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Summary 

Biodiversity is under threat in recent decades, with many natural habitats irreversibly 
disappearing due to global warming and human activity. Our perception of species loss 
highly depends on an accurate species estimate. However, occurrence of cryptic species (i.e. 
distinct species that are impossible or difficult to distinguish based on their morphology) 
hinders a correct assessment of biodiversity. Cryptic species have been described for rotifers 
of the class Bdelloidea and Monogononta. Rotifers of the class Monogononta are 
widespread in freshwater lakes all over the world and can serve as model organisms for 
speciation and adaptation.  

The main aim of this thesis was to investigate and describe the genetic diversity of one of 
the most common freshwater rotifer - Keratella cochlearis - in relation to its morphological 
variability. Beside the assessment of genetic diversity, a detailed study of K. cochlearis life 
cycle and reproductive strategy was performed. 

The results of the first study demonstrated that based on the cytochrome c oxidase subunit 
1 (COI) gene different putative evolutionary significant units (ESU; a.k.a. cryptic species) can 
be delimited in Keratella cochlearis (I). Based on morphology, two ESUs can be delimited 
from the other six ESUs found. We also reported on co-occurrence of different putative ESUs 
of K. cochlearis in the same lakes, and presented the first SEM pictures of K. cochlearis 
females showing some detailed morphological characteristics.  

Life histories and demographic parameters differences between various haplotypes of K. 
cochlearis were determined in the second study (II). Several differences between life history 
traits and demographic parameters of haplotypes were found corroborating their status as 
cryptic species and demonstrating that genetic diversity of K. cochlearis is also reflected in 
demographic diversity. Additionally, morphologically deformed females occurring during the 
life table experiment were documented and photographed for the first time in this species. 
Moreover, the first case of an amphoteric female (producing both males and females) in K. 
cochlearis was reported.  

In the third study (III), mitonuclear discordance in three rotifer species complexes was 
assessed. Mitonuclear discordance hinders the assessment of species delimitation based on 
only one gene (single-locus). Discordance between mitochondrial and nuclear phylogenies 
was reported for  three rotifer species complexes (K. cochlearis, Polyarthra dolichoptera, 
Synchaeta pectinata) with different levels of discordance between the mitochondrial COI 
and the nuclear ITS gene. The results corroborated the previous description of two ESUs in K. 
cochlearis.  

During our studies on K. cochlearis males, we developed a method to film zooplankton in 
general and rotifers specifically (IV). We connected a commercial single-lens reflex camera to 
a microscope and presented an affordable system with widely available components for 
filming. In filming male-female interactions of Brachionus angularis, our film showed a 
thread-like structure linking male and female. However, the purpose of this structure 
remained unclear.   



 8 

In conclusion, this PhD provided evidence for a high genetic and morphological diversity of K. 
cochlearis. Existence of a species complex of K. cochlearis was corroborated by 
mitochondrial and nuclear genetic information. This high genetic diversity in K. cochlearis 
was reflected to some extent in life histories and morphology. First videos of K. cochlearis 
males and of B. angularis males interaction with females were presented.    
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Zusammenfassung  

Die biologische Vielfalt ist in den letzten Jahrzehnten bedroht, da viele natürliche 
Lebensräume durch die Erderwärmung und die menschliche Aktivität irreversibel 
verschwinden. Unsere Wahrnehmung dieses Rückganges hängt stark von einer genauen 
Schätzung der Artenvielfalt ab. Das Auftreten kryptischer Arten (d. h. verschiedener Arten, 
die aufgrund ihrer Morphologie unmöglich oder schwierig zu unterscheiden sind) verhindert 
jedoch eine genaue Abschätzung der biologischen Vielfalt. Kryptische Arten wurden für 
Rädertierchen der Klasse Bdelloidea und Monogononta beschrieben. Rädertierchen der 
Klasse Monogononta sind in Süßwasserseen auf der ganzen Welt verbreitet und können als 
Modellorganismen für Artbildung und Anpassung dienen. 

Das Hauptziel dieser Arbeit war es die genetische Diversität eines der häufigsten 
Süßwassertierchen - Keratella cochlearis – zusammen mit dessen morphologischer Vielfalt zu 
untersuchen und zu beschreiben. Neben der Bewertung der genetischen Variabilität wurde 
eine detaillierte Studie des Lebenszyklus und der Reproduktionsstrategie von K. cochlearis 
durchgeführt. 

Die Ergebnisse der ersten Studie zeigten, dass basierend auf dem Cytochrom c-Oxidase- 
Untereinheit-1 (COI) -Gen verschiedene mutmaßliche evolutionär signifikante Einheiten 
(ESU; a.k.a. kryptische Spezies) in Keratella cochlearis (I) unterschieden werden können. Zwei 
ESUs können von den anderen sechs gefundenen ESUs aufgrund ihrer Morphologie 
abgegrenzt werden. Wir berichteten auch über das gemeinsame Auftreten verschiedener 
mutmaßlicher ESUs von K. cochlearis in denselben Seen und präsentierten die ersten SEM-
Bilder von K. cochlearis Weibchen mit morphologischen Details. 

Die Unterschiede im Lebenszeit und demographische Parameter zwischen verschiedenen 
Haplotypen von K. cochlearis wurden in der zweiten Studie (II) bestimmt. Mehrere 
Unterschiede zwischen den Merkmalen der Lebenszeit und den demographischen 
Parametern von Haplotypen bestätigten ihren Status als kryptische Arten und zeigten, dass 
sich die genetische Vielfalt von K. cochlearis auch in der demografischen Vielfalt 
widerspiegelt. Zusätzlich wurden morphologisch deformierte Weibchen erstmals 
dokumentiert und fotografiert, die während des Lebenszeit-Experimentes vorkamen. 
Darüber hinaus wurde der erste Fall eines amphoteren Weibchens (welches sowohl 
Männchen als auch Weibchen produziert) in K. cochlearis berichtet. 

In der dritten Studie (III) wurde die mitonukleare Diskordanz in drei Rotatorenkomplexen 
untersucht. Die mitonukleare Diskordanz erschwert die Abgrenzung der Arten auf der Basis 
von nur einem Gen (single-locus). Für drei Rotatorenkomplexe (K. cochlearis, Polyarthra 
dolichoptera, Synchaeta pectinata) wurde eine Dissonanz zwischen mitochondrialen und 
nuklearen Phylogenien gefunden. Die Ergebnisse bestätigten die vorherige Beschreibung von 
zwei ESUs in K. cochlearis. 

Während unserer Untersuchungen an K. cochlearis-Männchen entwickelten wir eine 
Methode, um Zooplankton im Allgemeinen und Rädertierchen im spezifischen zu filmen (IV). 
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Wir verbanden eine handelsübliche Spiegelreflexkamera mit einem Mikroskop und stellten 
ein erschwingliches System mit weit verbreiteten Komponenten für das Filmen vor. Beim 
Filmen der Interaktion zwischen Männchen und Weibchen von Brachionus angularis zeigte 
unser Film eine fadenförmige Struktur zwischen Männchen und Weibchen. Der Zweck dieser 
Struktur blieb jedoch unklar. 

Zusammenfassend konnte mit dieser Doktorarbeit eine hohe genetische und 
morphologische Diversität von K. cochlearis nachgewiesen werden. Die Existenz eines 
Spezieskomplexes von K. cochlearis wurde durch mitochondriale und nukleare genetische 
Information bestätigt. Diese hohe genetische Diversität in K. cochlearis spiegelte sich zum 
Teil im Lebensverlauf und der Morphologie wider. Erste Videos von K. cochlearis Männchen 
und der Interaktion von B. angularis Männchen mit Weibchen wurden vorgestellt. 
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1. Introduction 
 

1.1 Species diversity in aquatic communities 

In the past decades, the destruction of many natural ecosystems by human activity or by 
climate change resulted in rapid loss of many plant and animal species (Brooks et al., 2002; 
Brook et al., 2006). Knowledge on species diversity is much wider regarding well-studied and 
easily accessible areas of the world and in particular for macroscopic animals. However, 
species diversity studies are much less detailed in case of remote areas and in case of small, 
microscopic animals such as freshwater zooplankton. Small planktonic animals differ 
significantly from macroscopic animals in many ways; for example they usually have much 
shorter life span, higher fecundity, asexual reproduction and recurring periods of dormancy, 
which in some cases may lead to completely different diversity patterns than macroscopic 
animals (Fontaneto et al., 2009). The known number of environmental niches in freshwater 
environments could be much higher than on land due to the spatial heterogeneity (known as 
the paradox of the plankton; Hutchinson, 1961). Furthermore, dispersal between freshwater 
habitats (even on long distances) by wind or waterfowl (Maguire, 1959, 1963; Malone, 1965) is 
facilitated due to production of resting eggs by many microscopic animals (Bohonak & Jenkins, 
2003). The easiness of long-distance dispersal may lead to a situation where all species are 
found everywhere, known as the “Everything is everywhere but the environment selects” 
hypothesis (Baas-Becking, 1934). Because for many zooplankton organisms distances 
between water reservoirs are not real barriers, lack of geographical isolation may greatly 
influence the process of evolutionary speciation, with environment of water bodies being 
often the shaping factor for population compositions and dynamics (Segers & Smet, 2008). 
However, it appears that migrations from one water body to another are not necessarily the 
main factor shaping species assemblages of rotifers. Gómez et al. (2002) described for 
several species of the Brachionus plicatilis complex low levels of gene flow, which is 
surprising given their high degree of sympatry and dispersal possibilities. This indicates that 
it is in fact the environment that is the main shaping factor for zooplankton communities and 
not necessarily the difficulties of reaching new environments. However, according to the 
“persistent founder effect” hypothesis (Boileau et al., 1992) zooplankton communities may 
be influenced to the great extend not only by the variety of ecological niches but also by the 
first species that had colonized the water bodies. According to the “Monopolization 
hypothesis” (De Meester et al., 2002) genetic variation is mainly shaped by colonization 
events, especially if the colonizer has three characteristics: fast reproduction rate, resting 
propagules (or resting eggs), and easiness to adapt to new environment. These three 
characteristics will result in a well-adapted species which monopolizes the new 
environment, and this long lasting founder effect makes it difficult for newly arriving species 
to compete.  

Another peculiar characteristic of zooplankton communities is the ubiquity of 
parthenogenetic reproduction. The lack of necessity to find a mate may lead to co-existence 
of various species with similar environmental requirements in a relatively small area 
(Montero-Pau & Serra, 2011).  
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All those particular features yield diversity patterns of aquatic microscopic animals that are 
different from macroscopic terrestrial animals.  

Biodiversity analyses and, consequently, conservation actions rely on accurate identification of 
species, and considering the large number of still insufficiently described species, efforts to 
catalogue biodiversity should be a priority. However, our estimates of species richness are 
often biased by morphological similarities, our misunderstanding of the evolutionary 
processes that shape biodiversity or by the methods used to identify species. During recent 
years, our perception of species loss has been also altered by new species discovered in 
remote and previously hard-to-access areas. Moreover, species diversity estimates based on 
traditional morphology-based taxonomy may be biased as indicated by advancements in 
molecular-based phylogenetics and our increased understanding of relatedness (Clément, 
1993). Estimation of species richness for microscopic organisms is probably much less exact 
than for macroscopic animals, and because microscopic organisms play a crucial role in aquatic 
food web habitats (Schmid-Araya et al., 2002; Shurin et al., 2006), we can assume that these 
ecosystems are not completely understood.  

 

1.2 Rotifers and their role in ecosystems  

Rotifers (from Latin Rotifera) have been known since van Leeuwenhoek who observed them 
together with other microscopic animals through his primitive microscope for the first time 
in the 17th century. He named them "animalculum binis rolulis" (from Latin: animalcule with 
two wheels) because moving ciliae appeared to be “rotating” around the mouth of rotifers 
(Dobell, 1958). This description was the basis for the modern taxonomic term “Rotifera” 
meaning “wheel bearers” (from Latin “rota” = wheel and “ferre” = to bear/ carry). The 
typical rotifer anatomy consist of a three distinct features: 1) a head with the corona 
composed of ciliae used for locomotion, 2) food gathering jaws - throphi - which are located 
in a muscular pharynx called the mastax, and 3) an often thickened body wall, the lorica. 
Rotifers are a part of microscopic and near-microscopic zooplankton with body length range 
from 50-2000 µm (Wallace et al., 2006).  

 

 

 

 

 

 

 

 

Fig. 1. “Rotatoria” – drawing by Ernst Haeckel (Haeckel, 
1899-1904) 
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Due to their peculiar appearance (Fig. 1), ubiquity and interesting life cycle, rotifers have 
become important organisms used for studies on evolution, reproduction and biodiversity. 
Today the phylum Rotifera comprises over 2,000 validly described species, which are 
traditionally divided into three groups: Monogononta (~ 1,600 species), Bdelloidea (~ 460 
species), and Seisonacea (2 species) (Fontaneto & De Smet, 2015). The exact taxonomic 
position of these three groups and their evolutionary relationships are still unclear. The 
three groups differ significantly in their reproduction and in the habitat they occupy. 
Seisonacea reproduce only via sexual reproduction and live exclusively as epibionts of the 
crustacean Nebalia. Bdelloidea are obligate parthenogens, which inhabit wet and moist 
habitats on land. When exposed to unfavourable conditions they can undergo a process of 
dormancy through desiccation (Wallace et al., 2006). During this dormant state they show 
very high resistance to starvation, high pressure, very low temperature and ionising 
radiation (Ricci & Fontaneto, 2009). One of the possible explanation for their resistance  can 
be DNA-repairing mechanisms (Gladyshev & Meselson, 2008). This resistance to extreme 
conditions makes Bdelloidae a perfect model organism to study survival in extreme environments. 
Bdelloidae are also ones of the few multicellular organisms that reproduce only via asexual 
reproduction (Welch et al., 2004a; Welch et al., 2004b). Due to their purely asexual 
reproduction and their long evolutionary persistence, Bdelloidea were called an “evolutionary 
scandal” and became important organisms in the study of sexual reproduction and 
recombination (Maynard Smith, 1986). However, recent research indicates that, although 
there is only one sex in Bdelloidae, there exist multiple forms of genetic exchange between 
individuals probably compensating for lack of sex (Boschetti et al., 2012; Golczyk et al., 2014; 
Signorovitch et al., 2015; Debortoli et al., 2016). Monogononta are free-living in fresh and 
marine waters and reproduce by cyclical parthenogenesis (Wallace et al., 2006). Although 
rotifers are a relatively small group, they are widely distributed in almost all freshwater 
ecosystems reaching sometimes very high densities, contributing as much as 30% or more to 
the total plankton biomass (Haberman, 1995; Obertegger et al., 2007). They form an 
important part of both the ‘classical’ and the microbial food web (Wallace et al., 2006). 
Many of Bdelloidae and some Monononota are also abundant in wet environments on land 
such as forests, or peat bogs (Wallace et al., 2006). Due to their high abundance they also 
play an important role in peat bog waters (Błędzki & Ellison, 2002) and in nutrient cycling in 
soils  (Sohlenius, 1982; Anderson et al., 1984; Błędzki & Ellison, 2002). Rotifers’ role in 
ecosystem, reproductive patterns and interesting evolution make them particularly 
fascinating and suitable objects for the study of ecology and evolution (Fussmann, 2011). 

 

1.3 Cryptic species and their importance for biodiversity 

Since prehistory people were describing plants and animals which were useful to them as 
often possessing such information was necessary for survival. Accumulation of knowledge 
increased the necessity of classification. The first known classification of species was presented 
by Aristotle and was based on “attributes” (morphological or physiological features) (Leroi, 
2014). The first holistic attempt of a hierarchical classification of plant and animal species was 
done by Carl Linnaeus in the XVIII century (aka Linnean system). His classifications were, 
however, based purely on shared physical characteristics, and therefore are nowadays often 
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considered erroneous. Understanding of the roles of environment and natural selection in 
appearing of new species became only possible after the publication of Darwin’s “On The 
Origin of Species by means of natural selection” in 1859.  

One of the first scientists investigating the links between species diversification and their 
genetics was Theodosius Dobzhansky; in his book “Genetics and the Origin of Species” (1937) 
he pinpointed the role of genetic mutations for the development of species.  

The modern definition of species as the ”populations of organisms that can reproduce with 
one another and are reproductively isolated from other populations” is based on the 
“Biological Species Concept” first proposed by Ernst Mayer in 1942. However, the Biological 
Species Concept has some weaknesses. First of all it is more applicable to sexually-reproducing 
organisms as it is difficult to define reproductive barriers in asexual organisms. Moreover, the 
Biological Species Concept is also weakened when boundaries between species become hard 
to define (e.g., with bacteria). The problems with the Biological Species Concept’s applicability 
to various cases led to the development of other concepts of species boundaries with the 
current number of concepts around 24 (Mayden, 1997). Phenomena that undermine the 
Biological species concept are asexual reproduction, species hybridization, horizontal gene 
transfer (HGT) and the occurrence of cryptic species complexes.  

A cryptic species complex is a group of closely related (also called cryptic/sibling) species that 
are impossible or difficult to distinguish based on their morphology. Since the Biological 
Species Concept was published (Mayr, 1942), many sibling species have been described 
(Knowlton, 1993. However, only when advanced genetic methods have been applied, the 
differences between species within cryptic complexes became more apparent (Gomez  & 
Snell, 1996). 

Most often cryptic species are identified by using DNA-based species delimitation techniques. 
In DNA-taxonomy, one or more “barcoding” genes are selected and sequenced, and the 
genetic information is used to infer a phylogenetic tree or haplotype networks (Fontaneto et 
al., 2015). The choice of a suitable barcoding gene is crucial because markers that are too 
specific or have an unpredictable pace of evolution may lead to unpredictable and biased 
results. Therefore, delimitation of species based on few barcoding genes (so called 
“multilocus” approach) yields usually more reliable results (Fontaneto et al., 2015) and is 
currently becoming increasingly favored over single-locus based methods. Especially for non-
monophyletic species which can show gene tree discordance, incomplete lineage sorting, 
and/or gene flow after divergence a multilocus approach is advisable to increase the 
resolution of delimitation (Camargo et al., 2012; Fujita et al., 2012). Different computational 
approaches that are tree-based or gene-based are applied to delineate species such as the 
automatic barcode discovery method (ABGD; Puillandre et al., 2012), K/θ (Birky et al., 2006;  
Birky, 2013), generalized mixed Yule–coalescent-based approaches (GMYC; Pons et al., 2006; 
Fujisawa & Barraclough, 2013), Poisson tree process model (PTP; Zhang et al., 2013) or 
Haplowebs (Doyle, 1995; Flot et al., 2010). 
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Many new initiatives such as the Consortium for the Barcode of Life (www.barcodeoflife.org) 
aim at cataloguing genetic biodiversity of the animal kingdom using genetic markers. 
Without including cryptic species these catalogues would be incomplete. Especially in the last 
twenty years the number of articles related to cryptic species increased almost exponentially 
(Fig. 2) (Bickford et al., 2007), mainly due to the increased availability (including reduced 
costs) of DNA sequencing technologies. 

 

 

 

 

 

 

 

 

 

Fig. 2. Cryptic species publications. Increasing percent of peer-reviewed publications in 
Zoological Record Plus (CSA) that mention ‘cryptic species’ (circles) or ‘sibling species’ 
(triangles) in the title, abstract, or keywords. Figure from: Bickford et al. (2007). 

 

Moreover, cryptic species are almost evenly distributed among major metazoan taxa and 
biogeographical regions (Pfenninger & Schwenk, 2007). Therefore, the distribution and 
occurrence of cryptic species may have substantial consequences for biodiversity 
assessments, biogeography, conservation management, and evolutionary theory (Bickford et 
al., 2007). Biodiversity assessments as well as conservation work is incomplete without 
including cryptic species (Esteban & Finlay, 2010). Due to the ease of culturing and collecting 
genetic material, cryptic species have been mainly described in small animal groups such as 
protists (Foissner, 2006), ants (Fournier et al., 2012), harvestmen (Arthofer et al., 2013), and 
rotifers (Gómez & Snell, 1996). 
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1.4 Cryptic species in rotifers 

Since the beginning of rotifers studies, researchers described various morphological forms of 
rotifers. Called “lifeforms”, “morphoforms” or “sibling species” (Mayr, 1942) those forms 
were often meticulously depicted and named separately (Fig. 3). 

 

Fig. 3. “Life forms” of K. cochlearis. Three series are visible: 1-10 macracantha–typica–tecta; 
11-14 hispida; 15-20 irregularis and separated group of robusta (21-23). Figure from: 
Lauterborn, 1900. 

 

With advances in molecular biology it became obvious that some of the morphological forms 
differ not only morphologically but also genetically (Segers, 1995; Gomez & Snell, 1996). 
Such complexes of “cryptic species” (i.e. several or many species that are morphologically 
difficult to discriminate but are nonetheless genetically different) were described for diverse 
groups of animals such as Daphnia (Herbert & Crease, 1980), protists (Foissner, 2006), ants 
(Fournier et al., 2012), harvestmen (Arthofer et al., 2013), rotifers (Gomez & Snell, 1996), 
frogs (Elmer et al., 2007) and giraffes (Brown et al., 2007). In rotifers cryptic species 
complexes have been described in many species of the class Monogononta with the most 
famous being Brachionus plicatilis (Gómez et al., 2002), Epiphanes senta (Schröder & Walsh, 
2007), Synchaeta pectinata, Polyarthra dolichoptera (Obertegger et al., 2012, 2014), and 
Testudinella clypeata (Leasi et al., 2013). The existence of cryptic species has re-shaped our 
understanding of biodiversity and species richness and undermined the general belief that 
zooplankton ‘species’ occupy different niches (Hebert & Crease, 1980). Studies on cryptic 
species in rotifers also contributed to understand local adaptation, genetic population 
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divergence, and cryptic speciation (Suatoni et al., 2006; Campillo et al., 2011; Fontaneto et al., 
2008). For example, some species within one cryptic species complex may exhibit different 
environmental or food preferences. This is for example the case for B. plicatilis, where adaptations 
to different levels of salinity have been demonstrated for single cryptic species from this complex 
(Gómez et al., 1997; Ortelles et al., 2003). Another example of differences in preferences in 
cryptic complex is Synchaeta spp., where various ESUs showed different preferences for total 
phosphorus (and most probably for different algal food or/and concentrations) (Obertegger et 
al., 2012). Understanding the occurrence of species and their ecological preferences is one of the 
fundamental aspects in ecology (Gaston, 2000). Moreover, understanding what influences 
cryptic species speciation is important to understand the influence of the environment on 
species diversity. Cryptic diversity includes many organisms, which contribute to the 
functioning of ecosystems but is usually not part of conservation surveys (Esteban & Finlay, 
2010). Furthermore, occurrence and richness of cryptic species complexes makes rotifers 
particularly fascinating and suitable objects for the study of ecology, evolution, and 
biodiversity (Fussmann, 2011). Because cryptic species are impossible to distinguish through 
morphology, the most commonly used way to distinguish them is to apply DNA-taxonomy 
techniques by investigating the variability of barcoding genes; for animals, the mitochondrial 
gene coding mitochondrial cytochrome oxidase c subunit I is the most often used (Fontaneto 
et al., 2015). 

 

1.5 Mitonuclear discordance  

Despite widespread practice, using only a single mitochondrial gene for species delimitation 
can be problematic and lead to biased results. For instance, Song et al. (2008) concluded that 
mitonuclear pseudogenes (nonfunctional copies of mitochondrial DNA in the nucleus) can 
interfere with standard sequencing methods, and thus result in an incorrect inference of 
unique species. Moreover, particular markers can show different variability for various 
groups of animals. This is for example the case for cnidarians where the COI marker is not 
variable enough for phylogenetic use (Shearer & Coffroth, 2008). Apart from using one gene 
(single-locus approach) for species delimitation, using multiple markers (multilocus 
approach) is becoming an increasingly recognized approach. Especially after mitonuclear 
discordance has been shown to be a widespread phenomenon in rotifers (Papakostas et al., 
2016). Mitonuclear discordance occurs when phylogenetic patterns obtained from 
mitochondrial markers differ from the ones obtained from nuclear markers. Mitonuclear 
discordance may be caused by several factors such as: introgressive hybridization, horizontal 
gene transfer, androgenesis, incomplete lineage sorting, and unresolved phylogenetic 
polytomies. Introgressive hybridization (introgression) is a gene flow from one species into a 
gene pool of another species usually by hybridization or by repeated backcrossing (Harrison 
& Larson, 2014). Such processes have been described for many taxa (Toews & Brelsford, 
2012), and they may lead to phylogenetic conflict and mislead species identification. 
Horizontal gene transfer is the movement of genetic material between different taxa, which 
often involves bacteriophages as vectors. Androgenesis is not a very widespread mechanism 
in which the maternal nuclear genome fails to participate in forming a zygote and offspring 
develop as a pure paternal clones instead (Pigneur et al., 2012). Both horizontal gene 
transfer and androgenesis are believed to be limited to a small number of taxa (Keeling & 
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Palmer, 2008; Hedtke & Hillis, 2010). Horizontal gene transfer is much more common in 
Procariota than in Eucariota  (Choi & Kim, 2007), and androgenesis has only been described 
in few species of invertebrates and plants (Hedtke & Hillis, 2010; Pigneur et al., 2012). 
Another possible source of mitononuclear discordance is incomplete lineage sorting that 
appears when offspring lack some of the allele present in parents (Toews & Brelsford, 2012). 
All those processes can alone or in combination lead to mitonuclear discordance or obscure 
the phylogenetic signal. Therefore, using more than one marker (so called multilocus 
analysis) and possibly also other data than genetics (integrative taxonomy approach) makes 
the species delimitation process much more robust. 

 

1.6 Integrative taxonomy 

With different variability of various barcoding genes and genetic problems such as 
mitonuclear discordance, more researchers are inclining towards a more holistic approach of 
integrative taxonomy (Dayrat, 2005). Integrative taxonomy combines data from various 
disciplines such as morphology, mitochondrial DNA, nuclear DNA, ecology, behavior, 
reproductive compatibility, life histories, cytogenetics, chemistry, and whole genome scans 
(Schlick-Steiner et al., 2010) (Fig. 4). Even though this multidisciplinary approach is in its 
exploratory stage, it is usually considered more reliable than taxonomy based only on 
morphology or genetics (Schlick-Steiner et al., 2014). Applying integrative taxonomy 
sometimes can help solving taxonomical conflicts that can arise for example from DNA 
hybridization or morphological similarity of closely related species (Andújar et al., 2014). 
With difficulties that alpha taxonomy (taxonomy describing species) faces, especially with 
increasing number of described cryptic complexes, combining various data following 
integrative taxonomy approach can result in more rigorous species delimitation and improve 
our biodiversity inventory.  
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Fig. 4. An example of the integrative taxonomy approach for species delimitation of 
Tetramorium ants. In this case, molecular phylogeny (“COI”), morphometry (capital letters 
next to clades), morphology (“male genitalia”), chemistry (“CHC” - cuticular hydrocarbons), 
and biogeography (“Distribution”) were used. Figure from: Schlick-Steiner et al., 2006. 
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1.7 Keratella cochlearis – study organism 

Keratella cochlearis Gosse, 1851 is one of the most widespread freshwater rotifers in the 
world (Green, 1987). The whole genus Keratella is considered euthrophic, euthermic and 
cosmopolitan as its species can be found in various lakes and ponds, including lowland and 
high-mountain lakes (Segers & De Smet, 2008). Keratella cochlearis has even been found in 
extreme habitats such as cryoconite holes (water-filled holes forming on glaciers) on 
Spitzbergen (De Smet & Van Rompu, 1994) and mine impoundments (Żurek, 2006). Keratella 
cochlearis belongs to the group Monogononta and is, as most of the rotifers of this group, 
obligate parthenogenic (heterogonic). Obligate parthenogenesis means that most of the 
time monogonont rotifers reproduce asexually (amictic reproduction) by parthenogenesis. 
However, when environmental conditions deteriorate and the environmental trigger 
appears, females start to produce mictic females that produce haploid males, which are then 
responsible for sexual reproduction (so called mixis) (Fig. 5). In the genus Brachionus the 
switch to mictic production is mediated by the accumulation of a mixis-inducing protein, 
which is produced by amictic females in response to crowding (Snell et al., 2006). Resting 
eggs, which are produced through sexual reproduction, have often a thick shell and are 
resistant to desiccation allowing the population to survive adverse and deteriorating 
environmental conditions. Environmental cues that trigger sexual reproduction have been 
studied only for a few species; for Asplanchna species, it is dietary α-tocopherol (vitamin E) 
(Gilbert, 1980, 1981), for Notommata it is a change in photoperiod (Pourriot & Clement, 
1981), and for Brachionus species it is increasing population density (crowding) (Gilbert, 
1963).  

 

 

 

 

 

 

 

 

 Fig. 5. Reproduction in 
Monogononta rotifers. 
Parthenogenic (asexual) and 
sexual cycles are depicted. Figure 
from: 
www.devbio.biology.gatech.edu 
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Most data on sexual reproduction originate from the genus Brachionus, while there are no 
reports of sexual reproduction for K. cochlearis. There are, however, very few descriptions of 
K. cochlearis males indicating that sexual reproduction occurs. Wesenberg-Lund (1923) gave 
the first description of a K. cochlearis male.  He described it as heaving a broad conical body 
with a thick lorica without any spines and a corona with ciliae. Even though Wesenberg-Lund 
(1923) described K. cochlearis male lorica as thick and difficult to see through, he 
nonetheless gave some description of male anatomy: lack of alimentary canal, large testis, 
two lateral canals, eyespot, prostate gland, and oil globules (Fig. 6). 

  

 

 

 

 

 

 

Fig. 6. K. cochlearis male. 3 shows anatomical 
details 4 a contracted body. Figure from: 
Wesenberg-Lund, 1923. 

 

Another interesting morphological aspect of K. cochlearis is its body – the lorica. Since the 
early studies on K. cochlearis, researchers were faced with a large variety of forms and 
shapes of the lorica. Some of these morphological forms were considered cyclomorphic as 
specimens clearly showed seasonal changes (Hofmann, 1980). Lauterborn (1900) produced 
one of the most detailed drawings of K. cochlearis “morphotypes”. These drawings became 
the basis for further taxonomical work on this species (e.g. Ahlstrom, 1943; Ruttner- Kolisko, 
1974; Koste, 1978). The morphotypes that Lauterborn (1900) described can be divided into 
three series (1) macracantha–typica–tecta, 2) hispida, 3) irregularis) and the separated group 
of robusta (Fig. 3). These series vary in lorica length, spines length, the presence of spinelets 
(small bumps on the lorica; called ‘‘Pusteln’’ after Lauterborn, 1900 and ‘‘spinelets’’ after 
Ahlstrom, 1943), and the angle between the lorica and the long posterior spine. One of the 
most pronounced feature described by Lauterborn (1900) is the long posterior spine. One of 
the forms (tecta) described by him exist only without a spine, whereas only some individuals 
from the irregularis series only occasionally have a spine. Another pronounced feature are 
small spines, which are present on the lorica of only the hispida series. The complexity and 
unambiguity of K. cochlearis morphology led Lauterborn  (1900) to hypothesize subspecies 
status of some types of his series. Moreover, some other researchers had difficulties in 
observing exactly the same characteristics as Lauterborn; for instance, Hofmann (1983) 
questioned Lauterborn’s K. cochlearis series. Further research indicated that the division in 
“series” may not be unequivocal. More research led to even more confusion as 
characteristics of each series appeared to be more flexible than previously thought 
indicating a very high phenotypic plasticity. Green (1981, 2005) and Bielañska-Grajner (1995) 
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described that the lorica and posterior spine lengths change with water temperature. 
Furthermore, Conde-Porcuna et al. (1993), Green (2005) and Stemberger & Gilbert (1984) 
showed that the posterior spine length changes also when K. cochlearis is exposed to 
predators. However, some research indicated that there are in fact differences between at 
least some of the morphotypes, but that these differences are not necessarily 
morphological. Bērziņš & Pejler (1989a) showed that different morphotypes have different 
tolerance to temperature, trophic state (Bērziņš & Pejler, 1989b), and conductivity (Bērziņš 
& Pejler, 1989c). Derry et al. (2003) found that spiny and spineless K. cochlearis differ by 4.4 
% in their COI gene. This was the first indication based on genetic data that there may exist a 
cryptic species complex in K. cochlearis.  

 

1.8  Aims of the thesis 

The main objective of this thesis was to assess the morphological and genetic variety of the 
rotifer K. cochlearis collected from various Alpine lakes, as well as investigating if any 
observed differences are reflected in changes of demography or reproductive strategies of 
the cryptic entities. Thus, this thesis investigated, in the context of integrative taxonomy, the 
cryptic species status of K. cochlearis. The specific aims were:  

 

1) To assess the presence of a cryptic species complex in K. cochlearis.  

 

2) To investigate if genetic differences are reflected in morphological differences 
between cryptic entities.   

 

3) To investigate if genetically different strains of K. cochlearis show differences in their 
life histories and demographic parameters.  

 

4) To investigate mitonuclear discordance as a confounding factor in K. cochlearis 
species delimitation.  

 

5) To observe and record males of K. cochlearis for their mating behavior.   
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2. Sampling sites and methods 

This part gives an overview on the sampling sites, data collecting and experimental set-ups. 
For more details regarding particular experiments and analytical methods used, I refer the 
reader to the respective articles.  

 

2.1 Sampling sites 

All rotifers used for experiments were collected in the region of Trentino-South Tyrol, 
Northern Italy. This region is known for its variety of lakes of a wide spectrum of trophic 
state, depth, and other physical parameters. Most of the lakes in Trentino-South Tyrol were 
formed after the last Ice Age, i.e. around 10000 years ago. This makes all the sampling sites 
relatively young from a geological point of view.  

Six lakes (in the following text called the “core lakes”, Tab. 1, Fig. 7) were sampled monthly 
from March to November 2014  (article I). For the same article, additionally 11 lakes from 
Trentino-South Tyrol were sampled irregularly during summer and winter 2010 (sampled by 
U. Obertegger) 2013 and 2015 (sampled by the author together with U. Obertegger) to 
increase the geographical coverage (Fig. 7) . 

 

 

 

 

 

 

 

Fig. 7. Map of Trentino-South 
Tyrol with sampled lakes. All 17 
sampled lakes marked as dots 
(green dots are core lakes, red 
are the additional lakes). Core 
lakes:  1 – Terlago; 2 – Tovel; 3 – 
Kalterer; 4 – Radl; 5 – Vahrn; 6 – 
Glittner. Map was modified from: 
www.centrometeoitaliano.it 
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Core lakes were selected according to their parameters to cover a wide range of 
environmental conditions (Tab. 1).  

 

 

 

 

 

 

 

 

Tab. 1. Core lakes characteristics.  

 

For article II, K. cochlearis collected from Lake Terlago on September 23, 2014, on 28 January 
2014 from Lake Tovel and on March 2, 2015 from Lake Kaltern were used. For article III, the 
same specimens of K. cochlearis as for article I were used together with Polyarthra 
dolichoptera (Idelson, 1925) sampled from 35 Trentino-South Tyrol lakes described in 
Obertegger et al. (2014) and with Synchaeta pectinata (Ehrenberg, 1832) sampled from 17 
Trentino-South Tyrol lakes described in Obertegger et al. (2012). For the article IV, K. 
cochlearis and Brachionus angularis (Gosse, 1851) isolated from Lake Tovel on March 2, 2015 
were used.   

 

 

Fig. 8. The core lakes: Terlago (a), Tovel (b), Kalterer (c), Radl (d), Vahrn (e), Glittner (f).  
Figure (a) from: www.tr3ntino.it 

 

Lake 
Altitude 
(m.a.s.l.) 

Depth 
(m) 

Surface 
(ha) 

Trophic 
state  

Terlago 414 16 11.9 eutrophic 

Tovel 1178 38 38.2 oligotrophic 

Kalterer 215 5.6 131 mesotrophic 

Radl 2258 8 0.8 mesotrophic 

Vahrn 678 3.5 1.5 mesotrophic 

Glittner 2151 1 0.05 eutrophic 

a)  b)  c)  

d)  e)  f)  
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Terlago (Fig. 8a) is a small euthrophic and shallow lake (Tab. 1), situated 7 km North-West 
from the city of Trento, close to the Terlago village. The lake is easily accessible and is a 
popular fishing and sunbathing spot.  

Tovel (Fig. 8b) is a middle-sized oligotrophic lake located in the Adamello Brenta National 
Park (Trentino Province). Even though it is situated only at 1178 m.a.s.l. (Tab. 1), it is 
considered an alpine lake due to its environmental characteristics (Obertegger & Flaim, 
2015). The lake generally freezes over from December to April (Borsato & Ferretti, 2006) and 
is easily accessible only during summer months. There are few summer houses around the 
lake.  

Lake Kalterer (Fig. 8c) is a middle-sized mesotrophic alluvial lake (Table 1) situated 3 km 
south from the village of Kaltern an der Weinstraße (IT: Caldaro sulla Strada del Vino). Its 
relatively shallow depth (maximum 5.6 m), large surface area and location at low altitude in 
open plains contribute to a generally warmer water temperature than many other lakes in 
the neighborhood. Lake Kalterer is surrounded by camp grounds, beaches and is very 
popular among tourists attracted by camping sites and many water sport possibilities during 
summer.  

Lake Radl (Fig. 8d) is a small, high-altitude mesotrophic alpine lake (2258 m.a.s.l.), situated 
21.5 km west from the town of Brixen (IT: Bressanone) in a remote area accessible only by 
mountain paths. The catchment consists of bare rocks and alpine vegetation. At the lake 
there is a mountain lodge (Radlseehütte) where guests are hosted during summer months. 
This lodge is the only near settlement. 

Lake Vahrn (Fig. 8e) is s small (0.015 km2) and shallow lake (3.5 m depth) situated on 678 
m.a.s.l. 6.15 km north from the town of Brixen, next to the village of Vahrn. The lake is a 
popular tourist destination, easily accessible by car with a large grass beach area and walking 
path around. Part of the lake belongs to the protected area “Vahrner Seemoor”, with 
vegetation and fauna typical for swamps.  

Lake Glittner (Fig. 8f) is a very small and shallow (1 m depth) lake situated on 2151 m.a.s.l. 13 
km east from the town of Brixen. The lake is euthrophic, which can be partly due to cattle 
grazing around the lake during summer months. The catchment consists of alpine grassland.   

The core lakes were sampled monthly from March to November 2014 with some additional 
samplings during 2015 and 2016. Environmental parameters of lakes were based on 
published data (IASMA, 1996–2000). Water samples were collected over the deepest point 
of the lakes with a 20 µm (Apstein) or 50 µm (Wisconsin) plankton net depending on lake 
depth. Both mesh sizes were small enough to catch even small specimens of K. cochlearis.   

 

 

 

 

 



 27 

 

2.2 Specimen measurements – morphological data 

Whenever possible, samples were brought immediately to the laboratory and processed; 
otherwise, samples were fixed with HistoChoice Tissue Fixative (Sigma Aldrich, Saint Louis, 
USA). For the core lakes, single specimens of K. cochlearis were isolated under a microscope 
and photographed from different angles. Morphological measurements were based on the 
studies of Green (1981) and Stemberger & Gilbert (1984). In addition to the usually 
measured posterior spine length (PSL) and total length (TL) (Fig. 9a), the following 
measurements were added: LW - lorica width at its widest part, HW - head width at the 
mouth opening, ALS - anterolateral dorsal spine length, AIS - anterointermediate dorsal 
spine length, AMS - anteromedian dorsal spine length, PSA - and posterior spine angle. PSA 
was described by Lauterborn (1900) as an important feature for discrimination of the 
robusta group.  

           

Fig. 9. K. cochlearis measurements: a) lorica measurements from Stemberger & Gilbert 
(1984), b) K. cochlearis lorica drawing with measured parameters from the article I, c) 
posterior spine angle measurements used for the article I. 

 

The Leica IM1000 (Leica Microsystems, Heerbrugg, Switzerland) program was used to obtain 
rotifer measurements from pictures (Fig. 10).   

 

 

 

 

Fig. 10. Lorica measurements marked on a 
microscope picture of K. cochlearis. 

 

b)  a)  

 ° PSA 

c)  
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2.3 DNA extraction 

The DNA of every measured rotifer was extracted. For extraction, the Chelex rasin 
(InstaGeneMatrix, Bio-Rad, Hercules, CA, USA) was used (Walsh et al., 1991). The DNA 
extraction process was based on the protocol widely used for rotifer adults and rotifer 
diapausing eggs (Fontaneto et al., 2007; Obertegger et al., 2014). Choosing a proper 
extraction method out of many available is important because different extraction kits can 
result in different DNA extraction rate, and thus yield different estimates of biological 
diversity (Fontaneto et al., 2015). Each individual of K. cochlearis was carefully isolated with 
a glass pipette and cleaned few times with distilled water prior to extraction. Individuals 
with attached algae or fungi were not used. Despite careful cleaning and selection of 
individuals for DNA extraction, the extraction success rate varied for different populations of 
K. cochlearis, which is probably related to varying rotifer size and lorica thickness. More 
information on DNA extraction details can be found in article I.  

 

2.4 COI sequencing 

Choosing a barcoding marker gene is central for obtaining a reliable phylogenetic tree. The 
most important features of a good barcoding gene are: 1) significant species-level genetic 
divergence and variability, 2) universality i.e. possibility to be used for many different 
species, 3) conserved flanking sites for easiness of developing an universal primer, which can 
be applied to various taxonomic clades, 4) short sequence to facilitate DNA extraction and 
PCR (Kress & Erickson, 2008; Fontaneto et al., 2015). Woese (Woese & Fox, 1977; Woese, 
1987) was one of the first to use ribosomal RNA to delimit domains of life. In the beginning, 
barcoding techniques of identification were mostly applied in studies on morphologically 
similar groups such as viruses, bacteria and protists (Hebert et al., 2003) but since the late 
80s the technique gained popularity also for animals and plants. In recent years, one of the 
most commonly used barcoding gene is the mitochondrial cytochrome c oxidase subunit I 
(COX1 or COI) gene (Fontaneto et al., 2015). Mitochondrial genes usually lack introns, are 
generally haploid and exhibit limited recombination (Hebert et al., 2003). These features give 
them advantages as barcoding genes over nuclear genes. In most animal groups COI is very 
variable (Avise et al., 1987). Folmer et al. (2014) have developed a universal primer for the 
COI, which can be used for a wide variety of animals. Moreover, the short length of the COI 
of around 600 base pairs makes COI relatively easy to use for genetics. Furthermore, the 
relatively stable evolution rate of COI allowed estimating the rate of sequence divergence as 
approximately 2 % per million years (Hebert et al., 2003) and a barcoding gap of uncorrected 
genetic distance for most of the species (species threshold) of around 3 % (Hebert et al., 
2003; Tang et al., 2012). Even though COI is very versatile, it still possesses some problems 
which are difficult to overcome. The gene has been shown to give confounding results when 
applied to plants (Cho et al., 2004) or some animals groups such as cnidarians where the 
whole mitochondrial genome appears to be very stable (Fontaneto et al., 2015). Moreover, 
because COI is a mitochondrial gene, it is only inherited through the maternal line. This can 
result in slower evolutionary rates compared to nuclear markers (Tang et al., 2012). Also 
mitochondrial genes can be subjected to mitochondrial introgression and be incorporated in 
other species as shown for B. plicatilis by Papakostas et al. (2016). Despite these problems, 
COI is still considered the most widespread gene for delimiting species of rotifers. Using COI 
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as a barcoding gene has the advantage of an easy access to sequence databases such as 
GenBank (NCBI, USA), which helps to compare studies with already existing ones. More 
information on sequencing details and methods using COI can be found in articles I and III.  

 

2.5 ITS1 sequencing 

Another very commonly used barcoding marker gene is the internal transcribed spacer 1 
(ITS1). ITS1 is an intergenic region of DNA located in eukaryotes between the 18S, a part of 
the small ribosomal subunit and the 5.8S, a part of the large ribosomal subunit. ITS is an 
equivalent of ITS1 in bacteria and archaea. Intergenic regions (or intergenic spacers) are part 
of a noncoding DNA located between genes. It appears that both ITS regions (ITS1 and ITS2) 
play a role in rRNA processing; however, the details of this process are not yet fully 
understood (Coleman, 2015). There are many reasons why nuclear internal transcribed 
spacer regions are used as molecular markers; the most important one is because of their 
high degree of variation including intra-genomic multiple variants even between closely 
related species (Song et al., 2012). The ITS region is also relatively small in size, has a rapid 
pace of evolution, and highly conserved flanking sequences (Bena et al., 1998). All these 
characteristics result in a good resolution of species identification. Moreover, ITS1 is also 
relatively easy to amplify by PCR (Nilsson et al., 2012). Especially in funghi, a very high 
sequencing rate of ITS and difficulties with COI resulted in ITS becoming the main barcoding 
marker (Mahmoud & Zaher, 2015). However, ITS1 is usually more challenging to process 
than COI because there are two copies of this gene instead of one as in COI and because ITS1 
has a secondary structure, which should be taken into account when aligning the sequence 
(Coleman, 2015; Wolf, 2015). Even though ITS often yields less phylogenetic groups than for 
example COI (Suatoni et al., 2006; Papakostas et al., 2016; Mills et al., 2017), and the 
reference base for the rotifer species is much smaller than for COI, it is still one of the 
commonly used markers in barcoding of rotifers (Fontaneto et al., 2015). ITS1 was chosen as 
the second marker of choice for the multilocus analyses of K. cochlearis cryptic species 
complex. More information on sequencing details and methods using ITS1 can be found in 
article III. 

 

2.6 Life table experimental set-up 

Life table experiments have been first applied to study human demography by Edmond 
Halley in  the 17th century (Ciecka, 2008). In upcoming centuries this technique grew into a 
powerful statistical and demographical tool used to study life history traits and population 
dynamics of various organisms. Because life table experiments require usually many 
replicates and identical experimental conditions, this procedure is most often used for small 
organisms with a short lifespan. The main advantage of using life tables is the relative speed 
and ease in obtaining multiple replicates under chosen conditions. This approach allows 
studying population-level response to various environmental or biological factors. For small 
organisms such as rotifers or Daphnia, life table experiments are usually carried out in 
transparent plates with multiple wells allowing for easy microscopic observation (Fig. 11). 
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Fig. 11. 96-well plate used in our lifetable 
experiments. 96-wells CELLSTAR®, Greiner, 
Kremsmünster, Austria. 

 

Life tables have been used in rotifer research to investigate population parameters 
(Stemberger & Gilbert, 1985), relationships between various plankton groups (Allan, 1976), 
and population dynamics (Walz, 1987). Life table experiments usually require recording of 
various life parameters in equal time intervals. Most commonly used parameters obtained 
with life tables are average lifespan, average number of offspring and sex of offspring. These 
parameters can be used to calculate so called population parameters, which describe the 
growth of the whole population. Most common population parameters are: instantaneous 
growth rate of the population, generation time, and net reproductive rate.  

Due to replicability and ease to control experimental conditions, life table experiments are 
also used to investigate environmental preferences. This is especially useful when identifying 
ecological preferences of similar species or subspecies that are difficult to observe or 
distinguish in their natural environment, as it is the case for example with cryptic species. 
There is growing evidence that despite their close phylogenetic relationship, cryptic species 
often have different life history traits. For instance Ciros-Pérez et al. (2001) reported 
different intrinsic growth rates among three sympatric cryptic species of the B. plicatilis 
species complex that were cultured at the same temperatures. Cryptic species were also 
shown to have different environmental preferences; for example Gabaldón et al. (2015) 
described various preferences for salinity for two different cryptic species from the same 
cryptic species complex of B. plicatilis.  

These different environmental preferences and demographical response of sibling 
species may be related to the diversity of ecological niches available in water bodies. 
Existence of various ecological niches and diverse ecological preferences of closely-related 
species may partially explain their co-existence in one environment (Angert et al., 2009; 
Montero-Pau et al., 2011). Therefore, life table analyses were chosen as a relatively easy tool 
for investigation of differences in population parameters of single cryptic species. More 
information on life table experimental set-up and performed calculations can be found in 
article II. 
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2.7 Zooplankton filming experimental set-up 

Filming of life organisms is one the best methods to observe behavior of organisms under 
natural or experimental conditions. Observing animals in groups also creates a possibility to 
record interactions between individuals, which would be difficult to observe in nature. One 
of the pioneers of filming microscopic animals with a microscope was Jean Painlevé who 
produced a series of movies both for scientific purposes and for popular science (Thévenard 
& Tassel, 1948). Recording rotifers can definitely give more insight into the life of these 
animals. In the past decades few researchers (e.g. Gilbert, 1963; Viaud, 1940, 1943; Clément 
1977a, b) recorded rotifers on cassettes to study behavior such as mating, response to light, 
speed, trajectory, and predation. Recording movies can also be used for statistical analyses 
of rotifer (and other organisms) movements. However, more complicated statistical analyses 
of movements require efficient computational systems of individuals tracking. Such systems 
started to appear only relatively recently with the advances in development of computers 
and computer image analyses. Apart of computers, another obstacle, which is often limiting 
a use of movement analyses to well equipped laboratories is the recording equipment. Until 
recently good digital cameras were expensive and often out of a reach for science facilities 
with smaller budget. However, with technological advances also in this field there is now a 
big choice of cheap equipment, which can be used for scientific purposes. Therefore, it is 
important that cheap ways of recording movies are developed, possibly using widely-
available equipment. Constructing an easy and cheap set-up for recording rotifers will 
contribute to disseminate video recording as a scientific method and a way of promoting 
science. For that reason the common Canon DSL camera was used for recording movies. 
More information on camera and microscope set-up for recording movies can be found in 
article IV. 
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3. Results and summary of articles I-IV 

The results of research carried out as part of this PhD are presented in four articles, which 
are summarized on the following pages: 29 -33. 

 
Article I was published in Hydrobiologia and focuses on genetic and morphological diversity 
of K. cochlearis. COI gene was sequenced and lorica measured of 248 individuals of K. 
cochlearis sampled in various North Italian lakes. The results of COI-based phylogenetics 
indicate the existence of eight ESUs with some of them possible to be delimited purely based 
on morphometrics.  
 
 
Article II was published in Hydrobiologia and focuses on life history and demographic 
differences between three haplotypes (belonging to two ESUs) of K. cochlearis. The results 
show significant differences for almost all the parameters for all three haplotypes, which 
indicates that genetically different haplotypes differ also in their life history and 
demography. Furthermore, the first case of an amphoteric female in K. cochlearis was 
documented.  
 
 
Article III was published in Zoologica Scripta and focuses on mitonuclear discordance in 
three cryptic rotifer complexes: K. cochlearis, Polyarthra dolichoptera and Synchaeta 
pectinata. The results show different levels of mitonuclear discordance in all three cryptic 
species groups. Incomplete lineage sorting and unresolved phylogenetic reconstructions 
were recognized as most possible causes.  
 
 
Article IV was published in Journal of Limnology and focuses on constructing a simple and 
cheap set-up and workflow for filming rotifers and Daphnia by using a widely-available 
digital camera and a stereomicroscope. Results highlight the easiness of constructing such a 
simple video system and its usefulness for both scientist and science educators. Moreover, 
first videos of K. cochlearis males were recorded and published online.  
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3.1 Article I   

High diversity in Keratella cochlearis (Rotifera, Monogononta): morphological and genetic 
evidence. 

Cieplinski, A., Weisse, T. and Obertegger, U. (2017). Hydrobiologia, 796(1), 145-159. 

 

With advances in DNA phylogenetics there are increasingly more accounts on cryptic species 
among planktonic animals with rotifers being one of the most studied group. Number of 
cryptic species complexes are being described for various rotifers, which have previously 
been considered single species with the most pronounced example being Brachionus 
plicatilis complex with currently confirmed fifteen species (Mills et al., 2017). Here we tried 
to determine if Keratella cochlearis - one of the most widespread and under-studied 
freshwater rotifers - is in fact a cryptic species complex like many other rotifers from the 
class Monogononta. Another research question was if it is possible to delimit (and if yes, to 
what extend) cryptic species based only on morphology of the lorica. First, we sampled 
seventeen lakes (six lakes were sampled every month) of the Trentino-South Tyrol Region in 
Italy. Morphological measurements of 248 individuals were confronted with phylogenetics 
based on sequenced COI genes. Results obtained from three species delimiting methods; 
generalized mixed Yule coalescent approach, Poisson tree process model and automatic 
barcode gap discovery, showed consistence rendering all those three methods as valid and 
legit for rotifer cryptic species delimitation. All three methods resulted in delimitation of 
eight evolutionary significant units (ESUs) with average uncorrected genetic distance in COI 
between 12 and 30%, which is higher than the 3% threshold commonly used for delimiting 
species in most animals. These ESUs can be identified with cryptic species. Furthermore, 
multivariate analyses of morphological measurements indicated that it is possible to delimit 
only some of the evolutionary significant units based solely on lorica morphology. This 
finding corresponds with data of the B. plicatilis complex where it is possible to distinguish 
only few groups based on their morphology (L and S). Moreover, we found some of the 
detailed morphological features referred by some authors as discriminatory such as 
spinelets, bended median ridge, and posterior spine in various ESUs. Therefore, rendering 
them inadequate for cryptic species delimitation in K. cochlearis. However, we do not 
exclude the possibility that more detailed morphological data, possibly obtained with a 
scanning electron microscope could reveal more distinguishing features specific to only 
certain cryptic species.  We took such pictures for two ESUs and identified few potential 
lorica features (bended ridge, lateral antennae, bumps in the middle of areolation). 
However, to confirm the usefulness of such pictures more detailed data is needed. Previous 
research stated that the correlation between lorica length and the posterior spine length is 
always positive in K. cochlearis. Our findings, however, indicate that there are in fact 
significant differences between various ESUs. These differences in correlation show that 
genetic differences in cryptic species complexes also corresponds with differences in 
morphology, although the exact scope of these differences needs further study. Finally, we 
found that many of the investigated ESUs co-occurred in the same lakes, but without clear 
pattern. This co-existence of ESUs corroborates similar data on co-occurrence of cryptic 
species from the B. plicatilis complex.  
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3.2 Article II   

Life history traits and demographic parameters in the Keratella cochlearis (Rotifera, 
Monogononta) species complex.  

Cieplinski, A., Obertegger, U., Weisse, T. (2018). Hydrobiologia, 811(1), 325-338. 

 

In most cases cryptic species can only be delimited by using DNA-based taxonomic methods. 
However, some researchers described differences in environmental preferences even 
between sympatric species from the same cryptic species complex. Evidence is growing that 
different cryptic species have often different ecological preferences (for example salinity or 
temperature) and express different life history traits despite their phylogenetic relatedness. 
These diverse preferences and differences in demography may by important for co-existence 
in the same environment. To deepen our knowledge on differences between cryptic species 
we performed life table experiments on three haplotypes of Keratella cochlearis, a common 
freshwater rotifer, which was previously described by us as a cryptic species complex. The 
three selected haplotypes belonged to two evolutionary significant units (ESUs), were 
collected from three different lakes and were delimited by using the cytochrome c oxidase 
subunit 1 (COI) as a barcoding marker gene. Ninety-six rotifers from each haplotype were 
exposed to identical conditions and observed for the course of their lives. Instantaneous 
growth rate per day was positive in all three cases indicating growth in all three populations. 
However, all the population parameters such as generation time, net reproduction rate and 
the instantaneous growth rate were significantly different in all three haplotypes, which 
Indicates that populations of the three haplotypes develop at different pace and in a 
different way. Interestingly, differences were in general statically smaller for the two 
haplotypes that belonged to the same ESUs. Further, we also described and photographed 
for the first time deformed ill-swimming females, which most probably were not able to 
reproduce and were dying after just few days. These so called „abnormal” females were 
appearing in all the haplotypes but in one particular haplotype in much bigger numbers. We 
hypothesise that these females could have been an effect of mutations or degeneration of 
haplotypes. Moreover, we were able to observe - for the first time in K. cochlearis -  an 
amphoteric female, which appeared in only one haplotype. Amphoteric females are females 
that are able to produce both males and females. Only few cases of such females were 
described for rotifers as they are quite rare and their existence can only be confirmed by 
conducting life table experiment. The results presented in this article were the first ones to 
link genetic differences and demographic data for K. cochlearis indicating that even small 
genetic differences can be linked to big differences in life histories. Such differences in life 
histories, demographic parameters and possibly also environmental preferences are possibly 
one of the reasons why K. cochlearis (and maybe some other cryptic complexes) are so 
widespread in various habitats. They can cope with a wide spectrum of conditions and adapt 
easily to new environments. 
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3.3 Article III  

Mitonuclear discordance as a confounding factor in the DNA taxonomy of monogonont 
rotifers.  Obertegger, U., Cieplinski A., Fontaneto D., Papakostas, S. (2018). Zoologica Scripta, 
47(1), 122-132. 

 

The difference in phylogenies obtained with nuclear and mitonuclear marker is called 
mitonuclear discordance and is an increasingly recognized phenomenon in many groups of 
animals.  Mitonuclear discordance can lead to wrong species delimitation especially in 
animals in which morphological delimitation is difficult. Such is the case of cryptic species 
complexes of rotifers. Here, we investigated the occurrence of mitonuclear discordance in 
three rotifer species: Keratella cochlearis, Brachionus plicatilis and Synchaeta pectinata. We 
also tried to identify potential factors that can cause mitonuclear discordance in these three 
species complexes. At first we selected individuals from each of the three complexes and 
sequenced two barcoding genes: cytochrome c oxidase subunit I (COI) and the nuclear 
internal transcribed spacer 1 (ITS1). We used both maximum-likelihood (ML) and Bayesian 
inference (BI) approaches to construct phylogenetic trees for both genetic markers. We 
observed that COI delimitation produces more evolutionary significant units (ESUs) than 
delimitation based on ITS1. We found that mitonuclear discordance was present in all three 
species complexes. However, there were differences between cryptic complexes as in K. 
cochlearis incongruence were from the same nodes and for B. plicatilis and S. pectinata the 
discordance also appeared on deeper nodes. Our results indicate that in case of K. cochlearis 
ITS1 has a lower delimiting resolution than COI but the incongruence present in two other 
cryptic complexes are more difficult to explain. In order to investigate further if the 
mitonuclear discordances were caused by hybridization we performed tests but the results 
let us rule out this possibility. The inconsistence between topographies performed on two 
different genes indicate how difficult, but important it is to include multiple loci or even 
multiple data according to integrative taxonomy approach. We hypothesize that incomplete 
lineage sorting and unresolved phylogenetic reconstructions were recognized as the most 
likely drivers causing mitonuclear discordance.  
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3.4 Article IV   

Filming of zooplankton: a case study of rotifer males and Daphnia magna.  

Colangeli P, Cieplinski A, Obertegger U. (2016). Journal of Limnology, 75(1), 204-209. 

 

Recording planktonic organisms on film can give a new inside to their lives since many of 
their characteristics cannot be fully depicted on pictures. Videos not only allow studying 
behavior of animals but also allow to see them from different angles giving perception of 
three dimensions. This is particularly important for small planktonic animals such as rotifers 
where most of the pictures are static and two dimensional. Movies can also allow to observe 
features, which are often difficult to notice on pictures, especially when specimen are 
delicate and do not preserve well through fixation procedure. Such is a case of some rotifer 
males on which knowledge is still limited. Males of rotifers from the class Monogononta 
usually appear only under certain conditions and thus are much less common than females. 
This results in relatively few published film recordings of life rotifer males and in case of 
some rotifers, such as Keratella cochlearis – lack of even photographic documentation of 
males. Here we built a cheap set-up using a commercial single-lens reflex camera and filmed 
the behaviors of males of Keratella cochlearis, Brachionus plicatilis and of Daphnia magna. 
One of the limits of using movies and high quality pictures in scientific work is the high cost 
of professional cameras. However, with the rapid development of technology, many widely 
available and cheap digital cameras are able to record very high quality films ready to use in 
scientific publications. We constructed the recording set-up in a way that can easily be 
reproduced also using different equipment. Our movies allowed us to observe small 
features, which are difficult to notice on pictures. For example in B. plicatilis, a retractable 
foot (on which retractility there was not agreement before), moving spermatozoa or 
excretion granules of B. males. We also tried to observed male-female interaction for both K. 
cochlearis and B. plicatilis. We observed one mating in B. plicatilis and no matings in case of 
K. cochlearis. The interesting fact about K. cochlearis is that there exists no records on 
mating between males and females in this species complex but still males occasionally 
appear. On one of our movies we were also able to observed a thread-like structure 
between mating pair of B. plicatilis. Very few records of this structure exist and our video is 
probably one of the first one. It is also the first published video of very poorly-studied K. 
cochlearis males. Further, we also constructed a simple set-up to record D. magna’s 
migration away from UVA radiation. Our set-up does not require expensive equipment or 
technical skills and can easily be assembled and used outside research institutions, for 
example in schools and science centers or museums. Therefore, we placed all the videos on 
YouTube platform, where they can be easily accessible by everyone and possibly inspire 
wider audience to observe or perform research on plankton.  
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3.5 Conclusions 

The purpose of this thesis was to assess and describe the genetic and morphological variety 
of the common freshwater rotifer K. cochlearis collected from various Alpine lakes. Further, I 
investigated if (and if yes, to what extend) these genetic differences are reflected in 
demography and reproductive strategies of this cryptic complex. This main objective of this 
thesis can be further described by five specific aims which were the basis for my research:  

1) To assess the presence of a cryptic species complex in K. cochlearis 

2) To investigate if genetic differences are reflected in morphological differences between 
cryptic entities.   

3) To investigate if genetically different strains of K. cochlearis show differences in their life 
histories and demographic parameters.  

4) To investigate mitonuclear discordance as a confounding factor in K. cochlearis 
delimitation.  

5) To observe and record males of K. cochlearis and to record its mating behavior.   

The result of the first article showed that using common barcoding gene - cytochrome c 
oxidase subunit I (COI) and three delimiting methods (generalized mixed Yule coalescent, the 
Poisson tree process model and the automatic barcode gap discovery) it is possible to 
delimit Evolutionary Significant Units (ESUs) (1st aim of the PhD). These ESUs can be 
associated with cryptic species and that is why article I is the first one to describe cryptic 
species complex in K. cochlearis. The results of the three delimiting approaches were 
coherent, implying the existence of strong cladistic divisions between species from within 
the complex. Such matching data indicate the utility of each of the used delimiting 
approaches. Corresponding morphological data allowed to separate only two of eight ESUs 
rendering morphological data not adequate for delimiting K. cochlearis cryptic species (2nd 
aim of the PhD). Even though cryptic species can be almost identical from a morphological 
point of view, the differences may still show up in life histories or environmental 
preferences. The results of article II indicate that indeed there are significant differences in 
almost all life and demographic parameters between not only ESUs but even haplotypes 
belonging to one ESU of K. cochlearis (3nd aim of the PhD). The results of article II point to a 
very large demographical and behavioural variety within the cryptic complex of K. cochlearis. 
Since integrative taxonomy is gaining more popularity, multi-locus phylogenetic are favoured 
over single-locus delimitation approaches. However, using two different genes can lead to 
inaccuracies such as mitonuclear discordance. Results of article III indicate that for three 
common rotifer cryptic complexes, i.e. K. cochlearis, Brachionus plicatilis and Synchaeta 
pectinata, mitonuclear discordance is a common phenomenon (4th aim of the PhD). 
Interestingly, in case of K. cochlearis ESUs delimited by COI nested within ESUs delimited by 
ITS1, whereas in B. plicatilis and S. pectinata there was a discordance also at deeper nodes. 
However, no traces of hybridization were found. The data also confirm earlier findings that 
in case of rotifers ITS1 has a lower taxonomic resolution than COI as it produces generally 
fewer ESUs. There are many possible factors that can cause mitonuclear discordance; 
however, incomplete lineage sorting was the most probable source for it in case of the three 
investigated cryptic complexes. However difficult it is to lump together phylogenies based on 
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few genes, integrative taxonomy yields more reliable results than the single-locus approach. 
In article IV we present for the first time movies of life males of K. cochlearis, which we 
recorded with a simple video set-up (5th aim of the PhD). However, we were  unable to 
observe any male-female interaction in our strains, leaving the question whether sexual 
reproduction is common in K. cochlearis open for further research.  

In conclusion, we described for the first time the cryptic species complex of K. cochlearis 
based on COI and ITS1 genes and detailed morphology. Further, we also showed how even 
slight genetic differences can translate into demographic differences, which can further 
explain a wide ecological tolerance of some cryptic species. Moreover, we were able to 
record first movies of K. cochlearis males but the existence of sexual reproduction remains in 
question and requires further studies.  

 

3.6 Perspectives for future research 

This study is the first comprehensive description, including genetic, morphological and 
lifetable data of the rotifer Keratella cochlearis. Based on these data, I developed 
perspectives for future research.  

The first observation relates to integrative taxonomy. Based on genetic data (article I) 
combined with life history data (article II), large differences between cryptic species were 
identified. Therefore, I suggest that future research on cryptic species should incorporate (if 
possible) not only genetic data but also information from other fields following the approach 
of integrative taxonomy. I also recommend that more than one gene is used in phylogenetic 
analyses due to problems such as mitonuclear discordance described in article III.  

Together with my collaborators, I was able to analyze life histories of only few haplotypes of 
K. cochlearis. As next step, life histories of other haplotypes of K. cochlearis should be 
analyzed and compared with phylogenetic data. Such experiments should enhance our 
knowledge on to what extent genetic variability translates to demographic variety and 
therefore, leading to an improved understanding of the evolution of cryptic species.  

Sexual reproduction has been studied in many monogonont rotifers but not in K. cochlearis. 
In fact, most descriptions of sexual reproduction of K. cochlearis are based on comparisons 
with other species. During our observations - article IV - we were not able to observe any 
male-female interactions nor were any such interactions described in the literature. 
Therefore, the appearance of males in K. cochlearis is a puzzling phenomenon and requires 
further studies in order to establish if sexual reproduction appears in this species at all. As 
next step, a set of experiments aiming to record male-female interaction of K. cochlearis 
should be established to investigate if sexual reproduction occurs at all in this species. 
Preferably, various clones and ESUs of various age and relatedness should be used as all 
these characteristics may influence sexual reproduction. For recording movies of rotifers an 
easy and reliable system can be used, similar to the one described by us in article IV.  

Next, I suggest a series of experiments in order to establish the trigger for male-appearance. 
Such triggers can differ, dependent on the species (King & Snell, 1980; Snell & Boyer, 1988; 
Gilbert & Schröder, 2004); however, the nature of such trigger in K. cochlearis remains 
elusive. Describing the male-appearance trigger could help us understand the mechanisms 
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of sexual reproduction (or the lack thereof) in K. cochlearis. Another approach to investigate 
if sexual reproduction appears in K. cochlearis would be to collect lake sediment from the 
lakes where K. cochlearis is abundant and trying to hatch individuals from resting eggs. Such 
eggs - products of sexual reproduction - are very common in monogonont rotifers and in 
other planktonic animals (e.g.,  Daphnia, Cyclops). However, resting eggs have never been 
described for K. cochlearis. Lakes to be chosen for such sampling should be preferably those 
that freeze over during winter or where conditions deteriorate rapidly in some periods 
during the year (for instance, lakes with strong seasonal change in water level). Such 
disturbing events usually impose a high pressure on zooplankton, and the survival in such 
environments is usually facilitated by resting eggs.  

However, if resting eggs do not exist in K. cochlearis and there is no sexual reproduction, this 
could lead to a change in our understanding of reproduction in this species and in rotifers in 
general.  

This thesis describes differences in various ESUs and haplotypes of K. cochlearis and, 
therefore, provides a basis for future research on this cryptic species complex. Moreover, 
the results of my articles indicate difficulties, which may appear in the delimitation process 
of cryptic species (such as mitonuclear discordance or co-existence).  
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Abstract Rotifers are ubiquitous freshwater animals

for which many complexes of cryptic species (i.e.

distinct species that are morphologically difficult to

distinguish) are described.Keratella cochlearis occurs

globally and shows a wide phenotypic diversity

indicating the potential presence of a species complex.

We sampled lakes of the Trentino-South Tyrol region

(Italy) and investigated mitochondrial genetic diver-

sity in K. cochlearis in relation to detailed lorica

measurements. We sequenced the mitochondrial

cytochrome c oxidase subunit I and used the gener-

alised mixed Yule coalescent approach, Poisson tree

process model and automatic barcode gap discovery to

delimit mitochondrial groups, associated with putative

evolutionary significant units (ESUs). Based on 248

sequences, eight putative ESUs were indicated that

could only partially be delimited by lorica morphol-

ogy. Specifically, several morphological characteris-

tics (i.e. spinelets, bended median ridge, and posterior

spine) were found in specimens of different putative

ESUs, and thus, these characters seem to be of poor

discriminatory value. Furthermore, different putative

ESUs of K. cochlearis were found in the same lake.

We conclude that the high mitochondrial genetic

diversity may be linked to tolerance ofK. cochlearis to

varying environmental conditions.

Keywords Rotifera � GMYC � PTP � Lorica
measurements � NMDS � Lauterborn

Introduction

Biodiversity is currently under threat, and our percep-

tion of species loss is highly dependent on accurate

estimates of species richness. However, estimates of

species richness are often impaired by the occurrence

of cryptic species (i.e. species that are impossible or

difficult to distinguish based on their morphology) in

diverse groups such as protists (Foissner, 2006), ants

(Fournier et al., 2012), harvestmen (Arthofer et al.,

2013), and rotifers (Gómez & Snell, 1996). Under-

standing how and why species occur is one of the

fundamental aspects in ecology (Gaston, 2000).
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Evidence on cryptic species diversity in rotifers,

subclass Monogononta, is growing and challenges our

understanding of rotifer biodiversity. In monogonont

rotifers, cryptic species complexes have been

described for species such as Brachionus plicatilis

(Gómez & Serra, 1995; Gómez & Snell, 1996; Gómez

et al., 2002), B. calyciflorus (Schröder &Walsh, 2007;

Xi et al., 2011), Epiphanes senta (Gilbert & Walsh,

2005), Lecane spp.(Garcı́a-Morales & Elı́as-Gutiér-

rez, 2013), Polyarthra dolichoptera (Obertegger et al.,

2014), Synchaeta spp. (Obertegger et al., 2012), and

Testudinella clypeata (Leasi et al., 2013). The occur-

rence of cryptic species is often related to rotifer

ubiquity and their wide tolerance to environmental

parameters such as salinity (Ciros-Pérez et al., 2001a),

temperature (Gómez & Snell, 1996; Ortells et al.,

2003; Papakostas et al., 2012) or total phosphorus

(Obertegger et al., 2012).

Keratella cochlearis Gosse, 1851 can be found in

most freshwater lakes and ponds all over the world

(Green, 1987). In fact, the whole genus Keratella is

considered eurytopic and cosmopolitan (Segers &

De Smet, 2008), and this makes the genus a good

candidate for investigating the occurrence of cryptic

species. Lauterborn (1900) described several mor-

photypes in K. cochlearis, and his detailed descrip-

tions and drawings were the basis for following

taxonomic work (e.g. Ahlstrom, 1943; Ruttner-

Kolisko, 1974; Koste, 1978). The morphotypes

described by Lauterborn (1900) encompass three

series (macracantha–typica–tecta, hispida, and ir-

regularis) and the group of robusta. These morpho-

logical varieties of K. cochlearis are different with

respect to lorica length (LL), spine length, presence

of spinelets on the lorica, and the course of the

median ridge. Here, we give an overview of the

Lauterborn (1900) series and a German to English

translation of Lauterborn’s (1900) descriptions. In

the macracantha–typica–tecta series (Lauterborn’s

1900, Figs. 1–10), the posterior spine is as long as

the lorica or even longer, and the basis of the spine

is so wide that it is difficult to decide where the

spine begins and the lorica ends. The areolation is

present on half of the spine, and only the distal part

is smooth and pointed. In lateral view, the spine

points to left or right, and this is according to

Lauterborn (1900) not an important feature. Along

the series, the reduction of the posterior spine is

notable until it disappears completely. Lauterborn

(1900) concluded that it is impossible to draw a line

between the different morphotypes of the macra-

cantha–typica–tecta series that only differ in size

and posterior spine length (PSL). The morphotypes

of the hispida (Lauterborn’s 1900, Figs. 11–14) and

irregularis series (Lauterborn’s 1900, Figs. 15–20)

show different morphological elements with respect

to the macracantha–typica–tecta series, and size

differences are not important. In the hispida series,

small spines (called ‘‘Pusteln’’ after Lauterborn,

1900 and ‘‘spinelets’’ after Ahlstrom, 1943) are

present and can be so dense that the areolation and

the borders of the plates become invisible. The

morphotypes of the hispida series can be considered

the forma punctata of the tecta series. Only for

Lauterborn’s (1900), Fig. 11, closely related to

macracantha, and for Lauterborn’s (1900), Fig. 27,

closely related to tecta, the name forma punctata is

given. In the irregularis series, the ridge is bended

to the left in dorsal view, and a displacement of the

facets is visible that leads to pointed bumps (called

‘‘Höcker’’ by Lauterborn, 1900) on the facets and an

additional facet (called facet X by Lauterborn,

1900). In addition, the basal margin is divided into

small posterior carinal facets. Similar to the hispida

series, the lorica has small pointed spinelets on the

intersection of the areolation. The robusta group

(Lauterborn’s 1900, Figs. 21–23) is not a series

because no direction of morphological variations

can be distinguished. Characteristic for this group is

the wide base of the posterior spine that is the

elongation of the ventral part of the lorica, the

hooked form of the anterior spines, and the slightly

bended median ridge.

Considering the wide morphological variability of

Keratella morphotypes, Lauterborn (1900) already

hypothesised a subspecies status of some morpho-

types. In fact, Ahlstrom (1943) and Eloranta (1982)

erected the series irregularis and hispida to separate

species. However, Hofmann (1983), who did not

recognise transitional forms between the morphotypes

cochlearis, irregularis, and tecta as described by

Lauterborn (1900), questioned the validity of the

Lauterborn cycles. Especially, the presence and length

of the posterior spine seems to be a morphological

character whose suitability for discriminating species

is questionable. In eutrophic habitats, K. cochlearis

tends to be smaller and has smaller posterior spines

than in oligotrophic habitats (Green, 2007).
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Furthermore, LL and PSL are longer with decreasing

water temperature (e.g. Green, 1981, 2005; Bielanska-

Grajner, 1995) and in the presence of predators

(Conde-Porcuna et al., 1993; Green, 2005). Water

conditioned with predators (i.e. Asplanchna spp.,

cyclopoid copepods) can induce spine formation in

offspring of tecta (Stemberger & Gilbert, 1984). Derry

et al. (2003) found a high mitochondrial genetic

difference [4.4% cytochrome c oxidase subunit I

(COI) sequence divergence] between spined and

spineless individuals of K. cochlearis and hypothe-

sised the presence of cryptic diversity within these

morphotypes. Furthermore, the various morphotypes

of K. cochlearis show different tolerances to temper-

ature (Berziņš & Pejler, 1989a), oxygen content

(Berziņš & Pejler, 1989b), trophic state, and conduc-

tivity (Berziņš & Pejler, 1989c). The wide tolerances

to environmental conditions could also indicate that K.

cochlearis is a cryptic species complex composed of

species with narrower ecological preferences than

when taken as a complex.

Here, we identified mitochondrial DNA (mtDNA)

groups and compared their lorica morphology in a

complementary approach as recommended by Sch-

lick-Steiner et al. (2006), Fontaneto et al. (2015) and

Mills et al. (2016). Combining genetic information

with other species-bound aspects such as species

morphology and ecology or biochemistry of species

habitat can result in a more robust species delimitation

than when using genetic information alone (Schlick-

Steiner et al., 2006; Fontaneto et al., 2015; Mills et al.,

2016). We hypothesised that K. cochlearis is a

complex of putative evolutionary significant units

(ESUs) and that it is possible to delimit ESUs based on

lorica measurements. In fact, in B. plicatilis some

clusters of cryptic species [B. plicatilis (sensu stricto)

L., B. rotundiformis SS, B. rotundiformis SM] can be

distinguished based on body length differences (Ciros-

Pérez et al., 2001b). Closely related species might

have similar niches according to the phylogenetic

niche conservatism theory (e.g. Wiens & Graham,

2005; Wiens et al., 2010), and this may lead to

competitive exclusion (Violle et al., 2011). Thus,

ESUs with their close phylogenetic relationship might

be especially prone to competitive exclusion; how-

ever, co-occurrence of rotifer cryptic species has been

reported (Obertegger et al., 2014). Thus, we also

investigated temporal co-existence of putative ESUs

of K. cochlearis and hypothesised little co-occurrence.

Materials and methods

Sampling

From March to November 2014, six lakes in the

Trentino-South Tyrol (Italy) region were sampled

monthly. These lakes (called further the ‘‘core lakes’’)

cover a wide range of environmental parameters

(Table 1). In addition, we also sampled 11 additional

lakes from Trentino-South Tyrol in the years 2010,

2013, and 2015 during summer and winter to cover a

larger geographical area and altitudinal range

(Table 1; Fig. 1). Environmental parameters were

based on published data (IASMA, 1996–2000) and

own analyses (Table 1). At the deepest site of each

lake, plankton samples were collected with a 20 lm
(Apstein) or 50 lm (Wisconsin) plankton net depend-

ing on lake depth. Both mesh sizes were small enough

to effectively collect specimens of K. cochlearis

(length [74 lm, width [60 lm; Lauterborn, 1900;

Koste, 1978).

Measurements of specimens and morphological

observations

For the core lakes and Lake Caldonazzo (July sample),

single specimens of K. cochlearis were isolated under

a stereomicroscope and photographed (Leica DC 300F

camera, Leica IM1000 software) in dorsal and lateral

view under a compound microscope. The following

measurements were taken: PSL, LL excluding anterior

and posterior spines, total LL (TLL) including all

appendages, lorica width (LW) at its widest part, LW

at the mouth opening region (‘‘head width’’, HW),

anterolateral dorsal spine length (ALS), anterointer-

mediate dorsal spine length (AIS), anteromedian

dorsal spine length (AMS), and posterior spine angle

(PSA, Fig. 2). For the measured specimens, we also

observed the main characteristics of the dorsal plate,

important to discriminate morphotypes. Measured

specimens were subject to DNA extraction and

sequencing. However, we could not obtain sequences

for all measured specimens.

DNA extraction and amplification

Specimens of K. cochlearis from the core and the

additional lakes were sequenced to investigate pres-

ence of putative ESUs. Cryptic species complexes in
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rotifers are often inferred based on the mitochondrial

COI (Suatoni et al., 2006; Obertegger et al., 2012,

2014; Leasi et al., 2013; Fontaneto, 2014;

Malekzadeh-Viayeh et al., 2014). We extracted

DNA from single live individuals with 35 ll of Chelex
(InstaGeneMatrix, Bio-Rad, Hercules, CA, USA). The

COI gene was amplified using LCO1490 (50-GGT
CAA CAA ATC ATA AAG ATA TTGG-30) and

HCO2198 (50-TAA ACT TCA GGG TGA CCA AAA

AATCA-30) primers (Folmer et al., 1994). PCR cycles

consisted of initial denaturation at 95�C for 10 min,

followed by 50 cycles at 95�C for 45 s, 46�C for 45 s

and 72�C for 1.05 min, and a last step at 72�C for

7 min. For each sample, we used 2 ll of DNA extract

and 23 ll of master mix solution. Master mix

proportions for one sample were 12.7 ll distilled

water, 2.5 ll of buffer, 3.5 ll MgCl2 (25 mM), 1 ll
primer HCOI2198, 1 ll primer LCOI1490, 2 ll dNTP
(10 mM), and 0.3 ll AmpliTaq Gold� 360 DNA

polymerase (Thermo Fisher Scientific, Italy). For post-

PCR purification, we used ExoSAP-IT� PCR product

cleanup (Affymetrix USB, USA).

Phylogenetic reconstruction

We constructed the phylogenetic tree using a maxi-

mum likelihood (ML) and Bayesian inference (BI)

Table 1 Environmental data on sampled lakes

Lakes Alti Area Depth TP NO3 Si SO4 Cl pH Cond Temp Trophic states

Kalternc 215 131 5 13 1,006 2 74 8 8.3 507 18 Meso

Terlagoc 414 11.9 10 31 885 3.2 14.4 5.8 8.0 389 23 Eu

Levico 440 116.4 38 15 225 2.65 36 5 8 275 14 Meso

Caldonazzo 449 562.7 47 21 314 3.7 26.3 5.8 8.0 312 22 Meso

Großer Montiggler 492 17.8 12.5 50 13 0.55 9.6 8.5 7.9 293 6 Eu

Canzolino 540 7.1 15 56 510 3.6 27 4.5 7.4 257 23 Eu

Vahrnc 678 1.5 3.5 13 70 3.3 5.3 1.4 6.6 57 23 Meso

Raier Moos 835 0.7 5 39 0 2.7 19.6 7.9 8.3 368 19 Eu

Serraia 974 44.4 17 34 458 9.7 7.3 2.8 7.6 116 22 Eu

Völser Weiher 1,056 1.7 4 14 71 0.4 11.3 0.9 24 252 24 Meso

Lavarone 1,100 5.2 15 28 276 2.6 8 6.9 7.8 291 21 Eu

Wolfsgruben 1,176 3.9 5.4 33 55 2.0 9.3 3.1 8 114 8 Eu

Tovelc 1,178 38.2 39 4 318 1.3 1.7 0.3 7.9 192 15 Oligo

Antholz 1,642 43.3 38 7 226 2.6 12.6 0.5 7.5 90 17 Oligo

Glittnerc 2,151 0.05 1 129 11 0.2 0.6 0.4 6.1 9 12 Meso

Radlc 2,258 0.8 6 13 21 0.5 15 0.4 7.7 92 13 Meso

Crespeina 2,374 0.6 7 11 30 0.2 1.5 0.2 8.8 157 12 Oligo

The superscript c indicates the core lakes ordered by altitude (alti, m above sea level): area (910,000 m2), depth (m), total phosphorus

(TP, lg l-1) at spring overturn, nitrate (NO3, lg l-1), reactive silica (Si, mg l-1), sulphate (SO4, mg l-1), chloride (Cl, mg l-1),

conductivity (cond, lS cm-1), mean summer surface temperature (temp), and trophic state (eu eutrophic, meso mesotrophic, oligo

oligotrophic)

Fig. 1 Sampled lakes in the Trentino-South Tyrol region, (1)

Kalternc, (2) Terlagoc, (3) Levico, (4) Caldonazzo, (5) Großer

Montiggler, (6) Canzolino, (7) Vahrnc, (8) Raier Moos, (9)

Serraia, (10) Völser Weiher, (11) Lavarone, (12) Wolfsgruben,

(13) Tovelc, (14) Glittnerc, (15) Radlc, and (16) Crespeina; core

lakes (superscript c) are underlined on the map
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approach. The model of evolution for the phylogenetic

reconstruction was HKY ? I ? G, selected with

ModelGenerator v0.85 (Keane et al., 2006). The

selected model was implemented into PhyML 3.0

(Guindon & Gascuel, 2003) to perform ML recon-

struction using the approximate likelihood ratio test to

evaluate node support. For BI, we used BEAST v1.8.0

(Drummond et al., 2012) with the following settings:

uncorrelated lognormal relaxed clock (mean molecu-

lar clock rate set as normal), HKY ? I ? G substitu-

tion model, and the birth–death model. The posterior

probability distribution was estimated with Markov

chain Monte Carlo (MCMC) sampling, which was run

for 100 million generations, sampling every 10,000th

generation. We used Tracer v1.5 (Rambaut et al.,

2014) to investigate for convergence and the correct-

ness of the MCMC model and to determine the burn-

in. We used TreeAnnotator v1.7.5 to summarise trees

and discard the first 2,000 trees as burn-in. As

outgroup sequences, we used B. urceolaris (Genbank

accession number EU499787), B. rotundiformis

(JX239163), and B. plicatilis (JX293050), all belong-

ing to the same family (i.e. Brachionidae) asKeratella.

Inference of mtDNA groups

We inferred mtDNA groups within K. cochlearis with

the generalised mixed Yule coalescent (GMYC)

approach (Fujisawa & Barraclough, 2013), the Pois-

son tree process model (PTP; Zhang et al., 2013), and

the automatic barcode gap discovery (ABGD; Puil-

landre et al., 2012) and compared the results. For all

methods, the outgroup was excluded prior to the

analyses. We took the results of the GMYC approach

as our baseline results because previously rotifer

diversity was investigated by it for different species

(Obertegger et al., 2012, 2014; Leasi et al., 2013;

Malekzadeh-Viayeh et al., 2014). The GMYC

approach is based on branching rates along an

ultrametric tree (here from BEAST) to distinguish

between species-level (Yule, slower) and population-

level (coalescent, faster) branching rates. This model

identifies GMYC ESUs. For the GMYC approach, we

used R 3.0.2 (R Core Team, 2012), library splits

(Ezard et al., 2009). The PTP model (http://species.h-

its.org) uses a phylogenetic tree as input (here the ML

tree produced in PhyML 3.0.) and applies coalescent

theory to distinguish between population-level and

species-level processes. Similarly to GMYC, PTP

assumes that there are less intraspecific substitutions

than interspecific substitutions because they have less

time to accumulate. This method does not require an

ultrametric tree and has been shown to match other

methods of species delimitation in rotifers (Tang et al.,

2014) and copepods (Blanco-Bercial et al., 2014).

Two types of PTP were used: ML (PTP-ML) approach

and Bayesian approach (PTP-BA). The ABGD (http://

www.abi.snv.jussieu.fr/public/abgd/abgdweb.html)

deliminates species without any a priori assumptions. It

detects the gaps in the distribution of genetic pairwise

distances. This method has been successfully used to

delimit species of the meiofauna (Tang et al., 2012;

Leasi et al., 2013). Here, all aligned K. cochlearis

sequences were used for ABGD.

We based our phylogenetic reconstructions and

inference of mtDNA groups on a single mitochondrial

gene (COI), and this may gave a biased estimate on

genetic diversity. A higher evolutionary rate of COI

with respect to other nuclear markers (Tang et al.,

2012), mitochondrial introgression (reported for B.

calyciflorus by Papakostas et al., 2016 but not for E.

senta by Schröder & Walsh, 2010), and/or unresolved

ancestral polymorphism (Funk & Omland, 2003)

Fig. 2 Lorica drawing of K. cochlearis with measured param-

eters; lorica length excluding anterior and posterior spines (LL),

posterior spine length (PSL), total lorica length including all

appendages (TLL), lorica width at its widest part (LW), posterior

spine angle (PSA), anterolateral dorsal spine length (ALS),

anterointermediate dorsal spine length (AIS), anteromedian

dorsal spine length (AMS), and lorica width beneath the anterior

spines (‘‘head width’’, HW)
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could bias our inference on species diversity.

Recently, it has also been shown that the methods

we used give biased results in species poor datasets

(Dellicour & Flot, 2015). Thus, considering this

uncertainty, our statements are about putative ESUs

based on the inference of mtDNA groups.

Statistical analysis of measurements in relation

to putative ESUs

Green (1981, 1987) reports a positive correlation

between LL and PSL in K. cochlearis from various

lakes of the Auvergne region in France. To assess the

general validity of this correlation, we considered only

those specimens that were measured and for which we

obtained COI sequences. We divided specimens into

putative ESUs and investigated the sign and signifi-

cance of the correlation (Pearson correlation coeffi-

cient; rP) between LL and PSL.

We performed a univariate statistical analysis and a

multivariate ordination method to investigate if puta-

tive ESUs could be distinguished based on morphol-

ogy. As univariate statistical analysis, we used a one-

way ANOVA and post hoc Tukey multiple compar-

isons. We performed generalised least squares mod-

elling to allow for dependence of measurements of

ESUs coming from the same lake and checked

homogeneity of residuals graphically. As multivariate

ordination method, we performed non-metric multi-

dimensional scaling (NMDS). In NMDS, Bray–Curtis

distance matrix was used on centred and standardised

measurement data. In NMDS, the goodness of fit was

investigated by the Shepard plot that shows the

relationship between the inter-object distances in

NMDS and Bray–Curtis dissimilarity. The residuals

of this relationship were used to calculate Kruskal’s

stress (S); S values\0.2 are considered statistically

meaningful (Quinn & Keuogh, 2002). We, further-

more, performed a linear discriminant analysis (LDA)

to investigate the discriminatory power of lorica

morphology to separate ESUs. We tested for homo-

geneity of within-ESU covariance matrices.

We also investigated the correlation between

phylogenetic and morphological diversity. Phyloge-

netic diversity was calculated as distance matrix based

on the ultrametric tree, and morphological diversity as

a distance matrix based on meanmorphological values

of ESUs. The correlation between both distance

matrices was investigated by a Mantel test.

For statistical analyses, we used the library nlme

(Pinheiro et al., 2012), MASS (Venables & Ripley,

2002), vegan (Oksanen et al., 2015), and multcomp

(Hothorn et al., 2008) in R 3.0.2 (R Core Team, 2012).

Results

Inference of putative ESUs

We obtained 248 sequences of the COI gene of K.

cochlearis (Genbank accession number: supplemen-

tary material Table s1). These sequences comprised 57

haplotypes. The GMYC approach indicated eight

ESUs (single threshold GMYC: likelihood of the null

model = 261.4; likelihood of the GMYC approach =

269.5; P\ 0.001; confidence interval = 8–14), that

are hereafter called GMYC ESUs. Uncorrected

genetic distances within GMYC ESUs were below

6.2% with ESU 5 showing the lowest and ESU 8 the

highest within-ESU distance (Table 2). Distances

between GMYC ESUs ranged from 9% (ESU 7 vs.

8) to 33% (ESU 8 vs. 3) with an overall average value

of 21% (Table 3).

The ABGD and the PTP-ML grouped the same

haplotypes in the same ESUs as GMYC (Fig. 3).

However, PTP-BA, split GMYC ESU 3 into three and

ESU 6 into five units (Fig. 3).

GMYC ESUs occurrence in lakes

GMYC ESUs 3 and 7 were found in seven lakes, ESU

8 in six, ESU 5 in five, and ESU 4 and 1 were found

only in two and ESU 2 only in one lake (Fig. 3;

Tables s2, s3 supplementary material). Considering

temporal co-existence of GMYC ESUs in the core

lakes, no clear pattern emerged (Table s3 supplemen-

tary material). Generally, GMYC ESUs co-occurred,

except for ESU 2 that was found only once in Lake

Radl, despite monthly sampling during summer 2013.

ESUs 3 and 7 co-occurred most often in different

lakes. ESU 3 was almost always present throughout

the sampling period in Lakes Kaltern and Terlago

(Table s3 supplementarymaterial); similarly, ESU 5 in

Lake Glittner and ESU 6 in Lake Tovel were present
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throughout the sampling period (Table s3 supplemen-

tary material).

Morphology

We obtained lorica measurements from 138 individ-

uals of K. cochlearis that could also be attributed to

GMYC ESUs based on their COI sequence (Table 4;

Table s3 supplementary material). For ESUs 1 and 2,

no measurements were obtained, and for ESU 7, only

one specimen was measured (Table 4). All specimens

of ESU 4 and three specimens of ESU 6 did not have a

spine, while the other measured specimens had a spine

of varying length (Table 4).

The correlation between LL and PSL was different

when based on all specimens (rP = 0.68; P\ 0.001)

compared to splitting it into GMYC ESUs: for ESUs 3

and 6, the correlation was higher (rP = 0.76 and 0.77,

respectively; P\ 0.001) than the overall one, and no

correlation was found for ESU 4 (spineless speci-

mens), ESU 5 (rP = 0.13; P = 0.41), and ESU 8

(rP = 0.76; P = 0.13; Fig. 4).

We tested for significant differences in LL, PSL,

and PSA between GMYC ESUs by ANOVA and

following post hoc multiple comparisons tests by

mixed modelling. LL and PSA were different between

four ESUs, and PSL differed between three ESUs

(Table 5). Based on all three measurements, ESU 8

was different from ESUs 3 and 5 (Table 5).

In NMDS with all measurements (S = 0.13), a

gradient from specimens of ESU 5 to specimens of

ESU 4 and spineless specimens of ESU 6 was evident.

To get a clearer picture on the relationships between

ESUs with spines, we excluded ESU 4 and the three

Table 2 Report of the

uncorrected genetic

distances within GMYC

ESUs of K. cochlearis,

number of haplotypes,

number of individuals, and

mean, median, minimum

(min), and maximum (max)

of distances

GMYC ESUs Individuals Number of haplotypes Mean Median Min Max

ESU 1 2 1

ESU 2 5 1

ESU 3 60 13 0.02 0.04 0.000 0.05

ESU 4 8 4 0.01 0.02 0.002 0.02

ESU 5 65 3 0.01 0.01 0.010 0.01

ESU 6 67 8 0.02 0.01 0.002 0.04

ESU 7 13 12 0.02 0.01 0.002 0.04

ESU 8 28 15 0.02 0.02 0.002 0.06

Table 3 Report of the

uncorrected genetic

distances between GMYC

ESUs of K. cochlearis,

mean, and median values

equal to the second decimal

point (mean & median),

minimum, and maximum

(min|max) values of

distances

ESU 1 ESU 2 ESU 3 ESU 4 ESU 5 ESU 6 ESU 7

Mean & median

ESU 2 0.29

ESU 3 0.21 0.28

ESU 4 0.22 0.27 0.18

ESU 5 0.22 0.28 0.18 0.19

ESU 6 0.23 0.28 0.20 0.20 0.12

ESU 7 0.21 0.30 0.18 0.19 0.15 0.15

ESU 8 0.22 0.27 0.18 0.19 0.15 0.14 0.13

Min|Max

ESU 2 0.29

ESU 3 0.20|0.23 0.27|0.28

ESU 4 0.22|0.23 0.27|0.28 0.16|0.19

ESU 5 0.22 0.28|0.28 0.18|0.19 0.19|0.20

ESU 6 0.22|0.24 0.28|0.29 0.19|0.20 0.18|0.21 0.11|0.13

ESU 7 0.18|0.23 0.29|0.34 0.15|0.21 0.16|0.21 0.12|0.16 0.11|0.17

ESU 8 0.20|0.24 0.26|0.33 0.16|0.20 0.18|0.23 0.14|0.17 0.09|0.17 0.11|0.15
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spineless specimens from ESU 6 from the NMDS

analysis. In this NMDS with measurements of spined

individuals (S = 0.17), specimens of ESUs 5 and 8

formed distinct clusters while specimens from ESUs 3

and 6 were mixed (Fig. 5). In the LDA based on PSL,

LL, and PSA, the percent correct assignment of ESUs

varied (ESU 3: 69%, ESU 5: 83%, ESU 6: 53%, ESU

8: 50%).

We noted the presence of spinelets (Fig. 6), addi-

tional facets, and bending of the ridge (Fig. 4) in some

specimens and linked these characteristics to their

association toGMYCESUs.Weobserved across ESUs

the presence of spinelets, additional facets, and bend-

ing of the ridge (Table 6). In addition, we observed

small humps in themiddle of the areolation section and

the symmetrically situated lateral antenna (Fig. 6).

Fig. 3 Phylogenetic relationships of the 57 COI haplotypes of

K. cochlearis. The phylogenetic tree was created with Bayesian

interference analysis showing all compatible groupings and with

average branch lengths proportional to numbers of substitutions

per site under a HKY ? I ? G substitution model. Posterior

probabilities from the Bayesian reconstruction and approximate

likelihood ratio test support values from the maximum

likelihood are shown below and above each branch, respec-

tively. The inference of putative ESUs by GMYC, ABGD, and

PTP based on maximum likelihood (PTP-ML) and Bayesian

inference (PTP-BI) is shown. Lakes were sorted according to

increasing altitude (elevation in the upper line, metres above sea

level). The number of sequences for each haplotype per lake is

given in each line
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No correlation was found between phylogenetic

and morphological diversity (Mantel r = 0.07;

P = 0.41).

Discussion

Our study indicated that eight putative ESUs of K.

cochlearis occurred in lakes of the Trentino-South

Tyrol region. This diversity may be responsible for the

apparent tolerance of K. cochlearis to varying envi-

ronmental conditions. The putative ESUs of K.

cochlearis had an average uncorrected genetic dis-

tance in COI between 12 and 30%, which is higher

than the 3% threshold commonly used to separate

species for most animals (Hebert et al., 2003; Tang

et al., 2012). The general good agreement of the

various methods that we used to infer putative ESUs

corroborated our results. We did not consider the

splitting of GMYC ESUs 3 and 6 by PTP-BA because

it was not supported by the branching pattern of the

tree and the other methods of species delimitation.

The wide morphological variability in K.

cochlearis that led to the description of morphotypes

Table 4 Length

measurements of main

lorica characteristics based

on 138 specimens of K.

cochlearis, lorica length

(excluding anterior and

posterior spines, LL),

posterior spine length

(PSL), total lorica length

including all appendages

(TLL), lorica width at its

widest part (LW), posterior

spine angle (PSA),

anterolateral dorsal spine

length (ALS),

anterointermediate dorsal

spine length (AIS),

anteromedian dorsal spine

length (AMS), and lorica

width beneath the anterior

spines (‘‘head width’’, HW)

The number of individuals

measured is given between

brackets next to the lake

name

LL PSL TLL LW PSA ALS AIS AMS HW

ESU 3

Mean 99.5 52.8 182.5 67.4 159.3 20.5 14.5 30.5 58.2

Median 100.0 52.6 182.9 68.2 159.0 20.8 14.3 30.0 58.8

Min 87.4 24.9 131.3 51.5 145.9 15.1 10.5 25.6 49.7

Max 115.0 90.3 231.5 77.1 174.2 24.3 18.2 36.1 66.8

Lakes: Caldonazzo (2), Kaltern (21), Terlago (13), Vahrn (2)

ESU 4

Mean 92.8 0.0 114.8 63.5 0.0 14.9 11.9 22.0 51.8

Median 88.6 0.0 113.3 61.0 0.0 14.1 11.7 21.0 51.8

Min 82.8 0.0 106.0 59.4 0.0 12.3 11.0 17.0 49.3

Max 109.2 0.0 126.2 72.1 0.0 19.2 13.4 29.5 54.5

Lake: Terlago (7)

ESU 5

Mean 111.1 71.9 215.3 71.7 143.1 15.9 11.6 32.3 65.4

Median 109.9 75.4 220.3 75.0 144.0 16.9 11.4 32.7 67.8

Min 93.5 0.0 140.3 40.9 0.0 8.8 4.9 11.8 50.0

Max 129.2 113.1 266.8 83.2 165.5 20.9 16.0 43.5 75.3

Lakes: Glittner (43), Kaltern (1), Vahrn (1)

ESU 6

Mean 106.8 54.4 194.9 70.8 144.3 20.9 15.3 33.8 62.5

Median 108.7 57.4 199.3 72.3 155.1 20.7 15.2 33.8 63.2

Min 88.2 0.0 116.2 52.0 0.0 15.1 9.0 24.9 54.5

Max 125.7 81.0 229.7 77.9 168.3 26.6 19.5 41.4 68.4

Lakes: Terlago (8), Tovel (30), Vahrn (4)

ESU 7

84.9 35.4 151.9 50.0 161.6 18.4 14.6 31.6 48.9

Lake: Caldonazzo (1)

ESU 8

Mean 81.4 25.9 135.6 50.8 165.8 16.8 12.5 28.2 51.0

Median 83.6 26.0 138.0 51.7 166.1 16.9 12.9 28.0 51.9

Min 74.3 24.0 125.6 45.7 163.7 15.2 11.3 25.4 46.1

Max 87.1 28.8 145.3 52.7 167.2 18.0 13.1 31.6 53.4

Lake: Vahrn (5)

Hydrobiologia

123



by Lauterborn (1900) has been investigated by many

researchers who tried to understand factors influencing

morphology such as temperature (Green, 2005),

predation (Conde-Porcuna et al., 1993), maternal

effect (Stemberger & Gilbert, 1984), or presence of

distinct species (Ahlstrom, 1943; Eloranta, 1982). Our

study indicated that neglecting presence of ESUs of K.

cochlearis might have led to biased conclusions on

their morphological variability and global distribution.

For example, the correlation between LL and PSL is

not always positive as stated by Green (2005) but

seems to differ between ESUs showing no correlation

or varying positive correlation. Furthermore, Green

(2005) underlined that specimens with a LL of around

80 lm show a wide variability in PSL. We observed

an overlap of specimens of different ESUs in the range

of 80–90 lm. Thus, neglecting ESUs of K. cochlearis

may lead to underestimating their phenotypic

diversity.

An important characteristic for the delimitation of

K. cochlearis morphotypes is the presence and length

of the posterior spine. Our study indicated that spined

and unspined (=tecta) specimens occurred in the same

and different ESUs (i.e. ESUs 3 and 6, respectively).

Hofmann (1983) and Green (2005, 2007) noted that

tecta specimens could not be explained by allometric

growth because specimens with spines were smaller

than those without spines. Green (2005) presented

three hypotheses of the origin of spineless K.

cochlearis: 1, true tecta (appearing only in colder

periods of the year as the ‘‘end’’ of the posterior spine

reduction); 2, aspina (truly spineless, absent in the

winter, LL longer than in spined form); 3, ecaudata

(the same dorsal structure, occurring in summer, LL

longer than in spined form). Coherent with Green’s

(2005) hypothesis 1 of true tecta, our study indicated

based on ESU 6 that spineless forms have the same and

Fig. 4 Relation between posterior spine length (PSL) and

lorica length (LL) for different GMYC ESUs. Numbers on axis

represent length in lm. Values of significantly important

(P\ 0.05) correlation coefficients are reported next to ESUs

symbols

Table 5 Morphological parameters showing statistical sig-

nificant differences in ANOVA between different GMYC

ESUs (only significant comparisons are shown), lorica length

(excluding anterior and posterior spines, LL), posterior spine

length (PSL), and posterior spine angle (PSA), degrees of

freedom (df), 138 specimens were measured, but ESU 7 was

excluded from analyses because only specimen was measured,

for ANOVA on PSL, specimens without spine were excluded

(7 of ESU 4 and 3 of ESU 6), in mixed modelling of ANOVA

for PSL and LL, measurements from the same lakes were

modelled as correlated and in mixed modelling of ANOVA for

PSA, residuals were allowed to have a different spread per lake

Comparison df t-ratio P

PSA

ESUs 3–5 118 6.23 \0.001

ESUs 3–8 118 -2.70 0.038

ESUs 5–6 118 -4.72 \0.001

ESUs 5–8 118 -7.01 \0.001

ESUs 6–8 118 -4.29 \0.001

PSL

ESUs 3–5 121 -4.38 \0.001

ESUs 3–8 121 2.98 0.028

ESUs 5–6 121 3.23 0.013

ESUs 5–8 121 5.53 \0.001

ESUs 6–8 121 3.64 0.004

LL

ESUs 3–8 132 3.14 0.017

ESUs 4–5 132 -2.90 0.035

ESUs 5–8 132 4.20 \0.001

ESUs 6–8 132 3.47 0.006

Fig. 5 Non-metric multidimensional scaling (NMDS) plot of

all morphological variables. GMYC ESUs 1, 2, and 7 are

excluded due to absence of morphometric data. GMYC ESU 4

and spineless specimens of ESU 6 are excluded due to lack of

the posterior spine
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smaller LL than specimens from the same ESU across

different habitats. Coherent with Green’s (2005)

hypotheses 2 and 3, spineless specimens of ESU 4

were smaller and larger than spined morphotypes

across habitats and those from the same lake. Thus,

neglecting the co-occurrence of different ESUs in K.

cochlearis leads to the odd situation that spineless

specimens seem larger than spined ones. We suggest

that tecta morphotypes can actually have at least two

possible origins (Green’s hypotheses 1 and 2/3) but

delimiting true tecta from spineless aspina or ecau-

data based on morphology seems quite tricky. We,

furthermore, hypothesise that detailed SEM pictures

of lorica facets might reveal features (such as the X-

facet or carinal facets described by Lauterborn, 1900)

helpful for delimiting putative ESUs.

Spinelets and the bended ridge are other morpho-

logical features that are used in morphotype delimi-

tation (Lauterborn, 1900) but the usefulness of

spinelets was already questioned by Hofmann

(1980). According to Lauterborn (1900) spinelets are

characteristic for the hispida and irregularis series.

However, specimens from GMYC ESUs 3 and 6 did

and did not have spinelets. According to Hofmann

(1980), the size of spinelets increases from spring to

summer and are almost invisible during winter. In fact

in our samples, specimens with spinelets occurred

during summer and spring (only one was collected

Fig. 6 SEM pictures of K. cochlearis, a dorsal view, b detail of

bended ridge (indicated by arrow), lateral antenna, c detail of

lateral antenna, d ventral view, and e detail of spinelets on the

intersection of the areolation and of bumps in the middle of

areolation, GMYC ESU 5: (a–c), and GMYC ESU 8: (d, e)
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from Lake Terlago during November), but we cannot

exclude that we missed the presence of spinelets in

some specimens as they were very difficult to observe.

However, it seems that spinelets are only appearing

(and changing in length) in some ESUs because no

spinelets were ever observed in ESU 5 regardless of

sampling time. Thus, we suggest that the presence of

spinelets is no valid criterion for delimitating mor-

photypes or putative ESUs. Ahlstrom (1943) and

Eloranta (1982) already pointed out that the presence

of spinelets shows high variability in most K.

cochlearis species, and here we corroborated their

statement with genetic data. More detailed SEM

pictures of various putative ESUs taken from different

seasons are, in any case, needed in order to investigate

the temporal appearance of spinelets. According to the

bended ridge, specimens of ESUs 4 and 5 always

showed it while it was present or absent in specimens

of ESU 3. We conclude that the bended ridge is also

not a valid character to delimitate ESUs. In addition to

spinelets and the bended ridge, we observed small

humps in the middle of the areolation section. To the

best of our knowledge, we do not know about any

reference to these structures. We refrain from hypoth-

esising on their function, and if they grow, they seem

to be an overlooked feature of lorica morphology.

Furthermore, we provided detailed SEM images on the

lateral antenna that was previously only shown by

Garza-Mouriño et al. (2005, their plate 1c).

Taking into account all information on lorica

morphology, different ESUs showed different mor-

phological variabilities. Both univariate and multi-

variate analyses indicated that ESUs 3 and 6 were not

unambiguously distinguishable based on lorica

measurements showing a wide phenotypic plasticity.

Contrarily, ESU 8 could be distinguished from ESU 5

based on morphology based on single measurements

and NMDS. In LDA, only specimens of ESU 5 were

correctly assigned in most cases, while specimens of

ESU 8 did not perform that well. Specimens of ESU 8

were smaller with respect to measured characters than

specimens of ESU 5. Therefore, it is possible to

delimit only some putative ESUs having a more

restricted phenotypic plasticity with respect to other

ESUs based on detailed lorica measurements. We

suggest that an analysis of specimens sampled sepa-

rately during cold and warm seasons in specific water

layers could provide insights into the effect of water

temperature on spine development of ESUs that we

may have missed by our sampling strategy.

In many of our study lakes, different ESUs of K.

cochlearis co-occurred. Generally, it is assumed that

specieswith similarmorphology and close phylogenetic

relationship might have similar niches (e.g. Wiens &

Graham, 2005;Wiens et al., 2010) and thiswould lead to

competitive exclusion (Violle et al., 2011; Gabaldón

et al., 2013). Cryptic species are not only morpholog-

ically similar but also phylogenetically closely related,

and thus, the co-occurrence of cryptic species should be

rarely encountered. However, cryptic species of B.

plicatilis occur in temporal co-existence or in overlap,

and their co-existence is mediated by disturbance and

food partitioning (Ciros-Pérez et al., 2001a). Not only in

the genus Brachionus but also in P. dolichoptera

(Obertegger et al., 2014) co-existence of cryptic species

has been observed. We found that several morpholog-

ically similar putative ESUs of K. cochlearis co-

occurred but, at the moment, cannot infer their niche

Table 6 Observed combinations of morphological characteristics present in individuals of the respective GMYC ESUs

Bended ridge Spinelets Posterior spine Additional facets

ESU 3 Yes No Yes No

ESU 3 Yes Yes Yes No

ESU 3 No No Yes No

ESU 4 Yes Nv No Yes

ESU 5 Yes* No** Yes No

ESU 6 Yes Yes No Yes

ESU 6 Nv No Yes No

Different lines were used if more than one combination was observed in a given ESU

nv Not visible

* Shown in Fig. 6b, ** shown in Fig. 6e
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partitioning because of missing information regarding

their depth distribution. Furthermore, our study indi-

cated no link between phylogenetic and morphological

diversity of putative ESUs. Similarly, Gabaldón et al.

(2013) foundnodifferencebetweencryptic species ofB.

plicatilis for key parameters (i.e. clearance rates,

starvation tolerance and predation susceptibility) related

to body size. Recently, co-existence of cryptic species

was linked to a negative feedback based on sex-based

mechanisms that lead to stable co-existence (Montero-

Pau et al., 2011).

In conclusion, our study indicates thatK. cochlearis

is composed of eight putative ESUs based on mtDNA,

as indicated by three different methods. The generally

good agreement between these methods enhances our

inference on species diversity. Several morphological

characteristics such as presence/absence of the poste-

rior spine, spinelets, and bended ridge seem to be of

poor value to discriminate ESUs. However, when all

lorica measurements are taken together in a multi-

variate statistical approach, ESU 5 could be distin-

guished from ESU 8. More detailed morphological

research is needed for a longer period to understand

the morphological variations of K. cochlearis ESUs.
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Abstract A recent study based on DNA taxonomy

indicated that the widespread rotifer Keratella

cochlearis comprises several evolutionarily signifi-

cant units (ESUs). Identification of ESUs based on

DNA taxonomy alone is problematic and usually

requires morphological, demographic, and/or ecolog-

ical evidence. We isolated three haplotypes belonging

to two ESUs of K. cochlearis and conducted life

table experiments to investigate if this genetic diver-

sity is reflected in demography. We found significant

differences between haplotypes in life history traits

(average lifespan, number of offspring, and percent of

rejected eggs) and in demographic parameters (in-

stantaneous growth rate, generation time, and net

reproductive rate of the populations). During the

experiments, all the haplotypes produced abnormal

females with a deformed lorica, which was never

reported before in K. cochlearis. We also report the

first case of an amphoteric female (producing both

females and males) in K. cochlearis. We hypothesize

that K. cochlearis haplotypes and thus ESUs may

exhibit niche differentiation through their different life

histories. The link between demographic parameters

of K. cochlearis and niche utilization requires further

research.

Keywords Life table � Cryptic species � Abnormal

females � Rotifers � Lake Tovel

Introduction

Rotifers are among the most abundant planktonic

metazoans and constitute a crucial link between lower

and higher trophic levels in most freshwater ecosys-

tems around the world (Wallace et al., 2006). Rotifer

biodiversity has been studied for over two hundred

years, and so far about 2000 species have been

described (Koste & Hollowday, 1993; Segers & De

Smet, 2008). With the advent of molecular techniques

and the introduction of DNA taxonomy, many rotifer

species, traditionally considered as one species,

proved to be complexes of cryptic species. Cryptic
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species, defined as genetically distinct but morpho-

logically difficult-to-distinguish species (Gomez et al.,

2002; Fontaneto et al., 2009; Birky et al., 2011;

Obertegger et al., 2012, 2014; Cieplinski et al., 2017),

appear to be widespread among both microorganisms

and macroorganisms and have been reported in many

groups such as protists (Foissner, 2006), ants (Fournier

et al., 2012), harvestmen (Arthofer et al., 2013), and

rotifers (Gomez & Snell, 1996; Gomez et al., 2002;

Fontaneto et al., 2009; Birky et al., 2011; Obertegger

et al., 2012, 2014; Cieplinski et al., 2017). According

to the niche conservatism theory, the closer the related

species are, the more profound is their niche conser-

vatism (i.e., a higher tendency to retain their ancestral

traits) and the stronger is their competition (e.g.,

Darwin, 1859; Violle et al., 2011). Therefore, cryptic

species should show strong interspecific competition

and little co-existence (Wiens & Graham, 2005;

Losos, 2008; Violle et al., 2011). However, co-

existence of closely related species is a difficult-to-

explain phenomenon (Leibold & McPeek, 2006), but

has been observed in nearly 60% of rotifer complexes

(Gabaldón et al., 2017). Yet, especially with small

aquatic organisms we can never fully account for the

n-dimensionality of the species niche, and, therefore,

inferences about real co-existence are difficult.

Evidence is growing that cryptic species in rotifers

often have different life history traits despite their

close phylogenetic relationship and that these differ-

ences may play a role in their co-existence in the same

environment (Gabaldón et al., 2015). Consequently,

our knowledge on biodiversity, biogeography, and

ecology of certain species might be biased because

several cryptic species with different ecological

requirements and characteristics are lumped into one

species. Differences in life histories of closely related

species that are linked to niche differentiation may

thus add to the co-existence and evolution of cryptic

species (Angert et al., 2009; Montero-Pau et al., 2011).

Therefore, analyses of life histories in cryptic species

complexes may help understand competitive abilities

between those species.

Life table experiments represent one of the most

widespread methods to study life history traits and

population dynamics (King, 1970; Allan, 1976; Walz,

1983, 1987; Gribble & Welch, 2013; Xi et al., 2013;

Xiang et al., 2016a, b). Life history traits are those

parameters that are directly derived from the life

table of an organism (Stearns, 1992). Demographic

parameters (also known as ‘‘population parameters’’,

‘‘population traits’’, etc.) are the key parameters of

population dynamics (e.g., instantaneous growth rate,

net reproductive rate, and generation time) (Begon

et al., 1996). Various studies reported interspecific

differences in life history traits for several rotifer

species and cryptic species in response to abiotic

factors such as salinity or temperature. Temperature is

one of the most important abiotic factors influencing

life histories of rotifers (Bottrell et al., 1976).

Gabaldón et al. (2015) showed that the brackish water

cryptic species Brachionus manjavacas exhibits—

irrespective of salinity—higher growth rates than its

sibling cryptic species B. plicatilis. Gabaldón and

Carmona (2015) demonstrated that asexual females of

B. manjavacas have higher survival rates in both

middle and old age classes and, consequently, a longer

mean lifespan than asexual females of B. plicatilis

from the same lake. In spite of this demographic

advantage of B. manjavacas with respect to B.

plicatilis, the two cryptic species can co-exist stably

(Gomez et al., 2002, 2007). Ciros-Pérez et al. (2001)

reported different intrinsic growth rates in three

sympatric cryptic species of the B. plicatilis species

complex that were cultured at the same temperatures.

Similarly, demographic parameters were different for

eight closely related Chinese populations of B. caly-

ciflorus exposed to different temperatures, and these

differences were linked to adaptations of populations

to different environmental conditions (Ma et al.,

2010).

Life history traits and demographic parameters are

also influenced by biotic factors such as food quality

(Korstad et al., 1989) and quantity (Robertson & Salt,

1981; Xi & Huang, 1999; Sarma et al., 2001). Hu and

Xi (2008) showed that the intrinsic growth rate,

generation time, and average lifespan of two strains of

B. plicatilis and one strain of B. calyciflorus were all

significantly different under different food regimes.

Differences in life history traits and demographic

parameters were observed not only between cryptic

species inhabiting the same environment (e.g., Gabal-

dón et al., 2015) but also between geographically

isolated populations of the same species of B. calyci-

florus (Wang et al., 2014).

Compared to the well-studied Brachionus spp.,

little is known about the life history of the freshwater

rotifer Keratella cochlearis (Gosse, 1851). This is

astounding considering that K. cochlearis is globally
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distributed in lakes and ponds and is one of the most

common pelagic species worldwide (Pourriot, 1965).

One of the reasons why K. cochlearis is understudied

in contrast to Brachionus spp. is because it is much

more difficult to culture (Lindström & Pejler, 1975;

Pourriot, 1980; Stemberger, 1981). Among the few

existing studies on K. cochlearis (Edmondson, 1965;

Zimmermann, 1974; Walz, 1983; Gilbert & Stem-

berger, 1985; Walz, 1983, 1986, 1987), those per-

formed by Walz (1983, 1987) are the most extensive

ones. This author reported changes in the life history

of K. cochlearis dependent on temperature and food

regimes. Recently, the existence of a cryptic K.

cochlearis species complex has been hypothesized

by Cieplinski et al. (2017) based on DNA taxonomy;

these authors also demonstrated that it is possible to

delimit several distinct evolutionarily significant units

(ESUs) based solely on morphological differences

between ESUs.

Here, we investigated differences in life histories

between three haplotypes of K. cochlearis. These

haplotypes belong to two putative evolutionarily

significant units (ESUs)—ESU 3 and ESU 6 of K.

cochlearis, described in Cieplinski et al. (2017) and in

Obertegger et al. (2017). We hypothesized different

life history traits and demographic parameters in at

least two haplotypes of K. cochlearis belonging to

different ESUs, assuming that the existence of cryptic

species was correctly inferred by DNA taxonomy.

Materials and methods

Rotifer isolation, haplotypes, and ESU

We focused on three haplotypes belonging to two

ESUs that were discriminated based on their mito-

chondrial cytochrome oxidase subunit 1 gene (COI) by

Cieplinski et al. (2017). Discrimination for these ESUs

and haplotypes was later confirmed by phylogenetic

analyses with a nuclear marker (internal transcribed

spacer 1, ITS1) by Obertegger et al. (2017). These

haplotypes were isolated from lakes Tovel, Kaltern,

and Terlago (N. Italy) during a detailed sampling

conducted between 2013 and 2015 (for details, see

Cieplinski et al., 2017).

For simplicity, we refer to two ESUs as ‘‘ESU 3’’

and ‘‘ESU 6’’ as previously described by Cieplinski

et al. (2017) and to the haplotypes as ‘‘Hap A’’

(belonging to ESU 6), ‘‘Hap B,’’ and ‘‘Hap C’’ (both

belonging to ‘‘ESU 3,’’ Table 1). The sampled lakes,

although geographically relatively close, represent

different environmental conditions (Table 2). Lake

Tovel, despite its mid-altitude location, has the

characteristics of an alpine lake (Obertegger & Flaim,

2015), while Lakes Kaltern and Terlago are lowland

lakes embedded in an agricultural landscape.

The three haplotypes were regularly observed

during the monthly sampling period in 2014 (supple-

mentary material Table s1). Hap B was isolated from

Lake Kaltern but was also found once in Lake Vahrn

(supplementary material Table s1). Moreover, Hap A

was present in Lake Tovel, Hap B in Kaltern, and Hap

C in Lake Terlago in all samples indicating that these

particular haplotypes are not only temporarily occur-

ring but are in fact parts of permanent K. cochlearis

communities in the studied lakes (Cieplinski et al.,

2017).

Samples were taken at the deepest site of each lake

with a 50-lm Wisconsin-type plankton net. Rotifers

were collected from Lake Terlago on September 23,

2014 and from both Tovel and Kaltern on March 2,

2015. One clonal culture per lake was established from

a single female collected from that lake and contin-

uously maintained in the laboratory. Clonal rotifer

cultures were kept inside an incubator in 6-well plates

(Biomedica, Vienna) in modified WC medium (Guil-

lard & Lorenzan, 1972) at an average temperature of

14.5 �C and a 16:8 h light–dark photoperiod. The

same medium was also used to cultivate Cryptomonas

sp. strain no. 26.80 obtained from the culture collec-

tion of algae in Göttingen, Germany. This Cryp-

tomonas sp. served as the only food source for all

rotifer clones before and during the life table experi-

ments. Algal concentration was measured with an

electronic particle counter (CASY 1-Model TTC,

Schärfe System) according to Weisse and Kirchoff

Table 1 Haplotypes used for life table experiments: Haplo-

type, COI-ESU (terminology for haplotypes and COI-ESUs

according to Cieplinski et al., 2017), ITS1-ESU (terminology

for ESUs according to Obertegger et al., 2017), and Hap (ter-

minology for haplotypes in this study)

Lake Haplotype COI-ESU ITS1-ESU Hap

Tovel h30 ESU 6 ESU a A

Kaltern h5 ESU 3 ESU b B

Terlago h14 ESU 3 ESU b C
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(1997). Most complete life table experiments with K.

cochlearis were performed by Walz (1983, 1987) on

specimen coming from the small pond Fasaneriesee in

southern Germany. Walz (1983, 1987) reported 15 �C
as the optimum temperature for his cultures. There-

fore, we conducted all experiments at 15 �C.
Initially, many more clones and haplotypes were

selected for culturing for each of the ESUs, also

including various haplotypes from the same lakes.

However, owing to general difficulties in culturing K.

cochlearis, we were not able to maintain them in

cultures and most of the clones died regardless of

culturing efforts.

Life table experiments

Life table experiments for all three haplotypes of K.

cochlearis were performed using exactly the same

experimental setup, including food concentration,

temperature, and light conditions. Depending on the

size of the wells, we placed two to four flakes of cetyl

alcohol on the surface of each well to reduce surface

tension (see Desmarais, 1997; Stelzer, 1998), and thus

to lower the probability that rotifers were caught in the

surface film.

Each experiment comprised three phases:

(1) standardization—performed in 30 Petri dishes

to standardize conditions and to minimalize

maternal effects;

(2) synchronization—performed in 24-well plates

for female synchronization;

(3) life table experiment—performed in 96-well

plates, similarly to the experiment conducted by

Walz (1983).

In monogonont rotifers, a switch from asexual to

sexual reproduction is generally attributed to the

accumulation of mixis-inducing proteins released into

the environment by the rotifers themselves (Stelzer &

Snell, 2003; Snell et al., 2006). Sun and Niu (2012)

observed for B. calyciflorus that maternal crowding of

amictic (asexually reproducing) females can enhance

the propensity of offspring to produce mictic (sexually

reproducing) females. Therefore, the main purposes of

the acclimation period (phase 1) were to minimize the

probability of mictic female appearance in phases (2)

and (3) and to standardize the starting conditions for

all three haplotypes. Because the exact sex-inducing

female density has not yet been described for K.

cochlearis, the number of females used for phase (1)

was based on earlier observations in our laboratory.

The duration of phase (1) was long enough to rear

several generations of rotifers. To initiate phase (1),

five individuals were placed into 30 Petri dishes

containing 30 mL of medium with abundant food

(Cryptomonas sp.[ 30,000 cells mL-1) and cultured

for approximately 14 days. Rotifer abundance was

monitored until the total number of rotifers in all

dishes reached more than * 300 individuals, which

was a prerequisite to start phase (2).

For phase (2), single young females from phase (1)

were pipetted into eight 24-well plates containing

2 mL of medium with Cryptomonas sp. ([ 30,000

cells mL-1). The criteria for selecting young females

were transparency, smaller body size than adult

females, and lack of eggs. These features allowed us

to discriminate young females from adult ones that

recently gave birth and carried no eggs. Each rotifer

during phase (2) was observed two times per day, in

the morning and late afternoon, to record the most

proximate time of offspring production. The general

purpose of phase (2) was to produce many females of

similar age whose offspring born at approximately the

same time were then used for phase (3); accordingly,

we used the term ‘‘female synchronization’’ for phase

(2). Newly hatched offspring from the 1st clutch (i.e., a

cohort) of phase (2) females were immediately

removed and used for phase (3). Phase (2) lasted for

a period of approximately 14 days, which was suffi-

ciently long enough to ensure that females produced

Table 2 Environmental data of sampled lakes: altitude (alti; m above sea level), area (ha), depth (m), mean summer surface

temperature (temp; �C), conductivity (cond; lS cm-1), and trophic state (eutrophic—eu; mesotrophic—meso; oligotrophic—oligo)

Lakes Geographical coordinates Alti Area Depth Temp Cond pH Trophic state

Tovel 46� 150 43.243200 N 10� 560 41.647200 E 1178 38.2 39 15 192 7.9 oligo

Kaltern 46� 220 43.172400 N 11� 150 50.209200 E 215 147 5 18 507 8.3 meso

Terlago 46� 50 56.356800 N 11� 30 21.25800 E 414 11.9 10 23 289 8 eu
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several generations of offspring. Only offspring from

the same 1st clutch were selected (possible due to the

synchronization of their mothers) for the life table ex-

periment (phase 3) to further standardize initial

conditions. For phase (3), single females born at

approximately the same time were placed into wells of

a 96-well plate containing 230 lL of medium and food

solution with Cryptomonas sp.[ 30,000 cells mL-1.

The initial number of females was always 96. Rotifers

were observed twice per day to record the number of

eggs, dead individuals, and the number and sex of

offspring. All specimens were transported to fresh

medium with food every fourth day, which repre-

sented a compromise between culture maintenance

and preventing specimen loss due to death by

mechanical interference. Newly hatched juveniles

were removed immediately and discarded. Apart from

females and males, abnormally swimming and non-

loricated individuals were also counted; these speci-

mens were called abnormal females. Amictic

(parthenogenetic) eggs that did not hatch and instead

decomposed in the course of several days at the bottom

of the Petri dish were also counted and called rejected

eggs.

Analyses of life table data

The life history traits and demographic parameters

were calculated based on a sample size of 96

individuals for each haplotype. All females, irrespec-

tive of offspring production and all offspring, females,

males, and abnormal females were included in calcu-

lations. Demographic parameters were calculated

according to Birch (1948) and Walz (1983): average

lifespan (L) was reported in days, survivorship (lx) was

the percentage of surviving females on day x, age-

specific birth rate (mx) was the fraction of all the

surviving offspring on day x, and age-specific fecun-

dity rate (lxmx) was the product of lx and mx.

The net reproduction rate (R0) was the sum of lxmx

over the entire experiment:

R0 ¼ Rlxmx

Generation time (T) is the time from hatching from an

egg to producing an offspring and is calculated

according to

T ¼ lnðR0Þ=r

The instantaneous growth rate per day (r) was

estimated by solving Lotka’s equation (Lotka,

1907) iteratively, assuming exponential growth (see

Birch, 1948):

X

x� 1

erðxþ0:5Þlxmx

where e is the Euler constant (2.71828), x the age in

days, lx the age-specific survival rate, (i.e., the

proportion of surviving females at day x), relative to

the initial number of females, and mx the age-specific

fecundity rate, i.e., the mean number of offspring

produced on day x by a female of age x.

In the case of R0, T, and r, bootstrapping was used to

obtain estimates of means and standard deviation.

Bootstrapping was done by randomly resampling the

same sampling size (n = 96) with replacement from

the original sample (Quinn & Keough, 2002). Boot-

strapping with replacement generates robust represen-

tative statistics (Dixon, 2002) as shown for growth

rates of cladocerans (Meyer et al., 1986). Here, we

used 1000 bootstrapped samples.

Mean values of all life table parameters were tested

for significant differences between haplotypes by non-

parametric Kruskal–Wallis one-way analysis of vari-

ance. For pairwise comparisons of values which did

not show normal distribution, the Dunn’s post hoc test

(95% family-wise confidence levels) was used. Nor-

mal distribution was found only for T, and therefore in

this case ANOVA was used for analysis of variance

and Tukey’s post hoc test (95% family-wise confi-

dence levels) was used for pairwise comparisons. All

statistical analyses were performed using R 3.4.1 (R

Core Team, 2017).

Results

Life history traits and demographic parameters

of different haplotypes and ESUs

All females (i.e., amictic, mictic, females producing

abnormal females) and all the offspring (females,

males, and abnormal females) were included in the

analyses of life table data. Excluding mictic females or

females producing abnormal females did not change

the results in a meaningful way (supplementary
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material Table s2). All three haplotypes showed

statistically significant differences in all demographic

parameters except for L (Table 3). Specifically, Hap A

produced more offspring (average number of off-

spring: 8.1 for Hap A, 2.0 for Hap B, 3.3 for Hap C)

and showed a lower percentage of rejected eggs

(2.15% with respect to 12.61% for hap B and 9.67%

for Hap C) and a higher L compared to Hap B and Hap

C (17.0 days with respect to 11.3 and 13.4 days;

Table 3). Males were only observed in Hap A

(Table 3). All haplotypes showed positive r with

Hap A showing the highest r and Hap B the lowest

r (0.23 and 0.08 days, respectively) (Table 3). T was

the shortest in Hap C (7.99 days) and the longest in

Hap A (9.22 days); there were significant differences

between all haplotypes. Similarly, R0 was significantly

different between all haplotypes.

Age-specific survival rate (lx) of Hap C decreased

less, relative to Hap B or Hap A during the first nine

days (Fig. 1). After this initial phase, Hap C showed a

distinctly faster decline than Hap A and Hap B.

Furthermore, after day 23 no specimens of Hap Cwere

alive, in contrast to Hap A and Hap B. The shape of the

lx curve for Hap A and Hap B was similar, but Hap A

specimens lived longer than Hap B specimens.

Hap A showed higher lxmx and mx values and more

frequent and regular cyclical patterns (Fig. 2A1, A2)

than Hap B and Hap C (Fig. 2B1, B2; Fig. 2C1, C2).

In all three haplotypes, a sharp initial peak appeared

after 3 to 4 days, corresponding to the time needed for

specimens to reach maturity. Due to increasing

mortality of the mothers, the peak height declined in

all experiments until the whole population had died.

Occurrence of abnormal and amphoteric females

in experiments and in routine cultures

Amictic females showing an undeveloped, non-rigid

lorica, impaired swimming abilities, and short (max-

imum 1 day) lifespan were classified as abnormal

females (Fig. 3). We exclude the possibility that these

females were males because they were larger than

males and had visible and moving trophi (Fig. 3c).

Furthermore, both penis and setae were absent in the

photographed females. The lorica of these deformed

females lacked structures such as plates, ridges, and

ornamentation. However, a small, deformed posterior

spine was present (Fig. 3e). In routine cultures, such

deformed females were very rare. During the exper-

iments, the highest number of abnormal females was

Table 3 Demographic parameters reported for COI haplotypes: lifespan (L; days), instantaneous growth rate of the population (r;

d-1), generation time (T; days), and net reproductive rate (R0)

Hap A Hap B Hap C

COI-ESU 6 3 3

L (days) 17.0aa ± 8.49

17.5

11.3bb ± 6.94

11.75

13.4bb ± 3.35

13.5

Average number of offspring 8.1aa ± 4.52

9.5

2.0bb ± 2.02

2

3.3 cc ± 1.38

3

r (d-1) 0.23a ± 0.001

0.228

0.08b ± 0.001

0.077

0.15c ± 0.001

0.149

T (days) 9.22aa ± 0.02

9.22

9.24bb ± 0.05

9.24

7.99 cc ± 0.03

7.99

R0 8.2a ± 0.05

8.16

2.0b ± 0.03

2.03

3.3c ± 0.02

3.29

Number of female offspring (total) 769 194 302

Number of male offspring (total) 7 0 0

Number of abnormal females (total) 1 1 14

% of abnormal females in all offspring 0.64ac 0.51a 4.43c

% of rejected eggs 2.15aa 12.61bb 9.67b

Reported are mean ± standard deviation (upper row values) and median (lower row value) for each parameter; all values followed by

different superscripts are statistically different; values followed by a single superscript are statistically different at P\ 0.05, and

values followed by double superscript are statistically different at P\ 0.001. COI-ESU coding is according to Cieplinski et al. (2017)
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recorded for Hap C with a total of 14 specimens

(Table 3). For Hap A, one amphoteric female was

observed. This female produced two female offspring

on days 5 and 10, and 6 male offspring on several days

(i.e., 6, 8, 11, 12, 14, 19). No other amphoteric females

have been observed in our cultures. The percent of

amphoteric females was therefore 0.35% for all the

rotifers (288 neonates for three haplotypes together).

We did not observe any morphological differences

between the single amphoteric female and amictic

females.

Discussion

Differences in life history traits and demographic

parameters in cryptic species of K. cochlearis

The total diversity of haplotypes of K. cochlearis

within one ESU and the diversity of ESUs is unknown

and requires further research. Even though our study

did not evaluate intra-haplotype variability of demog-

raphy, it is the first study that investigates

demographic differences in haplotypes in rotifer

species other than Brachionus. We demonstrated that

genetically different (see Cieplinski et al., 2017)

haplotypes of K. cochlearis differ also demographi-

cally. Combining molecular and demographic data for

cryptic species is essential to correctly delimit species

using an integrative taxonomy approach recom-

mended by Schlick-Steiner et al. (2010), Fontaneto

et al. (2015), and Papakostas et al. (2016). Very few

experimental studies on K. cochlearis exist; moreover,

they did not consider cryptic diversity. These earlier

studies focused on the instantaneous rate of population

growth (Table 4). Only Walz (1983, 1987) provided

complete life table data for K. cochlearis, and thus

most of our comparisons relate to his studies. The

instantaneous rate of population growth (r) is a

comprehensive parameter and is often considered a

proxy for fitness, representing the ability of a rotifer

population to grow and prosper in an environment

(Campillo et al., 2011). In our study, r values of the

three haplotypes mostly fell within the range known

from previous studies of K. cochlearis (Table 4) and

were all positive, indicating population growth;

Fig. 1 Age-specific survivorship (lx) for Hap A, Hap B, and Hap C. Hap A belongs to ESU 6 and Hap B and C to ESU, and 3. 95%

confidence intervals are shown as shaded area, but are quite small
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however, we also observed the lowest r value (for Hap

B) ever reported for K. cochlearis. The r of Hap A

(0.228) was also comparable with r reported by

Weisse and Frahm (2001) for K. quadrata

(0.223 ± 0.21 fed with Cryptomonas sp.[ 30,000

cells mL-1). Walz (1995) reported slightly higher

r values for other Keratella species, i.e., 0.32 for K.

quadrata, 0.3 for K. earlinae, and 0.28 for K. crassa.

The time span to reach reproductive maturity is

indicated by the T value. Walz (1983) reported T for

K. cochlearis to be 8.1 days at 15�C; this value is

slightly lower than those for Hap A and Hap B but

comparable with that for Hap C. Differences in T and

in r between the haplotypes were also reflected by their

offspring number. Correspondence between T and

offspring number was found by Ma et al. (2010) for

Fig. 2 Age-specific fecundity (lxmx) and age-specific birth rate (mx) for Hap A (A1 and A2), Hap B (B1 and B2), and Hap C (C1 and
C2). Hap A belongs to ESU 6 and Hap B and C to ESU, and 3. 95% confidence intervals are shown as shaded area, but are quite small

Fig. 3 Light microscopic picture in dorsal view of a deformed

K. cochlearis female: a ciliae, b eyespot, c trophy, d lipid

globules, and e deformed posterior spine. Dorsal view. Scale

bar: 50 lm
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different cryptic species of B. calyciflorus. Walz

(1995) reported T for K. quadrata to be 4.8 days at

15 �C, which is comparable with T in our study.

Walz (1983) calculated R0 = 2.15. In our study, R0

for Hap B was 2.0 and that for Hap C was 3.29, while

R0 for Hap A was much higher. Such differences in

amictic offspring production under identical culture

conditions were also reported for the B. plicatilis

cryptic complex (Kostopoulou & Vadstein, 2007).

Lifespan (L) reported by Walz (1983) was

15.4 ± 1 days at 15�C, which is comparable to our

fastest developing Hap A. Regarding reproductive

curves, both lxmx andmx did not overlap for Hap A and

for the two other haplotypes but were almost identical

between Hap B and Hap C. However, lx did not

overlap between all haplotypes indicating differences

in survivorship of all three haplotypes. This suggests

that for K. cochlearis some demographical parameters

may differ more between ESUs than between closely

related haplotypes from the same ESU.

None of the haplotypes tested showed all life

table parameters similar to the ones reported by Walz

(1983, 1987). Large demographic differences in the

cryptic species complex of K. cochlearismay indicate

that the K. cochlearis populations previously

described were composed of various ESUs and/or

haplotypes that differed from those used in the present

study.

In rotifers, the appearance of males has been

associated with mixis-inducing proteins that are

released by females when the population density

reaches a species-specific threshold (Carmona et al.,

1993; Stelzer & Snell, 2003, 2006; Snell et al., 2006).

We observed males only in Hap A, regardless of

identical culture conditions for all haplotypes. We

hypothesize that this could be related to different

density thresholds that trigger sexual reproduction in

haplotypes (or in ESUs); this issue requires further

study.

Table 4 Population parameters for K. cochlearis reported in

various studies where food and temperature varied depending

on the experimental setting: instantaneous growth rate of

populations (r; days), net reproductive rate (R0), generation

time (T; days), lifespan (L; days), lake (refers to the lake of

population’s origin), lake altitude (Alti; m above sea level),

lake depth (Depth; m), and trophic state (eutrophic—eu;

mesotrophic—meso; oligotrophic—oligo)

r R0 T L Lake Alti Depth Trophic

state

Authors

* 0.17a Windermere N.

Basin;

Windermere S.

Basin;

Esthwaite;

Blelham

39;

39;

65.2;

42

25.1;

16.8;

6.4;

6.8

all lakes eu Edmondson (1965)

0.35 Sempach 504 87 eu Zimmermann (1974)

0.095 2.5 8.1 15.4 Fasaneriesee 494 5.7 eu Walz (1983)

0.28 (food:

Rhodomonas)

Post Pond 134 38 meso Stemberger & Gilbert

(1985)

0.35 (food:

Cryptomonas)

Post Pond 134 38 meso Stemberger & Gilbert

(1985)

0.3 Fasaneriesee 494 5.7 eu Walz (1986)

0.095 Fasaneriesee 494 5.7 eu Walz (1987)

0.214 Schöhsee 22 29 meso Weisse & Frahm (2001)

0.23;

0.08;

0.15

8.2;

2.0;

3.3

9.22;

9.24;

7.99

17.0;

11.3;

13.4

Tovel;

Kaltern;

Terlago

1178;

215;

414

39;

5;

10

oligo;

meso;

eu

This study

In the present study, means were reported for demographic parameters. Please note that values are as reported in original papers
aEdmondson (1965) reports ‘‘population reproductive rate’’ which has a similar meaning as r; its value was derived from the graph
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We observed some rejected, detached eggs for all

the haplotypes. Keen and Miller (1977) indicated that

in K. cochlearis amictic eggs that are always attached

to their mother hatch at different intervals. This

indicates that detached amictic eggs in our study were

no more viable. We also excluded the possibility of

those eggs being pseudo-sexual eggs (resting eggs

produced in parthenogenesis) similar to those

observed for K. hiemalis (Ruttner-Kolisko, 1946)

and for Synchaeta pectinata (Gilbert, 1995) because

these rejected, detached eggs were morphologically

identical to amictic eggs and clearly decomposed after

some time on the bottom of the container. Moreover,

pseudo-sexual eggs have never been reported in K.

cochlearis and neither did we observe them in our

laboratory. This result is unexpected as Keen and

Miller (1977) reported a hatching rate for amictic eggs

of K. cochlearis of 100%. The percent of rejected

amictic (parthenogenetic) eggs did vary significantly

between Hap A and Hap B and between Hap A and

Hap B but not between Hap B and Hap C. Such

differences in hatching rates for different cryptic

species have been found for diapausing eggs. Gabal-

dón et al. (2015) reported that the hatching rate of

diapausing eggs differs depending on salinity between

different cryptic species of B. plicatilis and B.

manjavacas. In our case, culture conditions were

constant; therefore, we associated varying hatching

rates with population differences between the

haplotypes.

The pre-experiment phases (1) and (2) lowered the

maternal effect related to crowding (see Lynch &

Ennis, 1983) and standardized initial conditions

allowing us to observe what we interpret as phenotypic

differences unrelated to culture conditions. The

observed vast phenotypic and genetic diversity may

result from genetically fixed, adaptive evolution

(Olson-Manning et al., 2012) related to life in a fast-

changing and harsh environment of alpine lakes

(represented in our study by lake Tovel). Alpine lakes

often experience large environmental changes within

short time scales (Sommaruga, 2001), which may

trigger intraspecific variation and promote changes in

species composition over relatively short evolutionary

time scales (Weckström et al., 2016).

Relevance of abnormal females

Abnormal and deformed females, usually appearing as

a response to toxins, were reported for K. cochlearis

by _Zurek (2006), for Plationus patulus by Rios-Arana

et al. (2007), and for B. calyciflorus by Alvarado-

Flores et al. (2015). While the latter two studies were

performed in the laboratory experimentally exposing

rotifers to toxins, the former study found deformed

spines in K. cochlearis due to exposure to sulfides or

its derivates present in water of a mine impoundment.

To the best of our knowledge, deformed females

without induction of any toxins are not known for K.

cochlearis. These deformed females did not show any

similarity with males. Wesenberg-Lund (1923)

described that any trace of an alimentary canal and

trophi have never been observed in males of K.

cochlearis (previously described as Anurae

cochlearis). Moreover, as described by Wesenberg-

Lund (1923), males of K. cochlearis have a long

flexible penis with two setae at the end, and the penis

cannot be withdrawn. In the present study, the larger

size, the presence of trophi, and the absence of a penis

and setae let us conclude that these specimens were

indeed females, not males. In our study, all three

haplotypes of K. cochlearis produced abnormal

females under standard experimental conditions.

Moreover, the percent of abnormal females in Hap C

was much higher than that for the other two haplo-

types. We cannot exclude the possibility that the

genotype of Hap C had some mutations leading to a

higher number of abnormal females than in the case of

Hap A and Hap B. Most probably, abnormal females

did not reproduce because they were never observed

carrying eggs and their lifespans were shorter than that

of normal females. Therefore, in the long run, the

occurrence of abnormal females would result in fitness

reduction of the population, relative to a population

that produces only fertile females per generation.

We used identical conditions for all cultures and

could not identify any proximate factor triggering the

occurrence of abnormal females. Therefore, we con-

clude that the production of deformed females was due

to intrinsic factors. One possible intrinsic factor is the

accumulation of deleterious mutations (Lynch et al.,

1999). Henry et al. (2011) and Barraclough et al.

(2007) showed that deleterious mutations are more

prevalent in asexually reproducing populations.
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Furthermore, deleterious mutations can accumulate

due to low genetic variance also in small, at times

sexually reproducing populations (Ridley, 2008) such

as in Daphnia (Berg, 2005). Therefore, differences in

the occurrence of abnormal females between the

haplotypes of K. cochlearis may reflect differential

genetic variability and accumulation of mutations

because our cultures have been kept for approximately

2 years in the laboratory. Furthermore, we cannot

exclude the possibility that we accidently selected

haplotypes prone to genetic mutations.

Occurrence of amphoteric females

Amphoteric females can produce eggs both by mitosis

and meiosis, and are thus able to produce both female

and male offspring (King & Snell, 1977). Amphoteric

females have only been described for six rotifer

species (Rico-Martı́nez & Walsh, 2013): Asplanchna

herricki (Mrázek, 1897), A. priodonta (Sudzuki,

1955), Sinantherina socialis (Bogoslavsky, 1958),

Conochiloides coenobasis (Bogoslavsky, 1960), A.

girodi (King & Snell, 1977), and Trochospaera

solstitialis (McCullough & Lee, 1980). Therefore, to

the best of our knowledge, this is the first record on the

appearance of amphoteric females in the genus

Keratella. Only by careful observation of single

females for longer time periods, the existence of

amphoteric females can be confirmed; therefore, it is

possible that also in other genera and species ampho-

teric females occur. In our study, we observed only

one amphoteric female corresponding to 0.35%

females in our population; this is similar ratio to the

ratio reported by King and Snell (1977), who observed

seven amphoteric females of A. girodi among 1386

neonates. However, Rico-Martı́nez and Walsh (2013)

observed three amphoteric females of S. socialis

among only 12 neonates; the exact mechanisms

behind the production of amphoteric females remain

unknown (Rico-Martinez & Welsh, 2013). Therefore,

more observations with different Keratella popula-

tions are required to investigate this phenomenon in

more detail.

In conclusion, this is the first study on K. cochlearis

that combines demography with genetics-based tax-

onomy and investigates demographic differences

between K. cochlearis haplotypes and ESUs. The

three investigated haplotypes showed large differ-

ences in almost all life history traits and demographic

parameters. Furthermore, smaller (and possibly bio-

logically less relevant) differences were recorded

between the two haplotypes from ESU 3, which may

point to their closer relatedness. Thus, our hypothesis

of significant differences in life history parameters

between different haplotypes of K. cochlearis was

confirmed. Although widespread around the world, K.

cochlearis is an understudied species of monogonont

rotifers, probably because of difficulties in culturing.

Our study includes a detailed description of K.

cochlearis culturing methods, which may be useful

for future research on this species. The occurrence of

abnormal and amphoteric females in K. cochlearis

deserves further investigation. Because haplotypes

used in this study were collected from various lakes, it

is difficult to derive any conclusions regarding possi-

ble co-existence of these haplotypes in their natural

environment. Therefore, more research is needed with

more K. cochlearis haplotypes per ESU and ESUs

derived from the same lake and season.
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Discordance between mitochondrial and nuclear phylogenies is being increasingly 
recognized in animals and may confound DNA-based taxonomy. This is especially 
relevant for taxa whose microscopic size often challenges any effort to distinguish 
between cryptic species without the assistance of molecular data. Regarding mitonu-
clear discordance, two strikingly contrasting scenarios have been recently demon-
strated in the monogonont rotifers of the genus Brachionus. While strict mitonuclear 
concordance was observed in the marine B. plicatilis species complex, widespread 
hybridization-driven mitonuclear discordance was revealed in the freshwater B. caly-
ciflorus species complex. Here, we investigated the frequency of occurrence and the 
potential drivers of mitonuclear discordance in three additional freshwater monogon-
ont rotifer taxa, and assessed its potential impact on the reliability of DNA taxonomy 
results based on commonly used single markers. We studied the cryptic species com-
plexes of Keratella cochlearis, Polyarthra dolichoptera and Synchaeta pectinata. 
Phylogenetic reconstructions were based on the mitochondrial barcoding marker 
cytochrome c oxidase subunit I gene and the nuclear internal transcribed spacer 1 
locus, which currently represent the two most typical genetic markers used in rotifer 
DNA taxonomy. Species were delimited according to each marker separately using 
a combination of tree-based coalescent, distance-based and allele-sharing-based ap-
proaches. Mitonuclear discordance was observed in all species complexes with in-
complete lineage sorting and unresolved phylogenetic reconstructions recognized as 
the likely drivers. Evidence from additional sources, such as morphology and ecol-
ogy, is thus advisable for deciding between often contrasting mitochondrial and nu-
clear species scenarios in these organisms.

K E Y W O R D S
biodiversity, coalescent theory, cyclical parthenogenesis, introgression, molecular systematics, 
taxonomic conflict 

1  |   INTRODUCTION

The phylum Rotifera is comprised by at least 2,000 species 
defined by morphological characters (Segers, 2008). These 
morpho-species often harbour a great amount of cryptic 
diversity that is commonly recognized based on DNA tax-
onomy (e.g., Gabaldón, Fontaneto, Carmona, Montero-Pau, 

& Serra, 2017; Kordbacheh, Garbalena, & Walsh, 2017; 
Suatoni, Vicario, Rice, Snell, & Caccone, 2006). However, 
detailed morphological and ecological information is rare at 
the level of cryptic rotifer species as it is more challenging 
to obtain than DNA sequences (Leasi, Tang, De Smet, & 
Fontaneto, 2013; Mills et al., 2017; Papakostas, Michaloudi, 
Triantafyllidis, Kappa, & Abatzopoulos, 2013). Cryptic 
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rotifer species identification thus largely depends on the as-
sumption that phylogenetic reconstructions using selected 
single genetic markers correctly reflect the genealogy of the 
studied taxa.

Generally, the combined use of nuclear and mitochondrial 
markers is advocated to infer robust phylogenetic relationships. 
However, phylogenetic discordance between nuclear and mi-
tochondrial markers, coined mitonuclear discordance (Avise, 
2004; Petit & Excoffier, 2009; Toews & Brelsford, 2012), is 
notorious across different animal phyla and has been suggested 
to confound species delimitations (Degnan & Rosenberg, 2009; 
Mallet, Besansky, & Hahn, 2016; Wielstra & Arntzen, 2014). 
Mitonuclear discordance generally describes different types of 
incongruences in the phylogenies between mitochondrial and 
nuclear markers (Toews & Brelsford, 2012). Furthermore, other 
types of discrepancies such as phylogeographic disparities can 
also be broadly categorized as evidence for mitonuclear dis-
cordance (Toews & Brelsford, 2012). Because DNA taxonomy 
often relies on phylogenies to decide on species boundaries, we 
may also consider differences in the number of species estimates 
between mitochondrial and nuclear markers as mitonuclear dis-
cordance. Whichever the case may be, mitonuclear discordance 
can have profound implications in assessments of the morphol-
ogy or the ecology of the delimited species (Papakostas et al., 
2016; Wielstra & Arntzen, 2014).

Phylogenetic mitonuclear discordance may be attributed 
to several causes including introgressive hybridization, hor-
izontal gene transfer (HGT), androgenesis, incomplete lin-
eage sorting (ILS), and unresolved phylogenetic polytomies. 
Mitochondrial introgression refers to the interspecific move-
ment of mitochondria by hybrid backcrossing and has been 
recognized in several animal taxa as a driver of mitonuclear 
discordance (Petit & Excoffier, 2009; Toews & Brelsford, 
2012). HGT typically involves relatively few genes at a time 
and refers to the movement of genetic material between di-
verged taxa, and as such, it may produce strong phylogenetic 
incongruences (Keeling & Palmer, 2008; Mallet et al., 2016). 
However, HGT is generally considered to be a rare event in 
animals compared to prokaryotes. Androgenesis involves the 
asexual reproduction of the nuclear genome and thus may 
also result in mitonuclear discordance, but, like HGT, its 
role has been suggested to be limited amongst animal taxa 
(Hedtke & Hillis, 2011). ILS is the process by which ances-
tral polymorphism is retained through speciation. ILS may 
obscure phylogenetic signal, cause phylogenetic conflict, and 
produce dissimilar species delimitations between markers 
(Chaudhary, Boussau, Burleigh, & Fernandez-Baca, 2015; 
Degnan & Rosenberg, 2009; Pamilo & Nei, 1988). ILS is 
considered a common source of phylogenetic discrepancy 
for a wide range of animal taxa, including rotifers (Meyer, 
Matschiner, & Salzburger, 2017; Papakostas et al., 2016; 
Rogers & Gibbs, 2014; Suh, Smeds, & Ellegren, 2015). 
Altogether, the challenges posed by mitonuclear discordance 

may be exceptionally crucial for species delimitation and 
identification. This is especially true when it comes to micro-
scopic animals for which DNA sequence data are relatively 
easy to obtain, but morphological and ecological information 
is scarce.

In rotifers, DNA taxonomy is extensively applied using 
single markers, usually the barcoding mitochondrial cyto-
chrome c oxidase subunit 1 (COI) gene or the nuclear in-
ternal transcribed spacer I locus (ITS1) (Fontaneto, 2014). 
Using both these markers, solid evidence for mitonuclear 
phylogenetic concordance was found in the cryptic species 
complex of the marine rotifer Brachionus plicatilis Müller, 
1786 (Gómez, Serra, Carvalho, & Lunt, 2002; Mills et al., 
2017). In striking contrast, using the same markers and mi-
crosatellite genotyping, widespread mitonuclear phyloge-
netic discordance was demonstrated in the cryptic species 
complex of the freshwater rotifer B. calyciflorus Pallas, 1776 
(Papakostas et al., 2016). Morphometric analysis further re-
vealed that such discordance may have profound implications 
at correctly assessing species boundaries and estimating lev-
els of morphological plasticity or stasis (Papakostas et al., 
2016). As such, species inference could be non-trivial if mi-
tonuclear discordance at different levels is a rampant phe-
nomenon in rotifers, particularly as the taxonomy of many 
rotifer taxa is still unclear (Wallace, 2006), and most rotifer 
species show a large phenotypic polymorphism (Segers & 
De Smet, 2008).

Little is known about the potential effect of hybridiza-
tion, HGT or ILS on monogonont rotifer species delimita-
tions, except for the two previously mentioned contrasting 
cases in the genus Brachionus. In B. plicatilis cryptic spe-
cies, species boundaries are clearly maintained by repro-
ductive isolation in the field (Gómez & Serra, 1995), even 
though potentially not under laboratory conditions (Suatoni 
et al., 2006). In B. calyciflorus cryptic species, hybrids 
have been found both in the wild and in laboratory con-
ditions (Papakostas et al., 2016). These completely differ-
ent scenarios in two species complexes of the same genus 
make any inference on other rotifer species or genera rather 
speculative. We can already rule out a taxonomic bias in 
mitonuclear discordance, given that B. calyciflorus and B. 
plicatilis species complexes belong to the same genus. In 
other genera, intermediate morphological forms between 
nominal species, proposed to be the result of introgressive 
hybridization, have been noted in the rotifers Polyarthra sp. 
and Conochilus sp. already several years ago (Pejler, 1956). 
Interspecific gene flow in rotifers was also recently found in 
the asexual bdelloid Adineta vaga (Davis, 1873) (Debortoli 
et al., 2016). For A. vaga, its cause was attributed to HGT, 
as no gene flow is possible for the strictly parthenogenetic 
bdelloid rotifers (Debortoli et al., 2016). Altogether, inves-
tigating the porosity of the rotifer genomes to interspecific 
gene flow is still in its infancy. Thus, the generality and the 
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level of phylogenetic discordance in the DNA taxonomy 
of rotifers between mitochondrial (mtDNA) and nuclear 
(nuDNA) markers are still unclear.

In this study, we explored the prevalence of mitonuclear 
discordance in the rotifer species complexes Keratella co-
chlearis (Gosse, 1851), Polyarthra dolichoptera (Idelson, 
1925) and Synchaeta pectinata (Ehrenberg, 1832). These 
species are positioned at varying phylogenetic distances from 
the Brachionus sp. rotifers within Monogononta, which is 
the largest major rotiferan clade (Sorensen & Giribet, 2006) 
and is characterized by cyclical parthenogenesis. While 
K. cochlearis represents a closely related clade within the 
same family Brachionidae, P. dolichoptera and S. pectinata 
represent clades within the distinct family Synchaetidae. 
Previous studies have delimited species in these complexes 
using solely the COI gene: eight putative species were rec-
ognized in the K. cochlearis complex (Cieplinski, Weisse, & 
Obertegger, 2017), twelve putative species in the P. dolichop-
tera complex (Obertegger, Flaim, & Fontaneto, 2014), and 
five putative species in the S. pectinata complex (Obertegger, 
Fontaneto, & Flaim, 2012). Notably, in the K. cochlearis spe-
cies complex, taxa were partially supported by differences in 
lorica morphology (Cieplinski, et al., 2017), and the pattern 
of occurrence of different taxa of the P. dolichoptera species 
complex was predicted to some degree by environmental 
conditions (Obertegger et al., 2014), thus giving support to 
the COI-based delimitations.

Apart from describing mitonuclear discordance, we inves-
tigated the underlying mechanisms leading to such potential 
discrepancies. We aimed at distinguishing hybridization- 
from ILS-driven mitonuclear discordance as the most plau-
sible explanation for any observed mitonuclear discordance. 
We also considered unresolved polytomies as the most par-
simonious explanation for any discordance. To discriminate 
between hybridization and ILS, we employed a statistical 
framework that uses the multispecies coalescent (Joly, 2012; 
Joly, McLenachan, & Lockhart, 2009). This approach has 
been previously validated in cyclical parthenogenetic roti-
fers by comparing results in hybridizing and non-hybridizing 
Brachionus sp. cryptic species (Papakostas et al., 2016). 
We employed the same mitochondrial and nuclear markers, 
namely COI and ITS1, as used by several studies such as 
Gómez et al. (2002), Papakostas et al. (2016) and Mills et al. 
(2017). Nevertheless, detecting hybridization out of gene ge-
nealogies can be especially challenging (Holder, Anderson, 
& Holloway, 2001). Gene conversion, which is typical for 
multicopy markers like the ITS1, and facultative sexual repro-
duction, like in the studied cyclical parthenogenetic rotifers, 
both have unaccountable effects in the standard multispecies 
coalescent model (Hartfield, Wright, & Agrawal, 2016). In 
conclusion, we discuss the frequency and causes of mitonu-
clear discordance in the monogonont rotifer taxa for which 
data are currently available.

2  |   MATERIALS AND METHODS

2.1  |  DNA extraction and sequencing
To correctly assess mitonuclear discordance, COI and 
ITS1 were sequenced from the same animals. We selected 
animals of K. cochlearis, P. dolichoptera and S. pecti-
nata from previous studies in which we sequenced the 
COI marker and delimited species (Cieplinski et al., 2017; 
Obertegger et al., 2012, 2014). Sequenced specimens came 
from the Trentino–South Tyrol area in northern Italy, which 
is certainly more restricted than the worldwide sampling 
distribution of the B. plicatilis study (Mills et al., 2017). 
Nevertheless, the reported mitonuclear discordance in B. 
calyciflorus was inferred using samples from a comparably 
restricted area in the Netherlands (Papakostas et al., 2016), 
which makes the results of our study relevant. Given that 
we do not provide conclusive evidence on species identity 
but only hypotheses on these taxa, we will refer to delim-
ited species from DNA taxonomy as evolutionary signifi-
cant units of diversity (ESUs), and we will distinguish 
between COI-ESUs and ITS1-ESUs. For K. cochlearis, we 
selected 47 animals that covered 35 COI haplotypes and six 
COI-ESUs out of 57 COI haplotypes and eight COI-ESUs 
described in Cieplinski et al. (2017); for P. dolichoptera, 
the 27 selected animals covered 15 COI haplotypes and 
10 COI-ESUs out of 53 COI haplotypes and 12 COI-ESUs 
described in Obertegger et al. (2014); for S. pectinata, the 
37 selected animals covered 11 COI haplotypes and four 
COI-ESUs out of 16 COI haplotypes and five COI-ESUs 
described in Obertegger et al. (2012). The correspondence 
between COI-ESUs names used here and those of the pre-
vious papers is reported in Tables S1–S3.

To increase the low COI-ESU number in S. pectinata, 
we also sequenced six additional animals for COI and ITS1, 
to obtain a total of 43 animals sequenced for both markers. 
For these samples, DNA was extracted from single live in-
dividuals with 35 μl of Chelex (InstaGene Matrix, Bio-Rad, 
Hercules, CA, USA). A part of the COI region was then 
PCR-amplified using the primers LCO1490 (5′-GGTCAA
CAAATCATAAAGATATTGG-3′) and HCO2198 (5′-TAA 
ACTTCAGGGTGACCAAAAAATCA- 3′) (Folmer, Black, 
Hoeh, Lutz, & Vrijenhoek, 1994). PCR conditions for COI 
comprised initial denaturation at 94°C for 3 min, followed 
by 40 cycles at 94°C for 30 s, 48°C for 1 min and 72°C for 
1 min and a final extension step at 72°C for 7 min.

The complete ITS1 region for all specimens was PCR-
amplified using the primers III (5′-CACACCGCCCGTCGCT
ACTACCGATTG-3′) and VIII (5′-ACCGCCCGTCGCTAC
TACCGATTG-3′) (Palumbi, 2006). PCR conditions for ITS1 
comprised initial denaturation at 98°C for 3 min, followed by 
40 cycles at 98°C for 15 s, 50°C for 20 s and 72°C for 1 min 
and a final extension step at 72°C for 3 min. PCR products 
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were sequenced in-house using the same PCR primer with the 
BigDye Terminator Cycle Sequencing technology (Applied 
Biosystems, Monza, Italy), according to the manufacturer’s 
protocols and recommendations. After purification using the 
Agencourt CleanSEQ kit (Beckman Coulter, Milan, Italy), 
products were run on an Automated Capillary Electrophoresis 
Sequencer 3730XL DNA Analyser (Applied Biosystems).

2.2  |  Phylogenetic reconstructions
Phylogenetic reconstructions and ESU delimitation based on 
COI were obtained from previous studies (Cieplinski et al., 
2017; Obertegger et al., 2012, 2014) on the same individu-
als used here. The additional six new S. pectinata COI se-
quences were aligned using ChromasPro (Technelysium Pty. 
Ltd.) and checked for congruence with the haplotypes of 
Obertegger et al. (2012).

ITS1 sequencing reads were trimmed to only contain the 
ITS1 locus and then aligned using the mlocarna function of 
the LocARNA v.1.8.7 software with default settings (Will, 
Joshi, Hofacker, Stadler, & Backofen, 2012). LocARNA 
aligns non-coding RNAs by considering both sequence and 
secondary structure similarities, which may be especially rel-
evant for correctly aligning ITS1 sequences (Coleman, 2015; 
Wolf, 2015). In the case of ITS1, fitting an outgroup proved 
non-trivial. Thus, as this study aims at ingroup relationships, 
we omitted the use of an outgroup and used the mid-point 
rooting method for visualization purposes as implemented in 
FigTree v.1.4.3 (available from: http://tree.bio.ed.ac.uk/soft-
ware/figtree/—last accessed 1 June 2017).

Upon alignment, unique sequences, hereafter called hap-
lotypes, were recognized per taxon and per marker using the 
program DNAsp v.5 (Librado & Rozas, 2009); indels were 
considered as different characters for ITS1, and thus, differ-
ent haplotypes may have zero uncorrected genetic distances 
between them. Phylogenetic relationships between haplotypes 
were based, for COI, on best-fit models of nucleotide substitu-
tion as used in previous studies on the complexes (Cieplinski 
et al., 2017; Obertegger et al., 2014, 2012), while for ITS1, ac-
cording to the Bayesian information criterion (BIC; Schwarz, 
1978) using jModelTest 2 (Darriba, Taboada, Doallo, & 
Posada, 2012). With jModelTest 2, 88 models and 11 substitu-
tion schemes were tested on maximum-likelihood topologies 
obtained with the subtree pruning and regrafting algorithm 
implemented in PhyML v.3.0 (Guindon et al., 2010).

By applying the appropriate models, we then recon-
structed the phylogenetic relationships of the studied 
haplotypes according to maximum-likelihood (ML) and 
Bayesian inference (BI) approaches. ML phylogenies 
were obtained with the program PhyML 3.0 (Guindon & 
Gascuel, 2003). Node support values in ML phylogenies 
were obtained by the approximate log-likelihood ratio 
test. BI phylogenies were obtained with BEAST v1.8.3 

(Drummond, Suchard, Xie, & Rambaut, 2012) under a log-
normal relaxed (uncorrelated) clock following Monaghan 
et al. (2009) and Wertheim, Sanderson, Worobey, and 
Bjork (2009). BEAST was run for 100 million genera-
tions, sampling every 10,000 generations. Convergence 
was assessed with Tracer v1.6 (Rambaut, Suchard, Xie, 
& Drummond, 2014) by requiring effective sample size 
(ESS) values above 200 for all parameters. TreeAnnotator 
v.1.8.3 (part of the BEAST package) was used to calculate 
node support estimates after discarding the first 20% of 
the trees as burn-in, while keeping the node heights of the 
highest log clade credibility tree.

2.3  |  Species delimitations
In the absence of a single best DNA taxonomy method 
to delimit species (Carstens, Pelletier, Reid, & Satler, 
2013; Dellicour & Flot, 2015; Fontaneto, Flot, & Tang, 
2015), we considered the combined outcome of four de-
limitation methods that corresponded to three kinds of 
approaches (Flot, 2015): (a) the generalized mixed Yule–
coalescent model (GMYC: Pons et al., 2006; Fujisawa & 
Barraclough, 2013) and the Poisson Tree Process (PTP: 
Zhang, Kapli, Pavlidis, & Stamatakis, 2013), which are 
both tree-based approaches; (b) the automatic barcode gap 
discovery method (ABGD: Puillandre, Lambert, Brouillet, 
& Achaz, 2012), which is a distance-based approach; and 
(c) the haploweb method (Flot, Couloux, & Tillier, 2010), 
which is an allele-sharing approach. Haploweb depends on 
heterozygosities, detectable as double peaks in the chro-
matograms, and therefore was applicable only to the ITS1 
datasets. In all ITS1 cases, species were delimited with-
out considering any outgroup, and mid-point rooting was 
used in phylogenetic trees. GMYC was applied according 
to the single threshold method to the summary trees from 
the BEAST runs using the gmyc function of the R pack-
age “splits” (Ezard, Fujisawa, & Barraclough, 2009). PTP 
was applied to the ML trees using the bPTP server with 
default settings (http://species.h-its.org—last accessed 1 
June 2017). ABGD was applied directly to the haplotype 
alignments using the ABGD web server with default set-
tings (http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.
html—last accessed 1 June 2017). Haploweb delimitation 
was performed as described in Flot et al. (2010). Briefly, 
ITS1 haplotypes identified from the chromatographs were 
used to construct a median-joining network with the pro-
gram Network v.5.0.0.1 (available online at http://www.
fluxus-engineering.com/sharenet_rn.htm—last accessed 1 
June 2017). Haplotype heterozygosities were used to de-
termine fields of recombination of putative cryptic species 
status (Doyle, 1995; Flot et al., 2010). Heterozygosities 
were recognized as double peaks in the chromatograms 
using FinchTV 1.4 (http://www.geospiza.com/ftvdlinfo.

http://tree.bio.ed.ac.uk/software/figtree/%e2%80%94last
http://tree.bio.ed.ac.uk/software/figtree/%e2%80%94last
http://species.h-its.org-last
http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html%e2%80%94last
http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html%e2%80%94last
http://www.fluxus-engineering.com/sharenet_rn.htm%e2%80%94last
http://www.fluxus-engineering.com/sharenet_rn.htm%e2%80%94last
http://www.geospiza.com/ftvdlinfo.html
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html). Phasing of heterozygote sequences was trivial as no 
length-variant heterozygotes were observed.

In Obertegger et al. (2014), Polyarthra ESU delimitation 
was performed only based on GMYC. We, thus, here per-
formed also PTP and ABGD ESU delimitations on the same 
data set.

2.4  |  Phylogenetic discordance and tests for 
signatures of hybridization
To infer phylogenetic discordance, our first step was to de-
cide on COI-ESUs and ITS1-ESUs. Given there is currently 
no systematic nomenclature for referring to those delimited 
ESUs, we henceforth referred to COI-ESUs using a sequen-
tial Latin numeric identifier, “I,” “II” etc., and to ITS1-ESUs 
using ordered lowercase Greek letters, “α,” “β,” etc. (Tables 
S1–S3). Because different delimitation methods may yield 
different results, for example, they may oversplit or overlump 
taxa (Dellicour & Flot, 2015), we weighted each method 
equally and considered the most conservative outcome in 
final species delimitation.

To assess the level of mitonuclear discordance in our 
data sets, we considered four steps each corresponding to 
somewhat different types of discordance. First, we assessed 
whether COI-ESUs and ITS1-ESUs obtained from the same 
set of animals did not match. Second, within the previously 
identified cases, we searched for the extreme cases when an-
imals from different COI-ESUs shared even the same ITS1 
sequence. Third, for cases in which fewer COI-ESUs were 
observed compared to ITS1-ESUs, we checked whether the 
COI-ESUs nested within each ITS1-ESU revealed a mono-
phyletic group of COI-ESUs, or fourth, whether the COI-
ESUs nested within an ITS1-ESU formed non-monophyletic 
groups. We did not check for phylogenetic incongruences be-
tween COI and ITS1 within the same taxonomic units, given 
that this would simply be evidence of gene flow within spe-
cies with no effect on DNA taxonomy.

Additionally, to investigate the plausibility of hybridiza-
tion or ILS as drivers of any observed mitonuclear discor-
dance across delimited ESUs, we employed the statistical 
framework of Joly et al. (2009) implemented in JML v.1.3.0 
(Joly, 2012) as described in Papakostas et al. (2016).

3  |   RESULTS

3.1  |  Species delimitations
Upon ITS alignment available at Mendeley https://doi.
org/10.17632/h6b76xj7wh.1), we distinguished 10 ITS1 hap-
lotypes in K. cochlearis, eight ITS1 haplotypes in P. dolichop-
tera, and four ITS1 haplotypes in S. pectinata. Heterozygotes 
with single nucleotide polymorphisms in ITS1 were found 
in 19 specimens in K. cochlearis, whereas no heterozygotes 

were found in P. dolichoptera and S. pectinata. (Table S1) 
The best-fit models of nucleotide substitution employed for 
the phylogenetic reconstructions and in JML tests were for 
COI, HKY + I + G, HKY + I + G and GTR + I + G, and 
for ITS1, HKY, F81 + I and F81 in K. cochlearis, P. doli-
choptera and S. pectinata, respectively. The additional S. 
pectinata sequences belonged to one published haplotype of 
Obertegger et al. (2014), and thus, we finally covered 12 COI 
haplotypes and four COI-ESUs of Obertegger et al. (2014).

For  ITS1 of all three species complexes, the GMYC 
method did not produce delimitations significantly more 
likely than the null model of just one ITS1-ESU. For K. co-
chlearis and S. pectinata, PTP and ABGD indicated the same 
ITS1-ESUs, while for P. dolichoptera, PTP indicated more 
ITS-ESUs than ABGD. Haploweb indicated more ITS1-
ESUs than PTP and ABGD for K. cochlearis and P. dolichop-
tera and the same for S. pectinata (Figures 1–3; Figs. S1–S3). 
We thus investigated phylogenetic discordance in the most 
conservative way possible and focused on two ITS1-ESUs 
for K. cochlearis and S. pectinata and on four ITS1-ESUs for 
P. dolichoptera.

3.2  |  Mitonuclear discordance
COI-based ESUs were more numerous than ITS1-ESUs 
(Figures 1–3). Yet, most of the COI-ESUs were nested within 
ITS1-ESUs monophyletic clades, and thus occurrence of ac-
tual discordance was rather low, due to single cases (Table 1). 
In comparison with previously published results, all the three 
analysed species complexes had intermediate levels of mito-
nuclear discordance, between the cases of B. plicatilis with 
perfect congruence between COI-ESUs and ITS1-ESUs and 
of B. calyciflorus with a high level of discordance (Table 1).

Mitonuclear discordance in delimitation of ESUs was thus 
found in all three species complexes; yet in K. cochlearis, the 
COI-ESUs were nested within the monophyletic ITS1-ESUs 
(Figure 1, Table 1), making the incongruence potentially only 
a matter of different phylogenetic resolution in the two mark-
ers. In P. dolichoptera and S. pectinata, the discrepancy was 
mirrored also in discordance at deeper nodes (Figures 2 and 
3; Table 1). The observed mitonuclear discrepancies were 
tested for signatures of hybridization as a major driving pro-
cess, but all p-values from JML tests were higher than 0.05, 
and thus, hybridization could be ruled out, and incomplete 
lineage sorting was suggested as the most likely cause of the 
phylogenetic discordance between COI and ITS1 in species 
delimitation by DNA taxonomy.

4  |   DISCUSSION

Evidence for mitonuclear discordance was found in all three 
species complexes, even though at different levels. Regarding 

http://www.geospiza.com/ftvdlinfo.html
https://doi.org/10.17632/h6b76xj7wh.1
https://doi.org/10.17632/h6b76xj7wh.1
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the details of DNA taxonomy, the ITS1 phylogeny always 
indicated fewer ESUs than the COI phylogeny in the taxa 
considered; yet, this discrepancy was expected due to lower 
variability in ITS1 than in COI in rotifers (Mills et al., 2017; 
Papakostas et al., 2016). One problem in DNA taxonomy in 
the three species complexes is therefore due to a different 
resolution between COI and ITS1. Such difference is less 
strong than in comparisons between COI and 18S typically in 
microscopic organisms (Kimpel, Gockel, Gerlach, & Bininda 
Emonds, 2015; Tang et al., 2012), although 18S is commonly 
less variable than ITS1 (Mills et al., 2017; Papakostas et al., 

2016; Tang et al., 2012). Thus, the poor performance of 
GMYC based on ITS phylogenies might have been related to 
the low number of ITS1 haplotypes and due to the relatively 
low variability in this marker. It is known that low haplo-
type diversity can hinder GMYC from fitting-in interspecific 
branching rates (Dellicour & Flot, 2015; Talavera, Dinca, & 
Vila, 2013). The same problem may occurred also for hap-
loweb; simulations have showed that oversplitting of ESUs 
with haploweb may happen in the presence of low number of 
heterozygous individuals (Dellicour & Flot, 2015). We sug-
gest that this was the case in our study, especially because 

F I G U R E   1   Tanglegram for Keratella cochlearis of summarized Bayesian phylograms illustrating the correspondence of distinct COI (left) 
with ITS1 (right) haplotype combinations found in samples sequenced to both markers. Dashed lines indicate instances of animals (number of 
animals on the line) from different COI-ESUs sharing the same ITS1: the single outlier individuals are reported (e.g., COI-ESU I h34), sharing the 
same ITS1 haplotype (ITS1-h6) with other individuals that are identified as a different COI-ESU (COI-ESU II). Vertical bars at the side of each tree 
represent COI-ESUs (left) and ITS1-ESUs (right) obtained with each designated species delimitation method. Agreed ESUs are denoted as black 
dots. Node support is shown with values only above 75% bootstrap support and above 0.75 posterior probability. Scale bars show the number of 
expected nucleotide changes per site
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no heterozygotes at all were found in P. dolichoptera and 
S. pectinata, and very few heterozygotes were found in K. 
cochlearis.

Interspecific gene flow could be potentially present in 
rotifers (Debortoli et al., 2016; Papakostas et al., 2016), and 
this could be the cause of the discrepancies between COI-
based and ITS1-based reconstructions, providing ITS1-
ESUs including non-monophyletic groups of COI-ESUs; 
yet, we did not find any clear evidence of hybridization in 
any of the three cryptic species complexes of monogononts, 
and the phylogenetic discordance could be simply driven 

by ILS or by low support values of deeper dichotomies 
(i.e., the discrepancies in multiple COI-ESUs polyphyletic 
within ITS1-ESUs could be resolved considering basal 
dichotomies as polytomies). The missing evidence of hy-
bridization in the three species complexes cannot rule it out 
completely due to the relatively low sample size of our data 
sets to search for rare events. These and other taxa should be 
further investigated in larger sample sizes, and using more 
genetic markers, before we fully exclude the possibility of 
hybridization as a general process in rotifers. Decisions 
on species boundaries should not be limited to molecular 

F I G U R E   2   Tanglegram for Polyarthra dolichoptera of summarized Bayesian phylograms illustrating the correspondence of distinct COI 
(left) with ITS1 (right) haplotype combinations found in samples sequenced to both markers. Dashed lines indicate instances of animals (number of 
animals on the line) from different COI-ESUs sharing the same ITS1. Vertical bars at the side of each tree represent COI-ESUs (left) and ITS1-
ESUs (right) obtained with each designated species delimitation method. Deduced ESUs are denoted as a black dot. Node support is shown with 
values only above 75% bootstrap support and above 0.75 posterior probability. Scale bars show the number of expected nucleotide changes per site
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evidence only. For instance, cryptic species barriers in the 
B. plicatilis complex were also largely supported by inter-
specific mating experiments (Suatoni et al., 2006) as well 
as by morphological and ecological features (Ciros-Pérez, 

Gómez, & Serra, 2001; Hwang, Dahms, Park, & Lee, 2013; 
Michaloudi et al., 2017). It is also known that in the pres-
ence of mitochondrial introgression, species delineation 
can overestimate or underestimate ecological divergence 

F I G U R E   3   Tanglegram for Synchaeta pectinata of summarized Bayesian phylograms illustrating the correspondence of distinct COI (left) 
with ITS1 (right) haplotype combinations found in samples sequenced to both markers. Dashed lines indicate instances of animals (number of 
animals on the line) from different COI-ESUs sharing the same ITS1. Vertical bars at the side of each tree represent COI-ESUs (left) and ITS1-
ESUs (right) obtained with each designated species delimitation method. Agreed ESUs are denoted as black dots. Node support is shown with 
values only above 75% bootstrap support and above 0.75 posterior probability. Scale bars show the number of expected nucleotide changes per site

T A B L E   1   Different levels of mitonuclear discordance between COI-ESUs and ITS1-ESUs

Species complex

ITS1-ESUs 
matching 
COI-ESUs

Different COI-ESUs with the 
same ITS1

COI-ESUs 
monophyletic 
within 
ITS1-ESUs

COI-ESUs non-
monophyletic within 
ITS1-ESUs Source

Brachionus 
calyciflorus

no, fewer ESUs  
in ITS1

several no yes Papakostas 
et al. (2016)

B. plicatilis yes no NA NA Mills et al. 
(2017)

Keratella 
cochlearis

no, fewer ESUs  
in ITS1

ESU I and ESU II with ITS1-h 4, 6 
and 7

yes no this study

Polyarthra 
dolichoptera

no, fewer ESUs  
in ITS1

ESU II and ESU III with ITS1-p1 
ESU IV and ESU V with ITS1-p3 
ESU VI and ESU VII with ITS1-p8

yes (except for the 
case of ESU α)

yes (ESU α with ESU I 
and ESU II to ESU V)

this study

Synchaeta pectinata no, fewer ESUs  
in ITS1

ESU I and ESU II with ITS1-s2 yes (except for the 
case of ESU α)

yes (ESU α with ESU I 
and ESU II)

this study

For the four cases described in this study, refer to Figures 1–3 for symbols and acronyms; NA means not applicable.



130  |      OBERTEGGER et al.

(Wielstra & Arntzen, 2014) or levels of morphological vari-
ation (Papakostas et al., 2016). In the same spirit, mitochon-
drial COI-based B. calyciflorus species delimitation was 
found to be a worse predictor of ecological differentiation 
and morphological variation compared to nuclear ITS1-
based delimitation (Papakostas et al., 2016). We anticipate 
future research to address questions on how hybridization 
and introgression may impact the morphology and the eco
logy of rotifer species, particularly as monogonont rotifers 
provide a suitable model to also investigate results in a com-
parative phylogenetic context.

When multiple loci are investigated in DNA taxon-
omy, delineation of species becomes more accurate even 
though a certain amount of incongruence in delineation 
is expected (Fonseca, Fontaneto, & Di Domenico, 2017). 
Furthermore, polyphyly in mitochondrial and nuclear gene 
trees can further complicate species delimitations, and 
thus, a cross-check by adding morphology and ecology as 
a non-DNA-based source of information is recommended 
(Schlick-Steiner et al., 2010). For K. cochlearis, only COI-
ESU I and COI-ESU VI could be differentiated based on 
morphology (Cieplinski et al., 2017). For S. pectinata, a 
different preference for total phosphorus was found for 
COI-ESUs I and III versus COI-ESU IV (Obertegger et al., 
2012), and for P. dolichoptera, COI-ESU III was consid-
ered a species occurring throughout the year, while COI-
ESU IX a winter/spring species (Obertegger et al., 2014). 
These ecological and morphological differences were re-
flected in the ITS1 phylogenies for P. dolichoptera and for 
K. cochlearis while not for S. pectinata.

In summary, all the plausible scenarios of mitonuclear 
discordance can be observed in the DNA taxonomy of mono-
gonont rotifers, ranging from complete congruence between 
mitochondrial and nuclear markers (as in the case of B. pli-
catilis), through different intermediate levels of discordance, 
mostly due to differential resolution from different markers 
(K. cochlearis, P. dolichoptera, S. pectinata), to complete dis-
cordance (B. calyciflorus). Thus, in rotifers, DNA-based tax-
onomy based on one single locus could still be partially valid, 
but in most cases, additional markers and additional informa-
tion from ecology and morphology with a large sample size 
are advisable. Given the importance of molecular phyloge-
nies for rotifer cryptic species recognition (e.g., Fontaneto 
et al., 2015), we thus consider that any shortcomings asso-
ciated with phylogenetic conflict may be crucial at correctly 
assessing rotifer biodiversity, species boundaries and guiding 
future research.
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INTRODUCTION

since the pioneering work of antonie van leeuwen-
hoek (1632-1723) in developing microscopic biconvex
lenses (Ford, 1982) microscopy has become a fundamen-
tal method for studying microorganisms. Microscopy has
made significant advances, and by techniques such as
scanning electron and transmission electron microscopy
amazing details on morphological structures of organisms
can be obtained. However, these techniques require fixed
samples limiting the observation of live organisms. in
fact, behaviour and morphology of microscopic organ-
isms are currently described by text, schematic represen-
tations, and images. 

Filming live organisms can give new insights into the
hidden life of plankton. in the past decades, a few re-
searchers (gilbert, 1963; Coulon et al., 1983) recorded
rotifers on video cassette support to study behaviour such
as mating, speed, trajectory, and predation. However, this
technique did not find a vast application probably because
of the restricted possibility to edit the filmed material, dif-
ficulty in data sharing with a vast audience, and the phys-
ical space needed for storing the videotapes. recently,
digital single lens reflex (Dslr) digital single-lens
translucent (Dslt), and electronic viewfinder inter-
changeable lens (eVil) cameras have become popular
among amateurs and professionals alike for photo shoot-
ing and filming; however, even though such digital cam-

eras can be easily attached to a microscope (Fig. 1), re-
searchers seldom use these cameras to film microscopic
life and produce a video. a video gives the possibility to
observe repeatedly the same scene by simply freezing or
decelerating certain parts (i.e., frames). this allows ob-
serving in detail the behaviour and morphological struc-
tures of organisms that are generally examined in a fixed
state. in fact, the traditional faunological approach of sam-
pling planktonic organisms followed by fixation is still
the most common one. Fixing plankton such as rotifers
often leads to changing morphology because generally ro-
tifers retract the corona and the foot when exposed to a
preservative, and illoricate species especially often be-
come sphere-like indistinct objects (obertegger et al.,
2006). this morphological distortion also holds true for
male rotifers possessing a weak to no lorica (ricci and
Melone, 1998). 

rotifer males are rarely investigated because they only
appear for a restricted period during the year and popula-
tions mainly reproduce parthenogenetically (Fontaneto
and Desmet, 2015). While males of bdelloidea have
never been observed, rotifers of the subclass Mono-
gononta show sexual dimorphism (Wallace et al., 2006).
rotifer males have: i) a rudimentary digestive apparatus
(Pontin, 1978) because they do not feed; ii) are consider-
ably smaller than females (ricci and Melone, 1998); iii)
have a shorter live-span than females (gilbert, 1963); and
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ABSTRACT
Filming live organisms can give new insights into the hidden life of plankton. Accessibly priced digital cameras are now available

for a large range of users. Here, we demonstrate the technical setup and workflow of using a single-lens reflex (DSLR) camera to film
the behaviour of males of two rotifer species, brachionus angularis Gosse (1851) and keratella cochlearis Gosse (1851), and of the
cladoceran Daphnia magna Straus (1820). Rotifers are cyclical parthenogens that produce males only under certain environmental
conditions. Thus, knowledge on rotifer males is still limited because of their ephemeral nature and because they are often smaller than
females. We filmed males of b. angularis and k. cochlearis with a DSLR camera connected to a compound microscope to better under-
stand their morphology and behaviour in comparison to conspecific females. While written descriptions have their scientific value,
seeing is complementary because everyone can verify what has been described. We made our videos publicly accessible through links
connected to the paper. Our videos are, to our best knowledge, the first on males of b. angularis and k. cochlearis. Furthermore, we
filmed the behavioural response of D. magna to ultraviolet (UV) radiation with a macro lens attached to the DSLR camera. Approaches
like this are valuable tools in environmental teaching. To see live organisms with one’s own eyes may contribute to raising public aware-
ness about the value of water resources and their hidden communities. In summary, filming can be a valuable tool to ignite scientific
discussion, but the videos need an open-access platform where they can be referenced in a topic-related order.
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iv) show a weak to marked resemblance to females
(Fontaneto and DeSmet, 2015). 

Here, we show how to easily use a DSLR camera to ob-
serve live zooplankton. We underline the utility of sharing
videos within the scientific community to display and dis-
cuss the behaviour and morphology of microscopic organ-
isms captured in videos. Open-access platforms, such as the
well-known sites YouTube or DailyMotion may be suitable
to share observations obtained in the laboratory with the sci-
entific and lay community. We focused on rotifer males of
Brachionus angularis and Keratella cochlearis to demon-
strate the technical setup and workflow. Apart from descrip-
tions and drawings of morphology and behaviour of rotifer
males (Gilbert, 1963; Sudzuki, 1964; Pontin, 1978; Dumont
et al., 2006; Fontaneto and DeSmet, 2015), there are, to the
best of our knowledge, very few videos on rotifer males (see
https://www.youtube.com/watch?v=F61cHnGih54). Our
videos, which are accessible on YouTube to a vast audience,
apart being the first for males of these species, also show
details on morphology, swimming, and interaction of males

with females. Furthermore, we filmed the behaviour of
young individuals of Daphnia magna in response to ultra-
violet radiation (UVA; 320-400 nm). Cladocera are known
to avoid UVA radiation by actively swimming in the oppo-
site direction (Hylander et al., 2014). The small experimen-
tal setup we describe can be readily used in environmental
teaching and used for several purposes such as explaining
and promoting scientific research. 

METHODS

Brachionus angularis (Gosse, 1851) and K. cochlearis
(Gosse, 1851) were isolated from Lake Tovel (Italy;
46°15’N 10°56’E) and cultivated in petri dishes with
WMC culture medium (Guillard and Lorenzen, 1972)
under a 14:10 light/dark cycle at 13.5°C. Cultures were
fed weekly with Chlorella vulgaris (Scandinavian Culture
Collection of Algae and Protozoa strain K-1801). 

Males of B. angularis and K. cochlearis, respectively,
were placed together with conspecific females using a

Fig. 1.Microscope with attached DSLR camera connected to the computer via USB cable (a) for live-preview filming; please note that
the camera’s objective lense was removed and that the camera was connected by an extension tube (b) to the microscope. A plastic
adaptor (c) held the extension tube in place.
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glass pipette on an ad hoc swimming chamber (Fig. 2; de-
scription is given below), and their behaviour was filmed
with a Dslr camera (Canon 6D full-frame digital camera
shooting at 25 frames per second) connected to an olym-
pus bX-51 compound microscope. We would like to un-
derline that any less expensive Dslr camera can also be
used. instead of the official olympus camera adapters, an
extension tube set was used to couple the camera to the
microscope (Fig. 1). Here we assembled a 51 mm un-
branded generic extension tube by screwing together three
threaded pieces (7, 14, 28 mm), and fixed the tube to the
microscope by a plastic cylinder (Fig. 1). longer tube
length gives higher resolution but reduces the field diam-
eter. to ease the workflow of filming, we used the Canon
Utility software to connect the camera to a computer to
remotely control the settings and to view in live-preview
mode on the computer monitor (Fig. 1). the first 30 sec-
onds of the video on B. angularis (video 1) were filmed
under a stereomicroscope (Wild Macroscope M420) and
the remaining time under a compound microscope (olym-
pus bX-51) with differential interference contrast (DiC)
light settings to gain adequate contrast. in video 2 (video
2), filmed using the compound microscope, the first 1:06
minutes show a live female of B. angularis in the swim-
ming chamber while afterwards the female is on a glass
slide. Video 3 (video 3) shows K. cochlearis with the
same setup as video 1. When filming the swimming
chamber, we used the 20x/0.5 UPlanFi olympus objective
lens, and, when we used glass slides in combination with
a cover slip we used the 40x/0.75 UPlanFi and the
60x/0.90 UPlanap olympus objective lenses (as indicated
in the video). 

the swimming chamber (Fig. 2) was built according
to Coulon’s et al. (1983) general design. We used a glass
microscope slide as the base of the swimming chamber,
upon which four glass coverslips were glued with cyano-
acrylate glue to form a chamber (2×2×0.25 mm) with a
total volume of approximately 1 mm3 (Fig. 2). the swim-
ming chamber gave the necessary three-dimensional

space for normal swimming behaviour such as making
flips, revolutions and loops, while at the same time kept
the specimen within the field of vision. in filling the
chamber with specimens and culture medium, we tried to
prevent the formation of a water meniscus, which induces
chromatic aberrations and perspective distortions, by
adding as little water as possible; no cover slip was used.
Unfortunately, rotifer males are quite delicate and a com-
promise had to be found between the amount of water
added and survival of males. because our focus was on
filming male – female interactions, an inferior image qual-
ity was acceptable considering we were interested in gross
scale morphological details. in fact, the height of the
chamber was too thick for perfect image quality with re-
spect to the size of the rotifer males and females of K.
cochlearis and B. angularis (maximum length 200 µm),
and thus morphological details were obtained by placing
specimens on a glass slide. 

Daphnia magna neonates (≤24 hours old) were ob-
tained from a laboratory culture and exposed to UVa
(14.6±4.5 W m–2) radiation produced by UVa leDs (3 V,
20 ma). UVa radiation was measured with a Deltaohm-
HD2102.1 radiometer. three UV radiation transparent cu-
vettes were used as experimental chambers (Fig. 3). each
cuvette, with 5 ml of culture medium, received five
neonate Daphnia specimens. the neonates were exposed
to five cycles of 15 seconds (“) of UVa radiation inter-
rupted by 60“ of visible light. the experiment was filmed
(video 4) with a 180 mm macro lens. 

Video editing

several video editors exist; some are released with
proprietary licence (e.g., adobe Premiere, sony Vegas),
whereas others are released as freeware (e.g., light-
works). to produce the final video, we edited the raw ma-
terial using basic operations such as: i) pan/crop to move
and zoom to the point of interest; ii) text overlay to indi-
cate specific morphological characters; iii) time stretches

Fig. 2. swimming chamber; note the alternate displacement of the coverslips.
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to slow down or accelerate un-interesting frames/scenes;
iv) fading controls to obtain a smoother transition between
different scenes; v) brightness/contrast controls to max-
imise the sharpness of the images.

RESULTS AND DISCUSSION

the videos confirmed most of the characters described
in dedicated keys or zoology texts (sudzuki, 1964; Pontin,
1978; koste, 1978; Fontaneto and Desmet, 2015) on ro-
tifer males.

Brachionus angularis (video 1)

the initial sequence (time 4-30”) shows the swim-
ming activity of B. angularis. Males swim considerably
faster (27”) and are smaller (50”) than females. an
overview of the three-dimensional structure of the male
can be seen by observing the rotating male (55”). We ten-
tatively suggest that we can see moving spermatozoa
(1’14”) in the posterior part of the body. according to
sudzuki (1964), the foot in B. angularis is retractable
while Pontin (1978) is not clear about this. our film
clearly shows the ability of a B. angularis male to move
its foot in and out from the delicate lorica (1’30”), par-

tially exposing the non-turgid penis (2’05”). our videos
also offer the opportunity to observe (1’43”) a brownish
spot located over the prostatic gland in posterior dorsal
position in a living male that we link to excretion granules
as described by Fontaneto and De smet (2015). Further-
more, sensory bristles (1’52”) can be seen, which are
probably used in female recognition and sensing of the
environment (schmidt-rhaesa and kükenthal, 2015).

Males and females were put together several times but
we were not able to observe any mating behaviour, except
for one occasion (2’15”). this difficulty in observing mat-
ing behaviour is in contrast to gilbert (1963) and gómez
and serra (1995) who describe an immediate mating be-
tween males and mictic or amictic females. However,
gilbert (1963) states that young males are more successful
than old ones. Probably, we used older males for our film-
ing of male-female interactions or we missed mating be-
cause of the time necessary to adjust the film settings. For
the only interaction between a male and a female (2’15”),
we hypothesise that we observed the last sequence of the
mating behaviour as described in gilbert (1963): the male
drags behind the female. our video shows (2’30”) that the
sagittal plane of the female was not in the same direction
of the movement, indicating that the male was responsible

Fig. 3. Daphnia magna film setup: the three cuvettes are exposed to UVa radiation from above.
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for the swimming direction by dragging behind the fe-
male. Furthermore, the video shows a thread-like structure
linking male and female. gómez and serra (1995) report
on a fine thread between the mating pair, but the nature
of this structure is unclear. in any case, further videos are
needed to give more details on the complex mating be-
haviour of K. cochlearis.

We also filmed a live female of B. angularis (video 2)
in the swimming chamber (1’06”) and afterwards on a
glass slide. in filming the female, we changed the DiC
settings to find the best contrast for certain structures such
as trophi. We kept this sequence in the video to show how
the quality of the video changes accordingly to the shift
of the normaski prism. in the video, we highlighted sev-
eral morphological features otherwise difficult or impos-
sible to observe in a fixed state. the dynamic movements
of the corona, trophi, intestine, and foot might not only
fascinate rotiferologists but also the public. in our video,
not only the foot and the malleate trophi but also the mus-
cles that control the foot can be seen in action. recently,
the fine-scale movement of the trophi has attracted atten-
tion (Hochberg et al., 2015), and videos such as ours can
be the first step to investigate in vivo trophi mechanics.
Furthermore, the three-dimensional structure of the co-
rona and the body of B. angularis can be more easily
grasped by our video than by photos or drawings. towards
the end of the video, we can see the dying rotifer female
that starts to lose the cilia of the corona.

Keratella cochlearis (video 3)

the initial sequence (1-26”) gives an overview on sex-
ual dimorphism in K. cochlearis and shows that, similarly
to B. angularis, males are smaller (approximately 50 µm)
and swim faster than females. as shown in Voigt and koste
(1978), males lack spines and have a permanently exposed
foot (27-50”). interestingly, the body of a K. cochlearis
male lacks the brownish granules seen in B. angularis. the
rotation of the male (44-55”) gave an impression of the
three-dimensional structure. our video clearly shows that
also males of K. cochlearis are able to retract their foot
(1’12”) and possess cilia on the foot (1’40”). noteworthy
is the constriction under the head (1’25”) that might be a
sign of stress under laboratory conditions.

Daphnia magna response to UVA (video 4)

the video starts by showing three cuvettes with D.
magna neonates exposed to normal light. individuals
swam stochastically and occupied the entire space. sub-
sequently, by exposing the upper part of the cuvette to
UVa radiation (1’00”), individuals swam to the bottom
of the cuvette seeking refuge from UVa radiation. after
switching off the UVa radiation (1’15”), the neonates
again showed normal swimming behaviour, reaching the

middle-high portion of the cuvette after a few seconds.
the cycle of switching on and off UVa radiation was then
repeated four times. this simple setup showed in a
straightforward way how zooplankton escapes harmful
UVa radiation. in order to do so, zooplankton must sense
the threat (e.g., see smith and Macagno, 1990), and this
topic can be easily discussed in the classroom or with the
public by using a simple setup as the one shown. 

CONCLUSIONS

the observation of microorganisms is still as fascinat-
ing now as it was at the time of antonie van leeuwen-
hoek, when he was visited both by curious and sceptics
(Ford 1982). Filming microinvertebrates with a Dslr
camera gave us the opportunity to see what others de-
scribed in writing. our methodological setup does not re-
quire specific technical skills and can be easily extended
to filming other microorganisms such as algae or protists.
in any case, the filming of moving organisms poses some
challenges and requires some testing to find the right set-
tings. While schematic drawings and text have their place
in a scientific context, seeing is complementary to de-
scribing. nowadays, we can easily disseminate videos on
open-access platforms such as Youtube, DailyMotion,
vimeo.com or ZippCast that try to serve the preferences
of their users, and thus can reach a vast audience. From a
scientific point of view, it would be advisable to find a
dedicated database such as http://rotifera.hausdernatur.at/
that could review and host subject-specific links to videos
to guarantee their scientific standard and facilitate their
dissemination. a dedicated platform could also encourage
discussion between researchers on their observations.
From a citizen science perspective, filming allows show-
ing an interested public the fascinating life of microorgan-
isms that is generally accessible only to researchers. the
ecological importance of plankton is especially neglected
by the public, and videos such as these could attract at-
tention and raise public awareness.
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