Alien invasive species can affect large areas, often with wide-ranging impacts on ecosystem structure, function, and services. Prunus serotina is a widespread invader of European temperate forests, where it tends to form homogeneous stands and limits recruitment of indigenous trees. We hypotesized that invasion by P. serotina would be reflected in the nutrient contents of the native species’ leaves and in the respiration of invaded plots as efficient resource uptake and changes in nutrient cycling by P. serotina probably underly its aggressive invasiveness. We combined data from 48 field plots in the forest of Compiègne, France, and data from an experiment using 96 microcosms derived from those field plots. We used general linear models to separate effects of invasion by P. serotina on heterotrophic soil and litter respiration rates and on canopy foliar nutrient content from effects of soil chemical properties, litter quantity, litter species composition, and tree species composition. In invaded stands, average respiration rates were 5.6% higher for soil (without litter) and 32% higher for soil and litter combined. Compared to indigenous tree species, P. serotina exhibited higher foliar N (+24.0%), foliar P (+50.7%), and lower foliar C:N (−22.4%) and N:P (−10.1%) ratios. P. serotina affected foliar nutrient contents of co-occuring indigenous tree species leading to decreased foliar N (−8.7 %) and increased C:N ratio (+9.5%) in Fagus sylvatica, decreased foliar N:P ratio in Carpinus betulus (−13.5%) and F. sylvatica (−11.8%), and increased foliar P in Pinus sylvestris (+12.3%) in invaded vs. uninvaded stands. Our results suggest that P. serotina is changing nitrogen, phosphorus, and carbon cycles to its own advantage, hereby increasing carbon turnover via labile litter, affecting the relative nutrient contents in the overstory leaves, and potentially altering the photosynthetic capacity of the long-lived indigenous broadleaved species. Uncontrolled invasion of European temperate forests by P. serotina may affect the climate change mitigation potential of these forests in the long term, through additive effects on local nutrient cycles

Aerts, R.; Ewald, M.; Nicolas, M.; Piat, J.; Skowronek, S.; Lenoir, J.; Hattab, T.; Garzón-López, C.X.; Feilhauer, H.; Schmidtlein, S.; Rocchini, D.; Decocq, G.; Somers, B.; Van De Kerchove, R.; Denef, K.; Honnay, O. (2017). Invasion by the alien tree Prunus serotina alters ecosystem functions in a temperate deciduous forest. FRONTIERS IN PLANT SCIENCE, 8: 179. doi: 10.3389/fpls.2017.00179 handle: http://hdl.handle.net/10449/54480

Invasion by the alien tree Prunus serotina alters ecosystem functions in a temperate deciduous forest

Rocchini, D.;
2017-01-01

Abstract

Alien invasive species can affect large areas, often with wide-ranging impacts on ecosystem structure, function, and services. Prunus serotina is a widespread invader of European temperate forests, where it tends to form homogeneous stands and limits recruitment of indigenous trees. We hypotesized that invasion by P. serotina would be reflected in the nutrient contents of the native species’ leaves and in the respiration of invaded plots as efficient resource uptake and changes in nutrient cycling by P. serotina probably underly its aggressive invasiveness. We combined data from 48 field plots in the forest of Compiègne, France, and data from an experiment using 96 microcosms derived from those field plots. We used general linear models to separate effects of invasion by P. serotina on heterotrophic soil and litter respiration rates and on canopy foliar nutrient content from effects of soil chemical properties, litter quantity, litter species composition, and tree species composition. In invaded stands, average respiration rates were 5.6% higher for soil (without litter) and 32% higher for soil and litter combined. Compared to indigenous tree species, P. serotina exhibited higher foliar N (+24.0%), foliar P (+50.7%), and lower foliar C:N (−22.4%) and N:P (−10.1%) ratios. P. serotina affected foliar nutrient contents of co-occuring indigenous tree species leading to decreased foliar N (−8.7 %) and increased C:N ratio (+9.5%) in Fagus sylvatica, decreased foliar N:P ratio in Carpinus betulus (−13.5%) and F. sylvatica (−11.8%), and increased foliar P in Pinus sylvestris (+12.3%) in invaded vs. uninvaded stands. Our results suggest that P. serotina is changing nitrogen, phosphorus, and carbon cycles to its own advantage, hereby increasing carbon turnover via labile litter, affecting the relative nutrient contents in the overstory leaves, and potentially altering the photosynthetic capacity of the long-lived indigenous broadleaved species. Uncontrolled invasion of European temperate forests by P. serotina may affect the climate change mitigation potential of these forests in the long term, through additive effects on local nutrient cycles
American black cherry
Biological invasion
Biogeochemical cycles
Canopy foliar nutrients
Heterotrophic respiration
Litter
Exotic species
Invasive species
Settore BIO/03 - BOTANICA AMBIENTALE E APPLICATA
2017
Aerts, R.; Ewald, M.; Nicolas, M.; Piat, J.; Skowronek, S.; Lenoir, J.; Hattab, T.; Garzón-López, C.X.; Feilhauer, H.; Schmidtlein, S.; Rocchini, D.; Decocq, G.; Somers, B.; Van De Kerchove, R.; Denef, K.; Honnay, O. (2017). Invasion by the alien tree Prunus serotina alters ecosystem functions in a temperate deciduous forest. FRONTIERS IN PLANT SCIENCE, 8: 179. doi: 10.3389/fpls.2017.00179 handle: http://hdl.handle.net/10449/54480
File in questo prodotto:
File Dimensione Formato  
FRONTPLSC_2017.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10449/54480
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 66
social impact