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1. Introduction 

 

Among Eukaryotes, microscopic single celled protists share the simpler level of organization. 

Besides this property, this large polyphyletic assemblage of organisms includes many groups that 

are more closely related to plants, fungi or animals than they are to other protists. The majority of 

protist diversity is distinguished into a number of comprehensive monophyletic groups, which are 

usually referred to by the informal name “supergroups” (Guillou et al., 2013). Besides heterotrophic 

protists and microscopic fungi, photosynthetic and mixotrophic protists, or “algae”, are scattered 

within many supergroups along with many other protozoans, with the exception of Archaeplastida, 

which form a group of their own (Simpson et al., 2017). Photosynthetic groups contribute to the 

primary production in oceans and inland waters, playing a fundamental role in the global CO2/O2 

balance (Flombaum et al., 2013). Many other groups are mostly involved in the recycling of organic 

matter, nutrient cycling and grazing (Weisse et al., 2016), and parasitism (Schwelm et al., 2018). 

 In freshwater environments, the majority of the investigations were historically addressed 

towards the study of microalgae, which include both pelagic organisms (phytoplankton and 

cyanobacteria) (Reynolds, 2006; Oliver et al., 2012) and organisms attached to substrata, such as 

diatoms (Rimet et al., 2015) and other periphytic algae, either eukaryotic (Stevenson et al., 1996; 

Wehr and Sheath, 2003) or prokaryotic (Quiblier et al., 2013). Overall, these groups are composed 

of a wide variety of photosynthetic, mixotrophic, and even heterotrophic (Moestrup and Calado, 

2018) organisms that show exclusive adaptations to specific lake typologies and trophic status. 

 Besides cyanobacteria, which, in this project, have been evaluated separately with the other 

prokaryotic species (Salmaso et al., 2021b), phytoplankton is one of the main biological elements 

included in the Water Framework Directive for the evaluation of lake water quality (Water 

Framework Directive, 2000; Carvalho et al., 2013; Pasztaleniec, 2016). The use of phytoplankton 

and cyanobacteria in the assessment of water quality has been fostered by a long tradition of 

investigations based on the identification of species by light microscopy (LM) (Sournia, 1978; 

Soares et al., 2011) and polyphasic approaches, supplementing LM with genetic methods (Krienitz 

and Bock, 2012; Kurmayer et al., 2015; Shams, 2015; Wilmotte et al., 2017) based on the use of 

rRNA gene markers (16S and 18S) and many other more selective genetic markers, as in the case of 

diatoms (Rimet et al., 2015; Vasselon et al., 2017). 

Compared to phytoplankton, the study of non-photosynthetic protists in inland waters was 

mostly focused on taxonomic and broad ecological aspects. The knowledge of their ecological key 

roles was slow down by an insufficient understanding of their diversity, which, due to 

methodological limitations, up to recently was limited to a few more or less abundant taxa (Cotterill 

et al., 2008; Grossmann et al., 2016). 

 This deliverable provides the basic elements that are used for the identification of protists 

using high throughput sequencing (HTS) methods within the project Eco-AlpsWater. An overview 

of the analyses carried out using the 16S and 18S rRNA gene, rbcL (diatoms) and 12S rRNA gene 

(fish) gene markers in the context of the project Eco-AlpsWater is reported in Fig. 1. 

 

 

2. Selection of primers 

 

PCR amplification of the 18S rRNA genes are performed by targeting a ~380-bp fragment of the 

18S rRNA gene variable region V4 using the specific primer set: 

• TAReuk454FWD1 (5’ CCAGCASCYGCGGTAATTCC 3’) (Stoeck et al., 2010), and 

• TAReukREV3_modified (5’ ACTTTCGTTCTTGATYRATGA 3’) (Stoeck et al., 2010; 

Piredda et al., 2017). 
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This pair of primers has been widely used in the assessment of microeukaryotic biodiversity 

in aquatic environments (e.g., Piredda et al., 2017; Armeli Minicante et al., 2019; Salmaso et al., 

2020). In a recent comparison of the performance of primers targeting different hypervariable 

regions in the 18S rRNA gene, Tragin et al. (2018) found that the V4 and V9 regions provided 

similar images of alpha diversity and ecological patterns; though V9 was able to provide more 

OTUs (object taxonomic units) built at 97% identity than V4, the V9 dataset failed to describe the 

diversity of specific chlorophycean groups (Dolichomastigales), emphasizing the lack of sequences 

in this hypervariable region, and the importance of the reference database for metabarcode analysis. 

Moreover, owing to its short length (< 200 nt), the V9 marker provides limited phylogenetic 

information, whereas the V4 region allows phylogenetic/taxonomic resolution often to species-or 

genus-level, enabling more accurate taxonomic placements of unassigned HTS amplicon sequences 

(Geisen et al., 2019). 

 

 

 
 

 

Fig. 1 – Schematic representation of planktic organisms and nekton in freshwater bodies. The biological elements 

included in the monitoring activities of the project Eco-AlpsWater are enclosed within red squares; these include 

bacteria and cyanobacteria, protists (including photosynthetic and mixotrophic microalgae, and pelagic and benthic 

diatoms), and fish. Macrobenthos is not represented. The specific genes used in the project are intended to target 

bacteria/cyanobacteria (16S rRNA gene), unicellular protists (18S rRNA gene), diatoms (rbcL), and fish (12S rRNA 

gene). Nevertheless, though designed to amplify genetic regions belonging to these intended organisms, the 

generality of primers is such as to amplify also “unintended” biological elements, such as, e.g., chloroplasts and 

mitochondria (16S rRNA gene), metazoans (mostly zooplankton, 18S rRNA gene), and higher organisms (such as 

mammals, 12S rRNA gene). Microorganisms (as well as other organisms) are not in scale. 
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3. Wet lab, amplification and HTS 

 

DNA extraction was performed to a set of samples collected in a variety of habitats, including lakes 

(open waters and biofilm) and rivers (biofilm). Methods have been described in detail in Domaizon 

et al. (2019), Rimet et al. (2020; 2021), and Vautier et al. (2020, 2021). PCR amplification and 

library construction are performed as described in (Salmaso et al., 2018, 2020). All barcoded 

libraries are pooled in equimolar concentrations by qPCR in a final library and checked on a 

Typestation 2200 platform (Agilent Technologies, Santa Clara, CA, USA). The final library is 

sequenced on an lllumina® MiSeq (PE300) platform (MiSeq Control Software 2.6.2.1 and Real-

Time Analysis software 1.18.54). 

 

 

4. Bioinformatic pipeline 

 

18S rRNA gene reads are analysed using standardized bioinformatic pipelines. Different approaches 

can be adopted, based essentially on the identification of OTUs built at specific levels of identity 

(generally 97%) (Edgar, 2018) or, as more recently proposed, on the identification of individual 

variants using oligotyping approaches (Eren et al., 2013, 2015) and denoising methods (amplicon 

sequence variants, ASVs, also known as exact sequence variants, ESVs) (Callahan et al., 2016; 

Edgar, 2016; Amir et al., 2017). Compared to OTUs, the use of ASVs has several advantages, 

including the ability to detect species at the level of strains. Moreover, representing a cloud of 

divergent sequences clustered ad different levels of similarity, OTUs are invalid outside of the data 

set in which they are defined. Conversely, representing exact sequences with consistent taxonomic 

labels, ASVs can be compared among different datasets (Callahan et al., 2016, 2017). Nevertheless, 

as in the case of OTUs (Prodan et al., 2020), although different ASVs pipelines are able to produce 

similar microbial compositions based on relative abundance, the approaches can provide different 

numbers of ASVs that significantly impact alpha diversity metrics (Nearing et al., 2018; Prodan et 

al., 2020). Further, high caution should be adopted in the evaluation and interpretation of ASVs 

diversity, due to the different 18S rRNA gene copies in the microeukaryotic cells (from less than a 

hundred, to well over half a million in ciliates), which can affect intragenomic heterogeneity and 

ASVs diversity (Wang et al., 2017; Salmaso et al., 2020). 

This protocol reports a pipeline, based on DADA2, under R, for the identification of ASVs. 

The pipeline has been adapted from those continuously updated from the WEB site of DADA2 

(https://benjjneb.github.io/dada2/index.html) (Callahan et al., 2016, 2018). 

For the analyses of bacterial and microeukaryotic communities in a selection of lakes 

analyzed within the Eco-AlpsWater project, these pipelines have been adapted, described and 

applied in Salmaso (2019) and (Salmaso et al., 2020), respectively. With this protocol, the pipeline 

has been tested on a machine equipped with an i7 9700K and 64 Gb of RAM, under Linux Ubuntu 

20.10 LTS1 and R 4.1.0, and with the latest DADA2 version (1.20.0). The analysis of larger datasets 

(>50-100 pairs of F and R FASTQ files) would require the use of High Performance Computing 

(HPC) facilities equipped with multithread processors and high RAM (≥64 Gb). Generally, even the 

analysis of limited datasets could be unreliable with basic laptops (e.g. dual core and ≤ 8Gb RAM). 

 

 
1 This pipeline can be used in Windows 10 only adapting the working directories, i.e. using, e.g.,: 
path <- "c:/EAW18S/" 
 

https://benjjneb.github.io/dada2/index.html
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4.1 Download of FASTQ files, and preliminary processing 

 

A selection of 6 samples, with 6 Forward (R1) and 6 Reverse (R2) files are used in this tutorial. R1 

and R2 reads are 300 bp long, and were obtained from Illumina MiSeq technologies, at the FEM 

facility sequence (sections 2 and 3). The files refer to the18S rRNA gene reads obtained from the 

analyses carried out on the samples collected and filtered (SterivexTM 0.22 µm) in different stations 

of Lake Garda on September, 2018 (Fig. 2)2. 

 

 
Forward (R1) Reverse (R2) Code (Fig. 2) 

• ECOALPSWATER-18S-386-09-18-

0stv_S145_L001_R1_001.fastq 

• ECOALPSWATER-18S-386-09-18-

0stv_S145_L001_R2_001.fastq 

S0 

• ECOALPSWATER-18S-386-09-18-

4stv_S146_L001_R1_001.fastq 

• ECOALPSWATER-18S-386-09-18-

4stv_S146_L001_R2_001.fastq 

S4 

• ECOALPSWATER-18S-

B0918D1stv_S141_L001_R1_001.fastq 

• ECOALPSWATER-18S-

B0918D1stv_S141_L001_R2_001.fastq 

C0 

• ECOALPSWATER-18S-

B0918D4stv_S142_L001_R1_001.fastq 

• ECOALPSWATER-18S-

B0918D4stv_S142_L001_R2_001.fastq 

C100 

• ECOALPSWATER-18S-

B0918D5stv_S143_L001_R1_001.fastq 

• ECOALPSWATER-18S-

B0918D5stv_S143_L001_R2_001.fastq 

C300 

• ECOALPSWATER-18S-

Porto0918stv_S144_L001_R1_001.fastq 

• ECOALPSWATER-18S-

Porto0918stv_S144_L001_R2_001.fastq 

H0 

   

 

The 12 files are stored in the Zenodo archives (Salmaso et al., 2021b; 

https://zenodo.org/record/5215919#.YSJyHEtxeHs). Download the files in a working directory, 

under your home dir, ~/EAW18S. 

Either before or during data processing with DADA2, primers at the beginning of the F and R reads 

will have to be trimmed. In the first case, primers will be trimmed before the application of the 

DADA2 bioinformatic pipeline using Cutadapt3 (see below). In the second case, primers will be 

trimmed by using an internal procedure implemented in DADA2 (argument trimLeft in the 

function filterAndTrim); this last procedure is presented in the Appendix 1. 

 

A first option to trim primers from FASTQ and zipped FASTQ files, which does not require a 

native installation, is to use the version of Cutadapt included in the Galaxy web-based platform 

(https://usegalaxy.org/), following the links: Genomic File Manipulation → FASTA/FASTQ → 

Cutadapt; the application works on single paired reads and multiple datasets. The Galaxy platform 

is runs under Windows and UNIX operating systems. All the operations have to be completed using 

menus. 

 

 

 
2 The same set of samples and DNA extracts were used to analyze the 16S rRNA gene profiles (Salmaso et al., 2021a, 
2021c). 
3 Cutadapt is only one among several options that can be used to trim primers. Results obtained with different tools 
can differ (Lindgreen, 2012; Kechin et al., 2017). Moreover, final results depend, for every single tools, from the choice 
of parameters. In this protocol, Cutadapt uses default options, with the exception of -t (TRUE), which allows discarding 
reads that do not contain the primers. 

https://usegalaxy.org/
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Fig. 2 – Location of the sampling stations considered in this protocol. 

 

A second straightforward option, is to use Cutadapt natively, under UNIX operating systems. Under 

Linux Debian operating systems (e.g. Ubuntu), Cutadapt can be installed, in the terminal, using: 

 
sudo apt install cutadapt 

 

To assure the installation of the most recent versions of Cutadapt, the machine should be equipped 

with the latest LINUX versions. For other installation options see 

https://cutadapt.readthedocs.io/en/stable/installation.html. 

Since Cutadapts works on single FASTQ or single paired FASTQ files, the application on 

multiple datasets (samples) requires the use of specific wrappers. Here we will use the bash script 

rmprim.sh (https://github.com/hts-tools/metatools). The script works when the F and R reads do not 

extend into the opposite primers, as in the case of TAReuk454FWD1 and TAReukREV3_modified 

used in this protocol. After opening the terminal, enter the directory ~/EAW18S, and download 

rmprim.sh: 

 
cd ~/EAW18S 

wget https://raw.githubusercontent.com/hts-tools/metatools/master/rmprim/rmprim.sh 

 

Primers can be removed using the script4: 

 
bash rmprim.sh -f CCAGCASCYGCGGTAATTCC -r ACTTTCGTTCTTGATYRATGA -n TRUE -t TRUE -d 

~/EAW18S 

 

The arguments -f and -r indicate the F and R primers; -n TRUE indicates anchored primers (at the 

beginning of reads);  if TRUE, -t discard reads that do not contain the adapter; -d indicates the 

 
4 rprim requires zipped FASTQ files (fastq.gz). If the fastq files are not zipped, move to the FASTQ dir, and use the bash 
script: “for file in *; do gzip -k "$file"; done” 

https://cutadapt.readthedocs.io/en/stable/installation.html
https://github.com/hts-tools/metatools
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directory where the FASTQ files are stored. The result is a corresponding number of trimmed files, 

with extension *trim.fastq.gz. These files are used in the DADA2 pipeline, below. 

 

 

4.2 Installation of DADA2 

 

DADA2 can be installed in the R environment under Linux (e.g. Debian/Ubuntu), Mac OS, or 

Windows. In the following, the pipeline describes the utilization under Linux, but the script, after 

adapting the directories, can be easily run also under Windows. In this context, UNIX environments 

have the advantage to use multicores/multithreading.  The pipeline assumes that one of the latest 

versions of R (>= 4.1.0) is already installed in the machine. Binaries can be downloaded and 

installed from Bioconductor using the BiocManager. In case of installation problems, see 

https://www.bioconductor.org/install/. Different versions of R, bioconductor and DADA2 can cause 

conflicts due to incompatibility. Before every project analysis, a good strategy is to evaluate the 

requirements of the last DADA2 version, and to install R and Bioconductor packages accordingly. 

 

After launching R, if BiocManager is not installed, run: 

 
chooseCRANmirror() 

install.packages("BiocManager") 

 

Then install the package dada2: 

 
chooseCRANmirror() 

BiocManager::install("dada2") 

 

Other required packages are tidyverse and openxlsx; if not installed, run: 

 
install.packages("openxlsx", dependencies=TRUE) 

install.packages(vegan) 

install.packages("tidyverse") 

 

Load dada2 and other packages into memory: 

 
rm(list=ls(all=TRUE)) 

library(dada2) 

library(openxlsx) 

library(vegan) 

library(tidyverse) 

packageVersion("dada2") 

 

In the following steps, the input directory ~/EAW18S is saved in the variable “path”. Moreover, to 

keep things in order, other sub-directories are created under ~/EAW18S with the following lines: 

 
path <- "~/EAW18S" 

setwd(path) 

list.files(path) 

# prepare the directories for tables and analyses 

pathtab <- paste0(path, '/', 'Tables/') 

pathana <- paste0(path, '/', 'Analysis/') 

pathtax <- paste0(path, '/', 'Taxonomy/') 

dir.create(pathtab) 

dir.create(pathana) 

dir.create(pathtax) 

https://www.bioconductor.org/install/
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4.3. Evaluation of quality profiles 

 

Read the names of files, and obtain R1 and R2 fastq files in matched order5: 

 
fnFs <- sort(list.files(path, pattern="_R1_001_trim.fastq.gz", full.names = TRUE)) 

fnRs <- sort(list.files(path, pattern="_R2_001_trim.fastq.gz", full.names = TRUE)) 

sample.names <- sapply(strsplit(basename(fnFs), "_"), '[', 1) 

 

Visualize the quality profiles of the forward and reverse reads (here, only the first four will be 

shown) (Fig. 3): 

 
plotQualityProfile(fnFs[1:4]) 

plotQualityProfile(fnRs[1:4]) 

 

 

  

Fig. 3 – Quality profiles of the forward (R1, left) and reverse (R2, rigth) reads (primers trimmed). Quality scores are 

encoded in the FASTQ files (fourth line of each single read). The bases are along the horizontal axis, whereas the 

quality scores are reported on the vertical axis. The gray-scale is a heat map of the frequency of each Q-score at each 

base position; darker colors correspond to higher frequency. The green line is the mean quality score at each base 

position, and the three orange lines show the quartiles (median, 50th continuous; 25th and 75th dashed). The 

evaluation of quality profiles of all the samples can be facilitated by averaging the analysis (argument 

aggregate=TRUE, which computes an aggregate quality profile for all fastq files provided). A red line is plotted 

when the sequences vary in length, indicating the percentage of reads (rigth y-axis) that extend to at least that 

position (on the x-axis). 

 

These plots allow deciding which range of bases to include in the analysis. Q-scores of 40, 30 and 

20 indicates an expected error rate of 1 in 10000, 1 in 1000, and 1 in 100, respectively. As a rule of 

thumb, truncation should exclude average qualities Q-scores read areas < 30. Truncation, however, 

should allow overlapping of R1 and R2 reads in successive analyses. In this exercise, R1 and R2 

 
5 Besides fastq.gz files, fastq files can be analysed. In that case, pattern="_R1_001.fastq"… 
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reads will be truncated at 255 and 220, respectively, allowing a final overlap of around >75 bp 

bewteen R1 and R2 reads6. 

 

The quality-filtering step is done with the filterAndTrim() function. The argument 

truncLen allows truncating the R1 and R2 reads at the desired length. The new filtered fastq are 

saved in the directory "~/EAW18S/filtered/" . The parameter truncQ truncate reads at the first 

instance of a quality score less than or equal to truncQ. After truncation with truncLen, reads 

with higher than maxEE "expected errors" will be discarded; maxEE (1, default 2) sets the 

maximum number of expected errors allowed in each read; EE = Σi 10-Q
i
/10 (Edgar and Flyvbjerg, 

2015).  matchIDs=TRUE enforces matching between the id-line sequence identifiers of the R1 

and R2 fastq files. All the other arguments in filterAndTrim()are set to default values. 

 

 
filtFs <- file.path(path, "filtered", paste0(sample.names, "_F_filt.fastq.gz")) 

filtRs <- file.path(path, "filtered", paste0(sample.names, "_R_filt.fastq.gz")) 

names(filtFs) <- sample.names 

names(filtRs) <- sample.names 

out <- filterAndTrim(fnFs, filtFs, fnRs, filtRs, truncQ=5, truncLen=c(255,220), 

maxEE=c(1,1), matchIDs=TRUE, maxN = 0, rm.phix=TRUE, multithread=TRUE, verbose = TRUE) 

out # On Windows, multithread is not supported 

mean(out[,2])/mean(out[,1]) 

 

The output shows the fraction of reads retained and discarded. The quality of the filtered filed can 

be also cheked (figures not shown): 

 
plotQualityProfile(filtFs[1:4]) 

plotQualityProfile(filtRs[1:4]) 

 

 

4.4 Learn the Error Rates and Sample Inference 

 

In this step, DADA2 removes all sequencing errors to reveal the members of the sequenced 

community. For details, see https://rdrr.io/github/benjjneb/dada2/man/dada.html, and (Callahan et 

al., 2016). The error profiles are used in a successive step to correct errors. 

 
set.seed(123) 

errF <- learnErrors(filtFs, multithread=TRUE, verbose = TRUE, nbases = 2e+08, MAX_CONSIST 

= 15) 

errR <- learnErrors(filtRs, multithread=TRUE, verbose = TRUE, nbases = 2e+08, MAX_CONSIST 

= 15) 

plotErrors(errF, nominalQ=TRUE) 

plotErrors(errR, nominalQ=TRUE) 

 

In the sample inference step, the sample inference algorithm is applied to the filtered and trimmed 

sequence data, with the aim to infer true biological sequences. This is done by incorporating the 

quality profiles and abundances of each unique sequence, deciding if sequences are “true” (of 

 
6 The truncation values must be decided each time. The values used in this protocol were defined after examining the 
quality profiles, in Fig. 3, and do not necessarily apply to other data sets. If reads are of good quality, the value of the 
trunclen parameter can be increased, allowing a higher number of bases overlapping between R1 and R2. Viceversa, if 
reads are of bad quality, try decrease the value of the trunclen parameter, but maintaining a final overlap between R1 
and R2 reads of at least 20 bp + biological length variation (see https://benjjneb.github.io/dada2/tutorial.html). 
 

https://rdrr.io/github/benjjneb/dada2/man/dada.html
https://benjjneb.github.io/dada2/tutorial.html
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biological origin), or spurious (Callahan et al., 2016). A dereplication step (as in previous versions 

of DADA2), is no more necessary. 

 
dadaFs <- dada(filtFs, err=errF, pool=FALSE, multithread=TRUE) 

dadaRs <- dada(filtRs, err=errR, pool=FALSE, multithread=TRUE) 

 

If pool = TRUE, the algorithm will pool together all samples prior to sample inference. If pool 

= FALSE (default), sample inference is performed on each sample individually. If pool = 

"pseudo", the algorithm will perform pseudo-pooling between individually processed samples. 

Pooling samples together increases the ability to identify low-abundance ASVs but can be 

computationally not feasible on common computers when datasets are large. Estimated error rates 

are reported in Fig. 4. 

 

 

  
 
Fig. 4 – Visualization of the estimated error rates. Each single graph shows the error rates for each possible transition 
(e.g. A→C, A→G, … T→G). The red line is what is expected based on the quality score; the black line is the estimate, 
whereas the black dots are the observed. Overall, the observed, black dots, should track well the estimated errors 
(black line). 

 

 

4.5 Merging forward (R1) and reverse (R2) reads 

 

Reconstruction of target amplicons requires the overlapping region of F and R reads to be identical. 

The function mergePairs requires as default a minimum of 12 bp. In this dataset, after cutting 

the primers, and truncating the R1 and R2 reads, we expect an amplicon size of around 380 bp, and 

an overlap of ca. >75 bp. As a conservative measure, and allowing for natural biological variation, 

the minimum overlap in this dataset can be fixed at 65, which is still considerably large. On a 

practical ground, this value has been checked also considering the outputs and the fraction of 

merged reads (see table below). No mismatches are allowed in the overlap region. 

 

merged_reads <- mergePairs(dadaFs, filtFs, dadaRs, filtRs, verbose=TRUE, minOverlap=65, 

maxMismatch=0) 

length(merged_reads) 

head(merged_reads[[1]]) 
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4.6 Generate the count table (ASV matrix, abundance table) 

 
seqtaball <- makeSequenceTable(merged_reads) 

dim(seqtaball) 

 

The table is a matrix, in which rows correspond to samples (6), and columns to the sequence 

variants (908). 

 

plot(table(nchar(getSequences(seqtaball)))) 

 

A fraction of lengths in the merged sequences do not fall within the expected range for this V4 

amplicon, possibly because of non-specific priming. These sequences could be removed. This is 

conservative, and it could be worth always a try to inspect the nature of the discarded sequences. 

Actually, at sequence length between 300 and 340 bp, a number of ciliates has been identified. 

Therefore, a lower limit of 300 bp allows to retain all the taxonomic information, whereas further 

checking and taxonomic filtering can be made on the downstream analyses of data. 

 
seqtab <- seqtaball[,nchar(colnames(seqtaball)) %in% seq(300,405)] 

dim(seqtab) 

plot(table(nchar(getSequences(seqtab))), xlab = "Reads R1+R2 merged length") 

 

The final result, after discarding sequences outside the expected range, is given in Fig. 5. 

 

 
Fig. 5 – Number of reads (y) with specific amplicon lengths (x) in the 18S rRNA gene V4 region. 

 

 

4.7 Chimera identification and removal, and track reads through the pipeline 

 

Chimeric sequences are identified and then removed if they are formed by the left-segment and a 

right-segment belonging to two of the more abundant sequences. 
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seqtab.nochim <- removeBimeraDenovo(seqtab, method="consensus", multithread=TRUE, 

verbose=TRUE) 

dim(seqtab.nochim) 

sum(seqtab.nochim)/sum(seqtab)*100 

 

When accounting for the abundances of the merged sequence variants, chimeras account for less 

than 2% of the merged sequence reads. 

 As a further computational check, it is worth to know how many reads were discarded at 

various points of the pipeline: 

 
getN <- function(x) sum(getUniques(x)) 

track <- cbind(out, sapply(dadaFs, getN), sapply(dadaRs, getN), sapply(merged_reads, 

getN), rowSums(seqtab.nochim)) 

colnames(track) <- c("input", "filtered", "denoisedF", "denoisedR", "merged", "nonchim") 

rownames(track) <- sample.names 

head(track) 

 

 

 input filtered denoisedF denoisedR merged nonchim 

ECOALPSWATER-18S-386-09-18-0stv 60314 54383 53835 53834 51151 50591 

ECOALPSWATER-18S-386-09-18-4stv 77141 69917 69381 69497 67462 66415 

ECOALPSWATER-18S-B0918D1stv 36569 33202 32983 33017 32152 31962 

ECOALPSWATER-18S-B0918D4stv 21569 19441 19243 19295 17529 17055 

ECOALPSWATER-18S-B0918D5stv 19279 17572 17415 17468 16874 16782 

ECOALPSWATER-18S-Porto0918stv 33337 30151 29862 29907 28622 28339 
 

 

Results are quite good. After the filtering step, the majority of reads should be retained. 

 

 

4.8 Taxonomy assignement 

 

Taxonomy assignement is implemented using the naive Bayesian classifier method (Wang et al., 

2007)and the PR2 database (PR2 version 4.14.0, June 20217), a curated list containing only 

eukaryotic taxa (Guillou et al., 2013). Download the file 

pr2_version_4.14.0_SSU_dada2.fasta.gz, saving it in the directory 

~/EAW18S/Taxonomy/ (skip this step if the taxonomy file was already downloaded): 

 

 
download.file("https://github.com/pr2database/pr2database/releases/download/v4.14.0/pr2_v

ersion_4.14.0_SSU_dada2.fasta.gz", paste0(pathtax, 

"pr2_version_4.14.0_SSU_dada2.fasta.gz")) 

 

The minimum bootstrap confidence for assigning a taxonomic level has been set to 95 (default=50). 

This step is computationally demanding, requiring a high amount of RAM memory. 

 

 
7 Previous analyses of the EAW 18S rRNA sequences made in December 2020 were done on the PR2 version 4.12.0 
(August 2020) reference database, i.e. “pr2_version_4.12.0_18S_dada2.fasta.gz”. In case of updating the taxonomic 
databases, their name in the scripts will have to be changed accordingly. 
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taxaPR2 <- assignTaxonomy(seqtab.nochim, paste0(pathtax, 

"pr2_version_4.14.0_SSU_dada2.fasta.gz"), multithread=TRUE, minBoot = 95, verbose = TRUE, 

taxLevels=c("Kingdom", "Supergroup", "Division", "Class", "Order", "Family", "Genus", 

"Species")) 

 

Save the session. Results can be successively loaded in R with the function load: 

 

save.image(paste0(pathana, "EAW18S_analysis.RData")) 

 

 

4.9 Collecting DADA2 results: saving tables for downstream statistical analyses 

 

# clean the “Tables” dir of previous (if any) files 

setwd(pathtab) 

file.remove(list.files()) 

setwd(path) 

 

# save sequences with original headers 

write.csv(t(seqtab.nochim), paste0(pathtab, "seqtab-nochim.csv"), quote=FALSE) 

 

# simplify names to sequence headers(seq1, seq2...seq100...) 

# adapted from: https://github.com/benjjneb/dada2/issues/655 

seqs <- colnames(seqtab.nochim) 

SeqName <- vector(dim(seqtab.nochim)[2], mode="character") 

SeqName_ft <- vector(dim(seqtab.nochim)[2], mode="character") 

for (i in 1:dim(seqtab.nochim)[2]) { 

  SeqName[i] <- paste("seq", i, sep="") 

  SeqName_ft[i] <- paste(">seq", i, sep="") 

} 

 

# write sequences in a FASTA file 

fastaseqs_ft <- rbind(SeqName_ft, seqs) 

write(fastaseqs_ft, paste0(pathtab,"fastaseqs.fasta")) 

# write sequences in a FASTA file (tabula) 

fastaseqs <- cbind(SeqName, seqs) 

write.csv(fastaseqs, paste0(pathtab,"fastaseqs.csv"), quote=FALSE, row.names = FALSE) 

 

# write count table 

seqtab.nochim.t <- t(seqtab.nochim) 

row.names(seqtab.nochim.t) <- SeqName 

seqtab.nochim.t <- tibble::rownames_to_column(as.data.frame(seqtab.nochim.t), "SeqName") 

write.csv(seqtab.nochim.t, paste0(pathtab, "counts.csv"), quote=FALSE, row.names = FALSE) 

 

# write taxonomy table 

taxtable <- taxaPR2 

row.names(taxtable) <- SeqName 

taxtable <- tibble::rownames_to_column(as.data.frame(taxtable), "SeqName") 

write.csv(taxtable, paste0(pathtab, "taxtable.csv"), quote=FALSE, row.names = FALSE) 

 

# Join results and save in spreadsheet (excel) format 

tax_counts <- left_join(taxtable, seqtab.nochim.t, by = "SeqName", keep = TRUE) 

tax_counts_fasta <- left_join(tax_counts, as.data.frame(fastaseqs),  by = c("SeqName.x" = 

"SeqName"), keep = TRUE) 

openxlsx::write.xlsx(tax_counts_fasta, file = paste0(pathtab, "tax_counts_fasta.xlsx"), 

overwrite = TRUE, asTable = FALSE, sheetName = "EAW_18S", firstRow = TRUE, zoom = 90, 

keepNA = TRUE) 

 

The above files can be imported in spreadsheet and/or statistical programs, merged, and analyzed in 

downstream statistical analyses. Here a quick example (Fig. 6), using the package vegan (Oksanen 

et al., 2020): 
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library(vegan) 

counts <-read.csv(file=paste0(pathtab, "counts.csv"), header=T, row.names=1) 

head(counts) 

counts2 <- t(counts)^0.25 

bc <- vegdist(counts2, method="bray") 

plot(hclust(bc)) 

 

 

 

Fig. 6 - Quick and dirty cluster analysis made importing the file counts.tsv in R. Data preliminarily transformed by 

double square root. Note how the deep samples are isolated from the surface samples. 

 

4.10 Export data to phyloseq 

 

Install the package phyloseq (McMurdie and Holmes, 2013), following the instructions provided in 

bioconductor, https://www.bioconductor.org/packages/release/bioc/html/phyloseq.html , 

and load the package: 

 

library(phyloseq) 

 

Open the metadata spreadsheet file “EAW_2018_18S_metadata.ods” (in Zenodo, 

https://doi.org/10.5281/zenodo.5215919), delete the first line, and save in .CSV format under the dir 

“~/EAW18S”. Import the metadadata in R (check the parameter “sep”: it can be either “;” or ”,”): 

 
ambio <- read.csv(file="EAW_2018_18S_metadata.csv", header=T, row.names=1, sep = ";") 

ambio 

 

Create a phyloseq object, and save it under the dir “~/EAW18S/Analysis”,  
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taxtable_ps <- taxaPR2 

row.names(taxtable_ps) <- SeqName 

eawps18S <- phyloseq(otu_table(counts, taxa_are_rows=TRUE), sample_data(ambio), 

tax_table(taxtable_ps)) 

eawps18S 

saveRDS(eawps18S, file = paste0(pathana, "EAW18S_ps.rds")) 

 

eawps can be successively loaded in new R sessions, and data analyzed with phyloseq 

(https://joey711.github.io/phyloseq/index.html): 

 

eawps18S <- readRDS(file = paste0(pathana, "EAW18S_ps.rds")) 

 

 

APPENDIX 1 

 

As indicated by the authors of DADA2 (http://benjjneb.github.io/dada2/faq.html), if primers are at 

the start of reads and are a constant length, the argument trimLeft = c(FWD_PRIMER_LEN, 

REV_PRIMER_LEN) in the filtering function filterAndTrim can be used to remove the 

primers. For more complex situations, see  https://benjjneb.github.io/dada2/ITS_workflow.html 

 

The trimming of primers using DADA2 is described below, using a sligth modification of section 

4.3. If not already done, download the test files to the directory ~/EAW18S and go through Section 

4.2, and then follow 4.3.A, below. 

 

4.3.A Evaluation of quality profiles 

 

Read the names of untrimmed files, and obtain R1 and R2 fastq files in matched order: 

 
fnFs <- sort(list.files(path, pattern="_R1_001.fastq.gz", full.names = TRUE)) 

fnRs <- sort(list.files(path, pattern="_R2_001.fastq.gz", full.names = TRUE)) 

sample.names <- sapply(strsplit(basename(fnFs), "_"), '[', 1) 

 

Visualize the quality profiles of the forward and reverse reads (here, only the first four will be 

shown) (Fig. 7): 

 
plotQualityProfile(fnFs[1:4]) 

plotQualityProfile(fnRs[1:4]) 

 

These plots allow deciding which range of bases to include in the analysis. In this exercise, R1 and 

R2 reads will be truncated at 275 and 241, respectively, allowing a final overlap of around >75 bp 

bewteen R1 and R2 reads. 

 

The quality-filtering step is done with the filterAndTrim() function. The argument 

truncLen allows truncating the R1 and R2 reads at the desired length. At the same time, primers 

are removed using the argument trimLeft. For the other arguments in filterAndTrim()see 

4.3. The new filtered fastq files are saved in the directory "~/EAW18S/filtered/". . 

 

https://joey711.github.io/phyloseq/index.html
http://benjjneb.github.io/dada2/faq.html
https://benjjneb.github.io/dada2/ITS_workflow.html
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Fig. 7 – Quality profiles of the forward (R1, left) and reverse (R2, rigth) reads. These reads still include the primers. 

 

 
filtFs <- file.path(path, "filtered", paste0(sample.names, "_F_filt.fastq.gz")) 

filtRs <- file.path(path, "filtered", paste0(sample.names, "_R_filt.fastq.gz")) 

names(filtFs) <- sample.names 

names(filtRs) <- sample.names 

out <- filterAndTrim(fnFs, filtFs, fnRs, filtRs, truncLen=c(275,241), trimLeft=c(20, 21), 

maxEE=c(2,2), multithread=TRUE, matchIDs=TRUE) 

out # On Windows, multithread is not supported 
mean(out[,2])/mean(out[,1]) 

 

The output shows the fraction of reads discarded. The quality of the filtered filed can be also cheked 

(figures not shown): 

 
plotQualityProfile(filtFs[1:4]) 

plotQualityProfile(filtRs[1:4]) 

 

Continue with Section 4.4. 

*** 
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