Urban green infrastructure plays an increasingly significant role in sustainable urban development planning as it provides important regulating and cultural ecosystem services. Monitoring of such dynamic and complex systems requires technological solutions which provide easy data collection, processing, and utilization at affordable costs. To meet these challenges a pilot study was conducted using a network of wireless, low cost, and multiparameter monitoring devices, which operate using Internet of Things (IoT) technology, to provide real-time monitoring of regulatory ecosystem services in the form of meaningful indicators for both human health and environmental policies. The pilot study was set in a green area situated in the center of Moscow, which is exposed to the heat island effect as well as high levels of anthropogenic pressure. Sixteen IoT devices were installed on individual trees to monitor their ecophysiological parameters from 1 July to 31 November 2019 with a time resolution of 1.5 h. These parameters were used as input variables to quantify indicators of ecosystem services related to climate, air quality, and water regulation. Our results showed that the average tree in the study area during the investigated period reduced extreme heat by 2 °C via shading, cooled the surrounding area by transferring 2167 ± 181 KWh of incoming solar energy into latent heat, transpired 137 ± 49 mm of water, sequestered 8.61 ± 1.25 kg of atmospheric carbon, and removed 5.3 ± 0.8 kg of particulate matter (PM10). The values of the monitored processes varied spatially and temporally when considering different tree species (up to five to ten times), local environmental conditions, and seasonal weather. Thus, it is important to use real-time monitoring data to deepen understandings of the processes of urban forests. There is a new opportunity of applying IoT technology not only to measure trees functionality through fluxes of water and carbon, but also to establish a smart urban green infrastructure operational system for management.

Matasov, V.; Belelli Marchesini, L.; Yaroslavtsev, A.; Sala, G.; Fareeva, O.; Seregin, I.; Castaldi, S.; Vasenev, V.; Valentini, R. (2020). IoT monitoring of urban tree ecosystem services: possibilities and challenges. FORESTS, 11 (7): 775. doi: 10.3390/f11070775 handle: http://hdl.handle.net/10449/64410

IoT monitoring of urban tree ecosystem services: possibilities and challenges

Belelli Marchesini, L.;
2020-01-01

Abstract

Urban green infrastructure plays an increasingly significant role in sustainable urban development planning as it provides important regulating and cultural ecosystem services. Monitoring of such dynamic and complex systems requires technological solutions which provide easy data collection, processing, and utilization at affordable costs. To meet these challenges a pilot study was conducted using a network of wireless, low cost, and multiparameter monitoring devices, which operate using Internet of Things (IoT) technology, to provide real-time monitoring of regulatory ecosystem services in the form of meaningful indicators for both human health and environmental policies. The pilot study was set in a green area situated in the center of Moscow, which is exposed to the heat island effect as well as high levels of anthropogenic pressure. Sixteen IoT devices were installed on individual trees to monitor their ecophysiological parameters from 1 July to 31 November 2019 with a time resolution of 1.5 h. These parameters were used as input variables to quantify indicators of ecosystem services related to climate, air quality, and water regulation. Our results showed that the average tree in the study area during the investigated period reduced extreme heat by 2 °C via shading, cooled the surrounding area by transferring 2167 ± 181 KWh of incoming solar energy into latent heat, transpired 137 ± 49 mm of water, sequestered 8.61 ± 1.25 kg of atmospheric carbon, and removed 5.3 ± 0.8 kg of particulate matter (PM10). The values of the monitored processes varied spatially and temporally when considering different tree species (up to five to ten times), local environmental conditions, and seasonal weather. Thus, it is important to use real-time monitoring data to deepen understandings of the processes of urban forests. There is a new opportunity of applying IoT technology not only to measure trees functionality through fluxes of water and carbon, but also to establish a smart urban green infrastructure operational system for management.
Ecological engineering
Real-time monitoring
Smart cities
Sustainability
TreeTalker
Urban forests
Ecosystem services indicators
Settore AGR/05 - ASSESTAMENTO FORESTALE E SELVICOLTURA
2020
Matasov, V.; Belelli Marchesini, L.; Yaroslavtsev, A.; Sala, G.; Fareeva, O.; Seregin, I.; Castaldi, S.; Vasenev, V.; Valentini, R. (2020). IoT monitoring of urban tree ecosystem services: possibilities and challenges. FORESTS, 11 (7): 775. doi: 10.3390/f11070775 handle: http://hdl.handle.net/10449/64410
File in questo prodotto:
File Dimensione Formato  
forests-11-00775.pdf

accesso aperto

Descrizione: Main article
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10449/64410
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 33
social impact