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Abstract. The symptoms of the flavescence dorée and bois noir are grouped into the so-called 

Grapevine Yellows (GY). These diseases are affecting viticultural regions worldwide and all varieties 

and rootstocks seem susceptible but with varying degrees of severity. Typical symptoms include 

discolouration and necrosis of leaf veins and leaf blades, downward curling of leaves, lack of or 

incomplete lignification of shoots, stunting and necrosis of shoots, abortion of inflorescences and 

shriveling of berries. The compulsory control plan for the fight of these diseases includes both the use 

of insecticides and the eradication of the vines. This latter is part of a monitoring plan of the grapevine 

yellows that aims to identify outbreaks of the disease and its progression and limit the compulsory 

phytosanitary control only in the truly affected areas. The identification of the GY is very time-consuming 

technical work because each vineyard must be visually inspected plant by plant. This type of monitoring 

is made even more difficult in cases of steeply sloping vineyards and where the vineyard landscape is 

fragmented. So we raised the following question: is it possible to use UAVs (drones) to remotely monitor 

the vines that are difficult to reach and identify the grapevine yellows? We present here the results of 

our field tests made in Trentino (IT) with different drone models (prosumer and professional) and with 

different types of image acquisition sensors (RGB and multi-spectral). 

Introduction 

Flavescence dorée is considered to be a quarantine 

disease in Europe because of its epidemic potential 

(Directive 77/1993 amended 92/103) and is therefore 

subject to mandatory procedures for the control of its 

spread by using pesticides to contain the population 

of its main insect vector, Scaphoideus titanus Ball. 

(Hemiptera: Cicadellidae) and with the uprooting of 

every infected vine (Vitis vinifera L., Vitaceae). 
The symptoms are similar to those of the bois noir, but 

also to the effects of the sting of the Stictocephala 

bisonia Kopp & Yonke (Hemiptera: Membracidae, 

Buffalo treehopper) which is not related to the two. 

The visible symptoms of flavescence doreé and bois 

noir are described as "grapevine yellows" (GY) and 

appear as early as spring (usually in summer) and are 

visible until mid-autumn as discolouration and 

necrosis of leaf veins and leaf blades, downward 

curling of leaves, lack or incomplete lignification of 

shoots, stunting and necrosis of shoots, abortion of 

inflorescences and shriveling of berries (Bovey, 

1980). The identification of the GY is a very time-

consuming technical work because each vineyard 

must be visually inspected plant by plant. This type of 

monitoring is made even more difficult in cases of 

steeply sloping vineyards and where the vineyard 

landscape is fragmented. In Trentino (IT) a large part 

of the wine-growing area is cultivated on steep slopes: 

the elevation, with a cooler climate, elicits the 

organoleptic properties of the Chardonnay grapes for 

bottle-fermented sparkling wine (Champenoise 

method). However, the areas with the highest altitude 

are generally also the most difficult to access.  
Remote sensing has proven to be effective for 

determining the health of crops, as stress and 

deficiencies induce changes in the biophysical and 

biochemical characteristics of plants that change the 

optical properties of the plant tissues (Martinelli et al., 

2015). Spectral indices are often used in remote 

sensing, but classic indices (for example, NDVI) are 

imprecise and alternatives must be found (Albetis et 

al., 2019). For this reason, we would like to develop a 

system for remotely sensing the grapevine yellows in 

real-time without having to first acquire images, 

process them and interpret them. This system could 

alleviate the work of the field technicians.  
Remote sensing has been successfully applied for 

detecting Phylloxera, and Esca (Gennaro et al., 2016) 

using Unmanned Aerial Vehicles (UAVs) rather than 

satellites because of their practicality in image 

acquisition (adaptable resolution, no interference with 

the clouds, rapid deployment...).  
A study has recently been proposed for Flavescence 

dorée (Albetis et al., 2019) but our aim is different: we 

are not interested in identifying the spectral index 
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that discriminates a disease, but to build the first 

element of an operative, real-time tool for the rapid 

identification of the Chardonnay vines that exhibit the 

grapevine yellows for both “pergola trentina” and 

guyot, the two trellis methods used. In the first case, 

the leaves cover a large part of the vineyard surface, 

while in the second the vine occupies the surface 

linearly (Figure 1). 
Figure 1. The Unmanned Aerial Vehicle acquiring 

images over the Chardonnay vineyard. On the left the 

vines are cultivated with the guyot trellis system, on 

the right with the pergola trentina. The UAV in the 

image is DJI Matrice 210 RTK V2, equipped with the 

RGB camera (black) and the MicaSense RedEdge® 

sensor. 

Methods and sources 

We selected to operate on a cultivated area in the 

municipality of Telve Valsugana (46.0400N, 

11.5593E). The vineyard, planted with Chardonnay 

cultivar, is made up of two distinct units by trellis 

method: guyot (4440 m2) and pergola (2200 m2). 

On  September 5th, 2018, we performed a flight with a 

DJI Mavic PRO, a prosumer UAV, for the acquisition 

of RGB images (CMOS ½.3”, 12.7 Mpx) and to 

evaluate, through the use of a virtual reality viewer 

(DJI Goggles RE, resolution 3840 × 1080 px2, 70 ms 

latency), if a senior field technician could remotely 

inspect the vineyard for detecting the presence of the 

grapevine yellows in real-time while a certified UAV 

pilot was managing the flight.  

The RGB images collected with a dedicated flight 

(26.5 m above the take-off point, 8 cm px-1 GSD) were 

ortho-rectified and blended into an orthophoto using 

the photogrammetric software Pix4dmapper 

(available at: https://pix4d.com/). 
On September 24th, 2019 we conducted another data 

acquisition campaign: 8 high visibility targets were 

positioned and planimetric and altimetric coordinates 

- ground control points - were acquired with a GPS 

(Leica Geosystems, Leica Zeno 20) with RTK 

correction provided by the geodetic network of the 

Province of Trento. Similarly, 21 symptomatic vines 

(10 guyot, 11 pergola) were identified by the authors 

and marked on the ground with bright pink spray. 

Unlike what we did in 2018, we flew with a 

professional UAV (DJI Matrice 210 RTK V2) with the 

ability to carry a double payload (two independent 

image acquisitors), but it also requires a suitable flight 

license because of the weight (4.91 kg). 

The RGB images were collected using a DJI X5s 

camera (CMOS 4/3”, 20.8 Mpx) and the multispectral 

images have been acquired using a MicaSense 

RedEdge® sensor in five different wavelengths: Blue 

(455-495 nm), Green (540-580 nm), Red (658-678 

nm), Red-Edge (707-727 nm), and Near Infrared (800 

- 880 nm). Pictures of a calibrated reflectance panel 

(Micasense RP) were captured before and after the 

two consequent flights on the pergola and on guyot. 

The elevation of 30 m above the take-off point was 

fixed for both the flights with both 80% horizontal and 

vertical overlap among the images. 

RGB and multispectral images have been imported in 

Pix4dmapper to be processed. The RGB image 

analysis procedure led to the creation of the point 

cloud and its subsequent densification. Firstly, we 

generated the orthophoto on which we drew the area 

covered by 6 randomly chosen vines among all those 

marked by the surveyors (symptomatic) divided 

equally between the two trellis systems: pergola and 

guyot (Figure 2). Similarly, we also selected 6 random 

asymptomatic vines. 

 

 

Figure 2. The selected symptomatic vines in the guyot 

vineyard (left), and in the pergola (right). The soil is 

partially covered by green grass. The mark (bright pink 

spray) is partially visible on the third image of the first 

group. 

Theoretical framework and operational 
concepts 

Since we are interested in the reflectance values 

measured by the multispectral camera on the vine 

leaves (and not in the values of the soil or the grass) 

we classified the points that belonged to the ground 

and the points that belonged to the vegetation (Zahng 

et al., 2016). The point cloud was further manually 

pruned outside the study areas. We further decimated 
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the point cloud to obtain a homogeneous density of 

significant points over the area of interest comparable 

to the point cloud obtained with the multispectral 

maps. Lastly, we extracted only the points that fell 

within the area of competence of the randomly chosen 

symptomatic and asymptomatic vines and we 

appended to these points the values read from the 5 

band multispectral map. With the measures, we 

calculated the Chlorophyll Index (CI, Steel et al., 

2008)  and the Normalized Difference Red-edge Index 

(NDRE, Gitelson et al., 2002) - shown in Equation 1 -  

that proved effective in detecting Flavescence dorée 

in the work of Albetis et al. (2019) in case of vines of 

Chardonnay cultivar that show yellowish 

discolouration and not reddish colouration. 

  
Eq. 1 

 

We expect a different behaviour of the values 

recorded by the multispectral camera between 

symptomatic and asymptomatic vines, but not 

between pergola and guyot, we decided to plot the 

density of the spectral index values of each band in 

search of signals difference.  

We treated each value measured for each band as a 

realization of a random variable Y, and so we looked 

at the difference in its moments and to limit our 

research to the first and second-order momentum. 

Since we expect possible multimodality in the 

distribution of Y, we treated the random variable like a 

finite mixture model and the identity of each 

distribution is controlled by a latent categorical 

variable indicating which mixture component is 

responsible for the outcome. The model  considers K 

normal distributions with first momentum μk ∈ R and 

second momentum 𝜎k ∈ R+, and each distribution is 

mixed in proportion λ that lies in the unit K-simplex. 

For each outcome yn there is a latent variable zn that 

is distributed according to the prevalence parameter 

λk. With these assumptions, the probability distribution 

p of the random variable Y becomes:  

 

 

Eq. 2 

We used Eq. 2 to infer the parameters of this model 

using the probabilistic language Stan (Carpenter et 

al., 2017), a probabilistic programming language that 

facilitates expression of generative models and full 

Bayesian inference on parameters therein, using 

state-of-the-art Hamiltonian sampling procedures with 

clear failure diagnostics. To complete the model 

formalization we imposed a generic weakly 

informative prior on λk , μk and 𝜎k, then we run 4 

Markow chains, with 1000 iterations for the warm-up 

and 1000 sampling iterations.  

Results 

The flight of September 5th, 2018 showed that VR is a 

promising experimental technology in agriculture, but 

it is still not enough mature to carry out a real-time 

service for surveying the emergence of the grapevine 

yellows. The flight height must be adapted very 

quickly to capture leaf-scale details and so, 

maintaining flight altitude of 2 m above the individual 

vineyards, the inspection execution times were 

comparable with those of the inspection carried out by 

a single person on foot. The remote vision is 

complicated by blurring effects and, at the beginning, 

by virtual reality sickness. The average resolution of 

the orthophoto obtained from RGB image processing 

is 0.008 m. The quality of the final product did not 

allow the evaluation of the grapevine yellows due to a 

blur effect in the final raster. Furthermore, although 

the flight height remained on an average constant, the 

upper part of the vineyard had a higher Ground 

Sampling Distance (GSD) than the lower part due to 

the slope of the vineyard (13.5%). 

With a total of 28 minutes of flight (9 min for the 

pergola, 19 min for the guyot) and with a cloud cover 

of 7 otka, we collected 139 images for the pergola and 

178 for the guyot with a  GSD of 1.3 cm px-1. Similarly 

462 + 684 multispectral images were acquired with a 

GSD of 2.5 cm px-1. 

The densified point cloud counted 26.336 Mpts 

(average density 9035.62 pts m-2) on guyot and  

20.251 Mpts (average density 8772.11  pts m-2) on 

pergola. After filtering out the points belonging to the 

ground, the cloud reduced to 8.812 Mpts (-67%) and 

10.114 Mpts (-50%), respectively. The further pruning 

of the point cloud that focused only on the study area 

reduced the number of significative points to 4.693 

Mpts (-44%) and to 4.413 Mpts (- 56%). The 

processing of the point cloud led to 1058.25 pts m-2 for 

the guyot and to 2032 pts m-2 for the pergola (Figure 

3).  

The higher density of points over the pergola vineyard 

is justified by a wider vineleaf coverage masking the 

ground. 
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Figure 3. Result of the process for the extraction of 

the significant points for the RGB cloud. The original 

point cloud for both guyot and pergola (a), ground-

filtered point cloud (b), the leaf coverage of pergola 

(c). 

The distribution of the values of reflectance indices 

shows us marked multimodality in the non-visible 

bands (Near infrared and Red Edge), and the derived 

CI index only (Figure 4). 

  

 

Figure 4. Distributions of the reflectance index for 3 

visible (Red, Green, Blue) and 2 non- visible bands 

(Red Edge and Near Infrared). Green lines represent 

asymptomatic vines, red lines represent the 

symptomatics. Vertical lines shown the position of the 

expected value of the first momentum. 

 

Unlike what is reported in Albetis et al. (2019) , the 

NDRE index does not show differences between 

symptomatic and asymptomatic vines (Figure 5). 

Moreover, the invisible bands show a second peak in 

the case of diseased vines in the higher values, 

coherent between pergola and guyot, accentuated in 

the Near Infrared band. The Hamiltonian Monte Carlo 

algorithm ran without problems, the metrics for the 

evaluation of the sampling efficiency, R-hat, and the 

effective sample size per iteration, gave reasonable 

results and all the  iterations of the Markov chain 

ended without divergences.  

We found that the three indices work differently. The 

Red Edge band discriminates based on mixing ratios 

(λ1), while the NIR band is effective in discrimination 

using the expected values of the first moment, E [μ2]. 

Similarly, in the case of CI, the expected value of the 

first moment seems to be an effective parameter in 

discrimination, but the mixing ratios are not 

concordant between pergola and guyot. NDRE 

showed no particular ability to discriminate 

symptomatic and asymptomatic vines. Probably, the 

combination of the two colour bands dilutes the 

discriminatory capacity rather than enhancing it. This 

effect merits further investigations. 

 

Figure 5. Distribution of the derived indexes 

(Chlorophyll Index, CI and Normalized Difference Red 

Edge Index, NDRE). Green lines represent 

asymptomatic vines, red lines represent the 

symptomatics. Vertical lines shown the position of the 

expected value of the first momentum. 

 

To build an automatic and real-time system for the 

identification of Grapevine Yellows, it is, therefore, 

possible to work with just only one colour band (in the 

not visible spectrum) thus avoiding the use of 

compound indices and post-processing. 

The expected values of the first and second 

momentum (μ2,,𝜎2) of the second peak and the mixing 

values (λk) of the gaussian mixtures are shown in 

Table 1. 
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Table 1. Expected values of the second location 

parameter and mixing ratio of the two non-visible 

colour (RE stands for Red edge) bands and of the 

Clorophill Index (CI) for symptomatic (+) and 

asymptomatic (-) vines, over pergola and over guyot. 

index  

guyot pergola 

μ2 λ1 λ2 μ2 λ1 λ2 

RE - 0.22 0.44 0.56 0.22 0.58 0.42 

+ 0.22 0.37 0.63 0.24 0.54 0.46 

NIR - 0.49 0.57 0.43 0.52 0.56 0.44 

+ 0.48 0.41 0.59 0.59 0.55 0.45 

CI - 1.33 0.84 0.16 1.46 0.54 0.46 

+ 1.18 0.60 0.40 1.53 0.34 0.66 

Conclusions 

With our tests, we have shown how a professional 

drone equipped with an RGB camera and a 

multispectral camera can, in perspective, become an 

effective tool to identify the GY for both pergola and 

guyot. However, some aspects remain to be explored 

for future improvements.  

In our opinion, the service to detect GY must be a real-

time analysis (i.e. without post-processing) of images 

that just runs as the data are collected (on-line 

streaming during the flight).  

So, what we have shown with this work is promising: 

the discrimination criteria can be delegated to a single 

colour band in the spectrum of the non-visible (Red 

Edge or NIR).  

Nevertheless, the response in terms of reflectance of 

symptomatic plants needs to be further investigated. 

For this reason, if the project proceeds, it would be 

appropriate to focus on newly acquired images and 

evaluate, through a model similar to the one used, but 

hierarchical, the inter-vines variability of the 

reflectance indices. In this way, we expect to 

assemble an information library to support the 

analysis of the data acquired while the UAV is flying. 

This perspective is plausible as drones mount 

increasingly powerful GPU-based Inertial 

Measurement Units (IMU) that could be used for the 

analysis of the values acquired in real-time (Lee et al., 

2017).  

On the other hand, we are witnessing a constant 

development of new optical sensors at higher 

resolutions and lower costs. Reducing the number of 

bands to be acquired would certainly simplify the 

machinery and would reduce the total weight. Lastly, 

multispectral sensors with higher resolution would 

allow flying at higher altitudes, allowing faster flight 

and an increase in the surveyed area, and a richer 

point cloud. 

Based on our experience, an important step to set up 

a real-time service with on-line analysis of the 

steamed images is the real-time identification of the 

single vines. The algorithms we tested (only in the 

post-processing of the images) cannot effectively 

identify the individual vines neither in the case of the 

guyot, whose configuration of the leaf cover assumes 

the characteristics of a continuous wall of leaves nor 

in the case of the pergola. This is due to two main 

reasons: the spacing of the vines is very narrow 

(especially in guyot) and the soil is almost uniformly 

covered by grass: the herbaceous canopy shows 

colours similar to those of the vine both in the visible 

and in the invisible spectrum. Techniques for 

identifying plants based on artificial intelligence have 

recently been proposed (Ampatzidis and Partel, 

2019). 

We should then understand why the composite 

indices (for example, the NDRE) have not shown an 

efficacy equal to that in our expectations in identifying 

the Grapevine Yellows. Differently from (Albetis et al., 

2019), our case deals with just a white-berry 

grapevine cultivar (Chardonnay) whose symptoms are 

the yellowish and not the reddish of the leaves, and 

because we focused on discriminating the symptoms 

not by Cultivars, but for two different trellis methods. It 

is then conceivable to try further compound indices 

such as the Red-Edge Green Index (REGI), the Green 

Normalized Difference Vegetation Index (GRVI, 

Gitelson et al., 2002) and the Normalized Pigment 

Chlorophyll Index (NPCI, Zarco-Tejada et al., 2001). 

The analysis of these indices would help to further 

strengthen the choice of just one colour band - or a 

very narrow band- in the spectrum of the non-visible. 

However, a word of caution should be spent regarding 

the costs of the monitoring system: the cost of the 

drone (~10 kEUR) and the multispectral camera (~10 

kEUR) and the training of the pilot enabled to fly with 

professional drones is still high compared to the 

economic benefit. Nevertheless, given that we are still 

in the early stages of the investigation and that 

obtaining an effective and efficient service could still 

entail a few years of development, we expect a 

significant reduction in costs over time to obtain the 

necessary capital. 
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