
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Qingxia (Jenny) Wang,
University of Southern Queensland, Australia

REVIEWED BY

Nagaraju Yalavarthi,
Central Silk Board, India
Jian Lian,
Shandong Management University, China

*CORRESPONDENCE

Giorgio Checola

giorgio.checola@fmach.it

Pietro Franceschi

pietro.franceschi@fmach.it

RECEIVED 23 August 2024
ACCEPTED 20 November 2024

PUBLISHED 12 December 2024

CITATION

Checola G, Sonego P, Zorer R, Mazzoni V,
Ghidoni F, Gelmetti A and Franceschi P (2024)
A novel dataset and deep learning
object detection benchmark for
grapevine pest surveillance.
Front. Plant Sci. 15:1485216.
doi: 10.3389/fpls.2024.1485216

COPYRIGHT

© 2024 Checola, Sonego, Zorer, Mazzoni,
Ghidoni, Gelmetti and Franceschi. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 12 December 2024

DOI 10.3389/fpls.2024.1485216
A novel dataset and deep
learning object detection
benchmark for grapevine
pest surveillance
Giorgio Checola1*, Paolo Sonego1, Roberto Zorer1,
Valerio Mazzoni1, Franca Ghidoni2, Alberto Gelmetti2

and Pietro Franceschi1*

1Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, TN, Italy,
2Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, TN, Italy
Flavescence dorée (FD) poses a significant threat to grapevine health, with the

American grapevine leafhopper, Scaphoideus titanus, serving as the primary

vector. FD is responsible for yield losses and high production costs due to

mandatory insecticide treatments, infected plant uprooting, and replanting.

Another potential FD vector is the mosaic leafhopper, Orientus ishidae,

commonly found in agroecosystems. The current monitoring approach, which

involves periodic human identification of yellow sticky traps, is labor-intensive and

time-consuming. Therefore, there is a compelling need to develop an automatic

pest detection system leveraging recent advances in computer vision and deep

learning techniques. However, progress in developing such a system has been

hindered by the lack of effective datasets for training. To fill this gap, our study

contributes a fully annotated dataset of S. titanus andO. ishidae from yellow sticky

traps, which includes more than 600 images, with approximately 1500

identifications per class. Assisted by entomologists, we performed the

annotation process, trained, and compared the performance of two state-of-

the-art object detection algorithms: YOLOv8 and Faster R-CNN. Pre-processing,

including automatic cropping to eliminate irrelevant background information and

image enhancements to improve the overall quality of the dataset, was employed.

Additionally, we tested the impact of altering image resolution and data

augmentation, while also addressing potential issues related to class detection.

The results, evaluated through 10-fold cross validation, revealed promising

detection accuracy, with YOLOv8 achieving an mAP@0.5 of 92%, and an F1-

score above 90%, with an mAP@[0.5:0.95] of 66%. Meanwhile, Faster R-CNN

reached an mAP@0.5 and mAP@[0.5:0.95] of 86% and 55%, respectively. This

outcome offers encouraging prospects for developing more effective

management strategies in the fight against Flavescence dorée.
KEYWORDS
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1 Introduction

Among grapevine adversities, Flavescence dorée (FD) is the most

severe phytoplasma disease in Europe and for this reason is subject to

quarantine measures across the European Union (EFSA et al., 2020).

In response to the worsening impact and damages caused by this

harmful phytoplasma, the Italian Ministry of Agriculture, Food

Sovereignty, and Forests redefined emergency phytosanitary

measures in 2023, issuing the Order No. 22/06/2023, No. 4 (G.U.

12/08/2023, n. 188). First discovered in Italy during the early 1970s, it

has since spread to most viticultural regions, with epidemic episodes

peaking at the end of the century (Morone et al., 2007). FD infection

results from the interaction between a phytoplasma and an insect

vector, primarily Scaphoideus titanus (ST), the American grapevine

leafhopper, which is monophagous on Vitis plants (Lessio et al., 2014).

Nymphs appear in May, while adults emerge at the beginning of July.

Both nymphs and adults can acquire the phytoplasma while feeding

on infected plants. Once infected, they remain carriers for the rest of

their lives, transmitting the pathogen from one grapevine to another

(Gonella et al., 2024). Due to its small size, ranging from 4.8 to 5.8

mm, identifying ST without adequate magnification is challenging

even for entomologists. Another emerging vector is Orientus ishidae

(OI), also known as the mosaic leafhopper due to the characteristic

color pattern of its wings (Figure 1) (Gaffuri et al., 2011; Lessio et al.,

2019). Despite the lower transmission efficiency compared to S.

titanus (Lessio et al., 2016), its widespread presence also in other

agroecosystems, such as apple orchards (Dalmaso et al., 2023), make it

a potential concern.

The current management strategy for controlling FD involves

limiting the spread of the vector through the timely application of

insecticides, primarily targeting juveniles, and uprooting the affected

plants to prevent the disease from spreading. However, since it has

been discovered that adults can also acquire and transmit FD very

efficiently, monitoring the dynamics of the ST population has become
Frontiers in Plant Science 02
fundamentally important to determine whether a summer insecticide

treatment is necessary (Alma et al., 2018, p. 201). Surveillance of S.

titanus and O. ishidae adults rely on sticky card traps (Pavan et al.,

2021), which are left in the vineyard for 7-15 days and then manually

checked for the presence of vectors by expert operators. Following

trap collection, insect identification is performed in the laboratory by

using a stereoscopic microscope. This approach, albeit reliable, is time

consuming and represents a bottleneck towards the development of

large scale real-time monitoring.

In recent years, technology advancements in FD management

have involved two main research avenues (Lee and Tardaguila, 2023):
1. The automated monitoring of vector spread using machine

vision techniques on insect traps: such solutions could

significantly enhance disease control by enabling real-

time mapping and generating large datasets of digitized

trap images, allowing for retrospective investigations into

the spread of other potential vectors. Two researchers

(Ding and Taylor, 2016) pioneered the use of

convolutional neural networks (CNNs) for detecting

moths from trap images. Subsequently, several studies

have applied similar algorithms to yellow sticky traps for

various purposes, including monitoring vine pests (Bessa,

2021; Gonçalves et al., 2022), detecting other species of

insects, such as Scirtothrips dorsalis (Niyigena et al., 2023)

and the European cherry fruit fly (Salamut et al., 2023).

Moreover, significant research efforts have been dedicated

to developing easily deployable trap systems for real-time

detection (Bjerge et al., 2021, 2022; Le et al., 2021;

Suto, 2022; Bjerge et al., 2023; Sittinger et al., 2023).

Some manufacturers have made available new smart

traps for the detection of ST adults, e.g., Trapview

(https://trapview.com/) and iSCOUT® COLOR TRAP by

Metos (https://metos.global/en/iscout/). Finally, other
FIGURE 1

Samples of insect vectors captured by yellow sticky traps. The first row represents examples of the ST class, while the second row shows examples
of the OI class.
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studies have leveraged open datasets, such as iNaturalist, to

benchmark state-of-the-art models for multi-species detection

(Ahmad et al., 2022; Kumar et al., 2023; Wang et al., 2023), but

these solutions were not specifically developed for research

grade applications.

2. Vineyard monitoring using imaging techniques on

symptomatic plants: computer vision combined with

multispectral and hyperspectral imaging or remote sensing

has shown promising results for early detection of grapevine

diseases (Silva et al., 2022; Tardif et al., 2022, 2023).

The focus of this study concerns the first line of research,

specifically FD vectors captured by sticky card traps. In this area, the

lack of high-quality datasets necessary for model training represents

the major limitation to the development of automatic monitoring

solutions of ST. In this paper, we address this gap by presenting and

making available a fully annotated dataset of yellow sticky trap

images, with insect identifications carried out by a team of expert

entomologists. The dataset has to be intended as a reference source

for establishing an autonomous and accurate pest identification

system against the FD spread. In addition, we demonstrate its

potential use by benchmarking two state-of-the-art object detection

architectures with different image processing techniques.
2 Materials and methods

2.1 Data collection

The efficiency of a deep learning model depends on the quality

and quantity of data used for the training. Considering the scope of

our investigation, we focused on yellow sticky traps (YST) (Glutor,

Biogard®, 10x25 cm), positioned in vineyards from different sites in

Trentino (northern Italy) from July to November 2023, when ST

adults occur. YST were exposed for a maximum of 14 days.

Due to the practical challenges in sample collection, images

were obtained through four distinct methods (Table 1):
Fron
• photos taken directly in the field;

• images of stored YST (T = 5 ± 1°C), and deceased reared

in s e c t s on empty t r ap s w i th in a con t ro l l ed

greenhouse environment;

• digital scans of YST collected during regular monitoring

activities in the fields;

• photos from a smart trap prototype installed in our

experimental vineyard (Figure 2).
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Digitally scanned YST made the primary contribution to our

dataset since this method of acquisition allowed us to avoid

common camera issues related to external interference, such as

focusing and lighting, while also maximizing resolution. However, it

presented drawbacks such as suboptimal visual conditions due to

the risk of insect squeezing during the scanning process and

possible reflections of nylon bags in which yellow traps are stored.

Regarding the smart trap, the device consists of several

commercial components mounted on a customized printed

circuit board (PCB). Specifically, the diurnal 3-hourly (9:00 AM,

12:00 AM, 3:00 PM, 6:00 PM) time-lapse images have been

captured by the 8 MPixel Raspberry Pi camera module V2

(Raspberry Pi Foundation, Cambridge, UK) connected to the

Raspberry Pi zero W single board computer. Each image consists

of 3280 × 2462 pixels and the final size of the jpg file is about 5

MBytes. A Witty Pi 3 mini clock and power management board

controlled the ON/OFF scheduled sequence. Images were sent back

to the server via WiFi, by means of a Secure Copy Protocol (SCP)

file transfer protocol. These images were repurposed as background

images given the absence of target insects due to mandatory

treatments against the spread of FD.

The final dataset consists of 615 images which also include the

images of 150 traps where the two target insects were not detected.

These were included to add variety so that the network can properly

learn to distinguish the target objects from other insects. Insect

annotations comprise 1329 ST and 1506 for OI, ensuring an almost

class-balanced dataset.
2.2 Data pre-processing

An automated cropping procedure, inspired by (Bessa, 2021),

was implemented using the Python library OpenCV (Bradski, 2000)

to remove unnecessary background information outside of the

yellow trap. The workflow is outlined in Figure 3.

The original images were first converted to the HSV (Hue,

Saturation, Value) color space and then segmented by defining two

yellow thresholds. Subsequently, the algorithm identified contours

in the binary mask image and extracted the largest contour based on

its area. Using the coordinates of the bounding rectangle around

this contour, the cropping operation on the original images

was performed.

Before proceeding with data annotation, enhancement

techniques were applied to the images to improve image quality

and consequently model performance (Ding and Taylor, 2016;
TABLE 1 Structure of the dataset, showing the number of images from each data source and the corresponding class annotations.

Image source Number of images ST annotations OI annotations Number of background images

Field 18 3 101 8

Laboratory 157 473 863 8

scanned 390 853 542 84

smart-trap 50 0 0 50
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FIGURE 3

Flowchart diagram of data pre-processing operations.
FIGURE 2

Smart-trap prototype (A) and its camera framing (B).
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Pang et al., 2022; Suto, 2022). Specifically, brightness, contrast and

sharpness parameters were adjusted to increase insect visibility and

reduce the impact of lighting variations. Using OpenCV, the

addWeighted function modifies brightness and contrast by

calculating the weighted sum of two arrays as: a � image + b �
image + g . We set a = 1:1, b = 10 and g = 0 to meet visual

requirements. Additionally, a sharpening filter was applied using

the filter2D function to enhance image details.
2.3 Object detection models

Object detection tasks perform both localization and class

recognition, allowing to identify multiple objects in a single

image. These algorithms work by drawing bounding boxes

around object targets along with a confidence score, indicating

the likelihood that the bounding box contains the object.

Currently, object detection models consist of Convolutional

Neural Networks (CNNs) (Krizhevsky et al., 2012), which are

typically composed of three main components: the backbone

network, the neck, and the head. The backbone, commonly a pre-

trained CNN, extracts and encodes features from the input data; the

neck further processes these features, enhancing their

representational and informative power. One example is Feature

Pyramid Network (FPN) (Lin et al., 2019). Finally, the head predicts

the bounding boxes and class probabilities of detected objects based

on the previously extracted information.

Object detectors can be categorized into two main types

depending on their architecture: one-stage and two-stage

detectors. The former predicts bounding boxes and class

probabilities in a single forward pass, while the latter, as the

Region-based Convolutional Neural Networks (Girshick et al.,

2014) first proposes regions of interests (ROIs) in the image and

then predicts the class and refine the bounding box for each

proposed region. In our study, we chose to use the latest state-of-

the-art detection architectures: YOLOv8 and Faster R-CNN. We

selected these algorithms based on their respective strengths and

suitability for our specific requirements.

For data annotation, we employed the open-source software

CVAT (CVAT.ai Corporation, 2023). Under the guidance of

entomologists, we labeled all instances related to the target pests

even though their visual appearance could sometimes confuse the

detector and introduce noise. Annotations were exported in YOLO

format, which consists of string lines written as:

(class_id x_box_centre y_box_centre

width height)

2.3.1 YOLO
YOLO (You Only Look Once) is a popular family of one-stage

object detection models known for their speed and efficiency

(Redmon et al., 2016). Unlike two-stage methods, YOLO solves

detection as a regression problem.

Developed by Ultralytics (Glenn Jocher et al., 2023) and

released in January 2023, YOLOv8 serves as the latest

advancement in the YOLO family (as of the time of writing). It
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incorporates several improvements, including mosaic data

augmentation, anchor-free detection, a more powerful backbone

network, a decoupled head, and a modified loss function. Among

the various model variants, we focused on YOLOv8s due to our

computational constraints.

2.3.2 Faster R-CNN
Faster R-CNN implements Region Proposal Network (RPN) for

generating potential bounding box proposals and a bounding box

regression and classification network for refining these proposals

and predicting the class labels (Ren et al., 2016). We implemented

the algorithm using the Detectron2 framework (Wu et al., 2019), a

cutting-edge tool developed by Facebook for a wide range of

computer vision tasks.

For our study, we used the faster_rcnn_R_50_FPN_3x.yaml

configuration, which uses a ResNet-50 (He et al., 2016) backbone

network and integrates the FPN network to generate multiple

feature maps of different scales. This configuration provides a

good balance between speed and accuracy. The “3x” designation

refers to the length of the training schedule (He et al., 2018).
2.4 Experiments and evaluation

2.4.1 Experiment design
We conducted several tests to benchmark the machine vision

models, assessing the impact of the different preprocessing steps on

their detection capability. Initially, we evaluated the effect of image

enhancements to understand how it influenced training

performance. The second test aimed to assess the impact of image

resolution, as it is indeed known to significantly affect performance,

albeit with a considerable increase in computational cost. In our

tests, we focused on 640 and 1280 pixel images, both considered

reasonable sizes to balance computational time and performance,

while avoiding memory constraints. The algorithm automatically

resized the images, setting their longest dimension to the chosen

value, while preserving the original aspect ratio.

A similar test was conducted to evaluate the YOLOv8 built-in

data augmentation. Based on several hyperparameters, default

transformations are randomly applied to the training data to

increase the diversity and size of the dataset. We conducted two

training runs to compare the effects of default hyperparameters with

their zeroing (see Supplementary Table 1).

From a more fundamental perspective, we explored whether, for

our dataset, a deep learning model learns better when trained on one

class (one insect species) at a time compared to binary-class detection.

To get more insight on this aspect, we conducted an additional test by

considering both classes as a single entity, labeled “pest”.

Finally, we evaluated the model architectures. After

implementing Faster R-CNN with three different augmentation

settings, we compared the best configuration with the one-stage

detector, YOLOv8s.

To ensure a more robust estimate of model performance and to

allow an honest estimation of the variability of the prediction

metrics, we implemented a 10-fold Cross Validation scheme
frontiersin.org
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(Hastie et al., 2009). Given the challenges associated with class

stratification in object detection tasks, we selected a random K-fold

splitting that achieved an acceptable balance in the distribution of

the two classes (Supplementary Table 2).

2.4.2 Evaluation metrics
To assess the performance of an object detection model, we

examine its ability to correctly identify the object’s class and

accurately predict their bounding box coordinates. Each

prediction is characterized by a value of Intersection over Union

(IoU) and confidence score. IoU, based on the Jaccard index,

evaluates the degree of overlap between the predicted bounding

box and the ground truth. Values range between 0 to 1, where a

value closer to 1 implies a better alignment between the predicted

and ground truth bounding boxes. The confidence score, instead,

indicates the likelihood that the object in the bounding box actually

belongs to a specific category. Based on these values, correct

predictions are classified as True Positives (TP), while False

Positives (FP) include detections of nonexistent target objects,

which in our case are insects wrongly identified as ST or OI or

misplaced detection of existing objects. False Negatives (FN)

encompass all unpredicted ground truth bounding boxes. It’s

worth noting that True Negatives (TN) are not considered in

object detection, as there exists an infinite number of bounding

boxes that should not be detected within an image (Padilla

et al., 2020).

From these statistics, we can derive several performance indices,

including Precision and Recall. Precision (Equation 1) measures the

model’s ability to identify true objects while minimizing the number

of incorrect annotations. Conversely, Recall (Equation 2) focuses on

the model’s ability to identify all correct objects (TP), regardless of

incorrect annotations. Ideally, a perfect model would have both

high Precision and high Recall. For insect detection, we opted for

low values of confidence score to make the model generate more

predictions. This approach results in higher Recall, minimizing FN

at the expense of increasing FP (Wenkel et al., 2021).

Lastly, F1-score (Equation 3) shows the harmonic mean of

Precision and Recall, considering both FP and FN.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 score =
2

precision−1 + recall−1
(3)

IoU and precision-recall measures are used to compute Average

Precision (AP) (Equation 4) for each class. By leveraging the area

under the precision-recall curve (AUC-PR) and different thresholds

of IoU, AP was first estimated using the 11-point interpolation

method in the VOC2007 challenge (Everingham et al., 2015) to

reduce the zig-zag behavior of the curve. The most common IoU

values are 0.5 and 0.75, corresponding to AP@0.5 and AP@0.75,

respectively, while AP@[0.5:0.95] represents instead the average

precision across ten IoU thresholds varying from 0.5 to 0.95 with a
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step size of 0.05. Mean Average Precision (mAP) (Equation 5) is

then calculated as the mean over all classes, serving as the

benchmark metric to evaluate object detection model performance.

AP@a =
Z 1

0
p(r)dr (4)

mAP@a =
1
no

n

i=1
APifor n classes (5)
2.4.3 Experimental setup
Training, validation and inference tests were executed on

Amazon Web Services (AWS) virtual machines using a g5.2xlarge

instance, which belongs to the GPU instance family. It is equipped

with 8 vCPUs, 32.0 GiB of memory, and a NVIDIA A10G with 24.0

GiB of video memory. The configuration settings for each

experiment, partially tuned to comply with hardware constraints,

are saved in the corresponding YAML files, which are provided in

the Supplementary Material.
3 Results

Figure 4 displays examples of model predictions, featuring

randomly selected zoomed-in images from the four different

sources, along with both ground-truth and predicted annotations.

Bounding boxes, obtained from one of the YOLOv8s model tests,

are displayed with specific class colors and their corresponding

confidence scores. These photos provide a clear view of the model’s

performance across various scenarios. For instance, in the scanned

trap image (Figure 4B), all insects are detected accurately.

Challenges arise in Figure 4C, where the photo presents a dense

concentration of OI bounding boxes, making accurate detection

more difficult. Similarly, in Figure 4D, the greater distance and

ambient light conditions contribute to an increase in both FN

and FP.

Quantitative results are presented following the experimental

workflow, starting with the YOLO algorithm and moving to Faster

R-CNN. Performance metrics are expressed as the mean and

standard deviation across the 10 folds (Table 2), highlighting the

variability of cross-validation splits.
3.1 Performance of YOLO models

Figure 5 summarizes the YOLO experiments on input image

modifications and class detection, comparing the three Mean

Average Precision (mAP) discussed in section 2.4.2, mAP@0.5,

mAP@0.75, mAP@[0.5:0.95]. The Supplementary Material includes

the corresponding Precision-Recall curves obtained during

validation at the specific confidence thresholds.

From the comparison of data enhancements (Figure 5A), we

observe a clear similarity between the Crop and Bright models.

Results show mAP@0.5 values ranging from 0.9 to 0.95, mAP@0.75

above 0.8, and mAP@[0.5:0.95] between 0.65 and 0.7, with a

difference of less than 2% in the other metrics (see Table 2). On
frontiersin.org
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the other hand, Sharp and Bright_and_sharp models achieved

slightly lower results and higher variabilities, with all mAP values

dropping by up to 3%, especially the latter.

The impact of input image resizing (Figure 5B) is more

pronounced, particularly in terms of mAP@0.75 and Recall

(Table 2). This observation suggests that image resolution

becomes increasingly critical when higher IoU thresholds are

required or for the complete detection of ground-truth annotations.

Figure 5C clearly demonstrates the effect of data augmentation

during training. Without transformations, the model did not exceed

0.81 in mAP@0.5, 0.67 in mAP@0.75, and 0.57 in mAP@[0.5:0.95],
Frontiers in Plant Science 07
with a low Recall of 72%. Training with data augmentation drastically

improves these metrics, particularly mAP@0.75 and Recall (Table 2).

Regarding class detection tests, Figure 5D shows no significant

difference between the Average Precision (AP) of ST for both the

binary-class and single-class models. The same holds true of the OI

class (Figure 5E), with subtle differences of less than 2%, except for a

4% increase in Recall for the binary-class model (Table 2). Finally,

the last plot compares the mAP of the binary-class model and the

AP of the pest-class model, both achieving high results: 0.92 mAP@

0.5, 0.8 mAP@0.75, and 0.66 mAP@0.5:0.95, with 90% Precision,

87% Recall, and 88% F1 score as shown in Table 2.
FIGURE 5

mAP evaluation of YOLO experiments: (A–C) represent the comparison on input image modifications; (D–F) include the class-oriented tests.
FIGURE 4

Examples of zoomed insect images with predicted bounding boxes. Red and pink colors represent respectively the detections of ST and OI classes.
(A) photos from the smart trap; (B) details from scanned trap images; (C) photos in the laboratory; (D) pictures from the field.
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3.2 Performance of Faster R-CNN models

Faster R-CNN results include an assessment of mAP

performance when changing the augmentation settings. Three

tests were conducted, named Default, Augmentation, and

No_augmentation, each based on specific transformations

applied during training, similarly to the YOLOv8 built-in

data augmentation.
Fron
• Default: This test used the two default Detectron2

transformations , ResizeShortestEdge and

RandomFlip. The first resizes the image while keeping

the aspect ratio, while the other operation flips the image

horizontally or vertically with a given probability;

• Augmentation: This test introduced additional

D e t e c t r o n 2 t r a n s f o r m a t i o n s , i n c l u d i n g

RandomBrightness, RandomContrast,

RandomSaturation, RandomRotation,

RandomLighting, along with ResizeShortestEdge

and RandomFlip. These transformations randomly alter
tiers in Plant Science 08
the intensity of image enhancements during training to

augment the diversity of the training data;

• No_augmentation: This test represented the default

training configuration without applying RandomFlip to

input images.

For further details on the code, please refer to our GitHub

repository, https://github.com/checolag/insect-detection-scripts.

Since Detectron2 does not provide Precision and Recall metrics,

we monitored the progress of mAP over iterations for the three

tests, as depicted in Figure 6. From the graph, we observed two main

trends: the default configuration notably outperforms the model

with augmentation, and maximum values are generally reached

within the first 1500 iterations, after which they remain

relatively constant.

As Detectron2 only saves the last model and not the best one, the

metric values in Table 2 were derived considering the iteration at

which the model of each split achieved the best results in terms of

mAP@0.5, mAP@0.75, andmAP@[0.5:0.95]. Although the differences

are small, they are relevant, with the default run reaching 86% in

mAP@0.5, 66% in mAP@0.75, and 55% in mAP@[0.5:0.95].
TABLE 2 Insect detection performance of the 8 tests conducted.

Index Test Configuration mAP@0.5 mAP@0.75 mAP@0.5:0.95 Precision Recall F1 score

1
Data

enhancement

Crop 0.92 ± 0.02 0.81 ± 0.03 0.66 ± 0.02 0.89 ± 0.05 0.89 ± 0.03 0.89 ± 0.03

Bright 0.92 ± 0.04 0.79 ± 0.04 0.66 ± 0.03 0.90 ± 0.03 0.87 ± 0.06 0.89 ± 0.04

Sharp 0.90 ± 0.04 0.78 ± 0.04 0.64 ± 0.03 0.89 ± 0.04 0.85 ± 0.04 0.87 ± 0.04

Bright and sharp 0.89 ± 0.04 0.77 ± 0.05 0.63 ± 0.03 0.87 ± 0.04 0.83 ± 0.06 0.85 ± 0.04

2
Input

image size

Crop 640 0.88 ± 0.04 0.71 ± 0.05 0.60 ± 0.03 0.87 ± 0.03 0.82 ± 0.05 0.84 ± 0.04

Crop 1280 0.92 ± 0.02 0.81 ± 0.03 0.66 ± 0.02 0.89 ± 0.05 0.89 ± 0.03 0.89 ± 0.03

3
Data

augmentation

no augmentation 0.81 ± 0.07 0.67 ± 0.08 0.56 ± 0.06 0.86 ± 0.03 0.72 ± 0.12 0.78 ± 0.08

default
augmentation

0.92 ± 0.02 0.81 ± 0.03 0.66 ± 0.02 0.89 ± 0.05 0.89 ± 0.03 0.89 ± 0.03

4 Single class ST
Binary class* 0.94 ± 0.02 0.83 ± 0.04 0.68 ± 0.03 0.91 ± 0.03 0.90 ± 0.04 0.90 ± 0.03

Single class 0.93 ± 0.03 0.82 ± 0.05 0.67 ± 0.03 0.92 ± 0.03 0.90 ± 0.04 0.91 ± 0.03

5 Single class OI
Binary class* 0.91 ± 0.04 0.79 ± 0.05 0.65 ± 0.04 0.88 ± 0.08 0.88 ± 0.06 0.87 ± 0.05

Single class 0.90 ± 0.07 0.77 ± 0.06 0.64 ± 0.05 0.89 ± 0.08 0.84 ± 0.08 0.86 ± 0.07

6
Mono

class pest

binary class 0.92 ± 0.02 0.81 ± 0.03 0.66 ± 0.02 0.89 ± 0.05 0.89 ± 0.03 0.89 ± 0.03

single_cls=True 0.92 ± 0.03 0.80 ± 0.03 0.66 ± 0.02 0.90 ± 0.02 0.87 ± 0.05 0.88 ± 0.03

7
Data

augmentation
in Detectron2

Default Trainer 0.86 ± 0.06 0.66 ± 0.07 0.55 ± 0.05 – – –

no
Flip transformation

0.84 ± 0.07 0.64 ± 0.07 0.53 ± 0.05
– – –

Augmentation 0.83 ± 0.05 0.58 ± 0.07 0.50 ± 0.04 – – –

8
Model

architecture

Yolov8s 0.92 ± 0.02 0.81 ± 0.03 0.66 ± 0.02 0.89 ± 0.05 0.89 ± 0.03 0.89 ± 0.03

Faster R-CNN 0.86 ± 0.06 0.66 ± 0.07 0.55 ± 0.05 – – –
The metrics include the mean and standard deviation values between 0 and 1 among the 10 folds. *To compare the test with the single-class training, we show the corresponding Average
Precision (AP) value of the binary-class training.
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3.3 Comparison of the algorithms

This section concludes the experimental evaluation of model

architectures, highlighting the difference between the optimal

configurations of Faster R-CNN and YOLOv8 that can be

computationally managed by our hardware system. Specifically,

we compare the chosen Faster R-CNN version with default

augmentation settings against YOLOv8 with an input size of 1280

pixels and default augmentation hyperparameters. Both models

were trained using only cropped input images.

The boxplots in Figure 7 illustrate mAP@0.5, mAP@0.75, and

mAP@[0.5:0.95] across the 10 folds of cross-validation. We observe

how YOLOv8s outperforms Faster R-CNN in terms of both

accuracy and robustness. The percentage difference between the

average values exceeds 6% in mAP@0.5, 15% in mAP@0.75, and

more than 10% in mAP@[0.50:0.95]. Moreover, the size of the

boxplot clearly shows the higher prediction variability of Faster R-

CNN compared to YOLOv8. As shown in Table 2, the performance

of the two-stage algorithm is highly dependent on the validation

split, with a standard deviation of about 6%, compared to

YOLOv8’s 2%.
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4 Discussion

Building on the previously mentioned work on ST detection

(Bessa, 2021), which our study aims to expand, this benchmark has

demonstrated the effectiveness of object detection algorithms in

recognizing ST and OI on yellow sticky traps. We showed how a

standardized acquisition procedure, – particularly in the scanned

images – combined with a color segmentation, can achieve strong

detection performance. Automated detection of FD vectors has

proven both feasible and effective, supporting essential pest

management strategies against the spread of this grapevine

disease (Lee and Tardaguila, 2023).

Interestingly, the first test revealed that enhancing sharpness

did not improve the model performance. This modification

appeared to introduce noise to the image, which the model

interpreted as irrelevant information. Conversely, variations in

brightness and contrast resulted in similar detection accuracy as

the non-processed dataset, suggesting that the original dataset was

already suitable for training, and additional changes did not provide

any further benefits. Further studies should be conducted to

understand the relationship between model architecture and

image processing, with the aim of optimizing the model training

process. The use of higher resolution images significantly improved

mAP values, with more pronounced effects observed at higher IoU

values. However, in case of limited computational resources, an

image size of 640 pixels proved to be a good compromise between

accuracy and computing time. In accordance with a similar study

(Dang et al., 2023), YOLOv8 built-in augmentation resulted in

actual improvements, further demonstrating the effectiveness of the

default hyperparameter settings.

Class-oriented tests revealed that single-class detectors did not

perform better than multi-class models. No significant changes in

terms of TP, FP and FN were noted when trained on one class at a

time; in fact, they obtained equal or lower results, as seen with the

OI class. Even when the classes were combined under a single target

label, the differences were minimal. This suggests that binary-class

training is a viable strategy for maximizing performance and

feedback information. The reason why the ST class achieves

higher results and lower variability than OI could be attributed to

the distribution of annotations. ST labels are primarily concentrated

in one source of image, i.e. the scanned images, which constitutes

the majority of the dataset. In contrast, OI annotations were present

in all image types, which vary significantly from each other. Some

images contain dense clusters of labels, making the detection

more challenging.

The Faster R-CNN tests yielded unexpected results. Adding

several transformations appeared to confuse the model, resulting in

lower mAP values, especially for higher IoU values. While

augmentation is typically beneficial, enabling the model to learn

under various situations such as different lighting, orientations,

distortions, and variations in object sizes and shapes, in this specific

case, these random modifications during training only had negative

effects. A possible explanation could be a mismatch with real-world

data, as the augmentations might not accurately reflect the

variability present in actual scenarios.
FIGURE 6

Training curves of mAP@0.5, mAP@0.75, and mAP@[0.5:0.95] for the
three augmentation tests with the Faster R-CNN algorithm.
FIGURE 7

Comparison of mAP@0.5, mAP@0.75, and mAP@[0.5:0.95] values
between the optimal configuration of Faster R-CNN and YOLOv8s.
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Lastly, the superior performance of YOLOv8 over the two-stage

detector is consistent with findings from other recent studies (Butt

et al., 2024). This could be attributed to the more recent

advancements in the YOLO model, making it better equipped for

our specific detection task.
4.1 Limitations

Despite the advancements in computer vision and deep learning

techniques, insect detection remains a highly challenging task. One

major obstacle is the limited availability of data essential for model

training, necessitating the construction of our own insect dataset.

Depending on the type of study, target objects can be exceedingly

small, difficult to see, and may exhibit variability in terms of shape,

color, wing poses, and decay conditions (Le et al., 2021), adding

complexity to the creation of a robust and consistent dataset.

Moreover, the acquisition process in an uncontrolled environment

introduces various other forms of noise, including reflections,

shadows, orientations, blurring, and variations in visual appearance.

As discussed in section 4, annotations in our study were not

uniformly distributed across the dataset, particularly for the OI

class, with labels concentrated in fewer densely populated images.

Additionally, the condition of insects was often very compromised,

potentially introducing noise and affecting model training. In this

regard, we opted to label everything potentially related to the

specific pests, despite the risk of increasing the number of false

positives (such as misidentifying dry leaves as the ST class).

Finally, another factor to consider is the presence of other

insects on the yellow traps, particularly other Cicadellidae species

that closely resemble S. titanus, which may be erroneously identified

by the model. Notable examples include Fieberiella florii and

Phlogotettix cyclops, as highlighted in previous studies (Bosco

et al., 1997; Chuche et al., 2010; Strauss and Reisenzein, 2018). To

address this issue, our strategy involves the collection of digitized

trap images. This simple yet efficient approach allows us to

continuously enrich the dataset over time. By progressively

incorporating more data, we can enhance the model’s capability

to distinguish between highly similar species.
5 Conclusions

This study was initiated to evaluate the latest deep learning

models for insect detection, aiming to take a significant step forward

in the control of Flavescence dorée. The collected images constitute

the first fully annotated dataset of Scaphoideus titanus and Orientus

ishidae, which is now available to the scientific community (see

Data availability section) and can be expanded over time focusing

on a standardized and reproducible procedure. We trained deep

learning models using YOLOv8 and Faster R-CNN architectures

and conducted a benchmark analysis, providing valuable insights

and operational tips for acquisition, augmentation and training

processes. The two algorithms achieved mAP@0.5 scores of 0.92

and 0.86 respectively, demonstrating the effectiveness of object
Frontiers in Plant Science 10
detectors in addressing this challenging problem. Moving

forward, possible improvements could involve optimizing the

acquisition process, enhancing image quality, and adding location

details to track vector spread in vineyards. Additionally, a

segmentation model could simplify field data acquisition by

automatically cropping yellow traps before applying subsequent

operations. The deployment of these models could establish an

efficient monitoring network, opening up potential applications for

field-use scenarios. Specifically, a smartphone tool capable of

identifying FD vectors would not only enable farmers to take

immediate action against the disease, but also allow the scientific

community to continuously update the dataset, in the spirit of

citizen science.
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