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Biodiversity loss due to climate change is unquestionable and, in some areas, irreversible. While some species cope less well 

with higher water temperatures, others benefit. A well-known predator in plankton systems is Chaoborus sp.. While this predator 

normally occurs in cycles, its presence is more and more constant throughout all seasons. As a very efficient but also selective 

predator in zooplankton, increased abundance can lead to shifts in the composition and diversity of the zooplankton community. 

These changes in the zooplankton can have lasting effects on nutrient recycling in the food web. For example, resources such 

as nitrogen and phosphorus are used differently by the respective zooplankton genera and are thus less or more available to 

the primary producers. This in turn can lead to changes in the composition of the primary producer communities, resulting in 

a shift in traits of the primary producers. The presence or absence of a predator can thus have a major impact on feedback 

mechanisms in plankton communities. While direct predator-prey effects are well known, there is a lack of knowledge about the 

above-mentioned feedback effects in natural plankton communities. Here, we present experimental data from eight different 

lakes that mainly show the changes in nutrient availability for phytoplankton caused by predator-mediated shifts in zooplankton 

communities. We discuss the resulting community compositions as well as phytoplankton biodiversity and possible implications 

for the food web.
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Space-for-Time-Substitution surveys (SFTS) are commonly used to describe zooplankton community dynamics and to determine 

lake ecosystem health. SFTS surveys typically combine single point observations from many lakes to evaluate the response of 

zooplankton community structure and dynamics (e.g., species abundance and biomass, diversity, demographics and modeled 

rate processes) to spatial gradients in hypothesized environmental drivers (e.g., temperature, nutrients, predation), in lieu of 

tracking such responses over long time scales. However, the reliability and reproducibility of SFTS zooplankton surveys have not 

yet been comprehensively tested against empirically-based community dynamics from long-term monitoring efforts distributed 

worldwide. We use a recently compiled global data set of more than 100 lake zooplankton time series to test whether SFTS 

surveys can accurately capture zooplankton diversity, and the hypothesized relationship with temperature, using simulated 

SFTS surveys of the time series data. Specifically, we asked: (1) to what degree can SFTS surveys capture observed biodiversity 

dynamics; (2) how does timing and duration of sampling affect detected biodiversity patterns; (3) does biodiversity ubiquitously 

increase with temperature across lakes, or vary by climate zone or lake type; and (4) do results from SFTS surveys produce 

comparable biodiversity-temperature relationship(s) to empirical data within and among lakes? Testing biodiversity-ecosystem 

function (BEF) relationships, and the drivers of such relationships, requires a solid data basis. Our work provides a global 

perspective on the design and usefulness of (long-term) zooplankton monitoring programs and how much confidence we can 

place in the zooplankton biodiversity patterns observed from SFTS surveys.
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Jordyn Stoll1, David Costello1

1Kent State University, Biological Sciences, Kent, United States

Harmful algal blooms (HABs) are increasing in frequency and extent globally, in part due to cultural eutrophication supplying 

algae with ample nutrients. Nutrient enrichment experiments (NEEs) are widely used to characterize nutrient limitation in aquatic 

ecosystems. While NEEs provide information about what nutrient(s) are limiting a system from further growth, the underlying 

mechanisms of co-limitation are not thoroughly explored in most NEEs. Theoretical underlying mechanisms of co-limitation 

include community composition shifts, heterotrophic-autotrophic mutualistic relationships and metabolic efficiency associated 

with multiple nutrients in replete supply. We hypothesize that NEEs that measure additional endpoints alongside growth are 

more capable of discerning what underlying metabolic or community level pathways are leading to two nutrients stimulating 

a community additively, and that these experiments have the power to advance co-limitation theory. To assess this hypothesis, 

we conducted a literature review of all ~2500 papers that cite the landmark co-limitation paper, Elser et al. 2007, to determine 

what proportion of aquatic NEE papers are investigating underlying mechanisms of co-limitation. We also analyzed these citing 

papers for consistent co-limitation language use based on Harpole et al., 2011 and Morris and Lewis, 1988. While most aquatic 

ecology researchers are using consistent co-limitation language, preliminary results indicate that <20% of NEE papers report 

on the underlying mechanism of co-limitation, or measure endpoints other than growth. To more holistically understand and 

protect our aquatic resources from HABs, researchers conducting NEEs should consider investigating the specific metabolic or 

community pathways resulting in co-limitation of algal growth.


