝑗
𝑛𝑖⋅ − 1

(A.9)

The CI of the area estimates of class 𝑗 is 1.96 × 𝐴𝑡𝑜𝑡 × 𝑆(�̂�⋅𝑗 ).
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