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Aims and structure of the thesis 

Numerous devastating plant diseases are caused by pathogenic oomycetes. For 

example, the oomycetes Plasmopara viticola, which is the causal agent of grapevine 

downy mildew, and Phytophthora infestans, which is the causal agent of potato late 

blight, cause severe damages to economically important crops. In conventional 

agriculture, plant diseases are controlled by frequent applications of chemical 

fungicides, but concerns about the impact of fungicide overuse to the environment and 

human health and the development of resistant populations of these plant pathogens 

have sparked off crescent interest in the developing of alternative approaches in pest 

management. For this reason, more environmental-friendly solutions are being 

increasingly investigated, such as development of new cultivars trough breeding 

programs between resistant and susceptible plant genotypes and the use of biocontrol 

agents. For instance, resistance traits have been identified in wild grapevine species 

(Vitis riparia, V. rupestris, V. amurensis and Muscadinia rotundifolia) and breeding 

programs have been already used in order to combine the quality traits of European 

cultivars (V. vinifera) with the downy mildew resistance traits of wild grapevine species. 

Grapevine genotypes such as BC4, Kober 5BB, SO4 and Solaris are resistant to downy 

mildew and may therefore be used as resources to study resistance mechanisms and to 

develop alternatives to chemical treatments, such as the development of new molecules 

for downy mildew control. In this respect, the accumulation of antimicrobial 

compounds is one of the most important defence mechanisms of resistant grapevine 

genotypes against P. viticola. Among the plant secondary metabolites, volatile organic 

compounds (VOCs) seem to have essential ecological roles in the communication of 

plants with other organisms, but scarce information is available regarding the role of 

grapevine VOCs in defence mechanisms against P. viticola infection. Moreover, 

biocontrol agents are promising alternatives to chemical pesticides and the bacterial 

genus Lysobacter encompasses species with auspicious antagonistic features against 

oomycetes. Although the production of non-volatile antimicrobial compounds by these 

bacteria has been extensively characterised, the chemical composition and the toxic 

properties of the Lysobacter VOCs against P. infestans have been poorly investigated 

until now.  

Motivated by the concept that plant- and microbial-derived VOCs may play a key 

role in plant protection against economically important pathogens, the following 
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objectives have been defined. The specific goals of this PhD project were the detection, 

identification and functional characterization of VOCs produced from susceptible and 

resistant grapevines during the interaction between P. viticola. In particular, the role of 

plant VOCs and their effect as toxic molecules against downy mildew were 

characterised. Moreover, the formation of VOCs by biocontrol Lysobacter spp. was 

investigated in order to identify active molecules to control P. infestans. The final aim 

of this PhD thesis was to better understand the role and relevance of plant- and microbe-

derived VOCs in plant-microbe and microbe-microbe communications in order to 

identify new active molecules from natural origin, which show the potential to control 

plant pathogenic oomycetes. To this end, an interdisciplinary approach has been 

followed. Headspace solid-phase microextraction gas chromatography-mass 

spectrometry (HS-SPME/GC-MS) and proton transfer reaction-time of flight-mass 

spectrometry (PTR-ToF-MS) analysis have been used for the detection, 

annotation/identification of VOCs. Moreover, grapevine plants grown in vitro or under 

greenhouse conditions and Lysobacter type strains grown in vitro have been used. The 

experiments have been carried out in cooperation between the Center for Analytical 

Chemistry, IFA-Tulln (Austria) and the Foundation Edmund Mach (FEM, Italy).  

During my PhD studies, I have contributed to the design of the experiments together 

with my supervisors, Ao. Univ. Prof. Dr. Rainer Schuhmacher (IFA-Tulln) and Dr. 

Michele Perazzolli (FEM). My own responsibility was the preparation and execution of 

all the experiments which have been carried out both at FEM and IFA-Tulln. I 

personally prepared and measured all the samples and I was responsible for the literature 

study, data evaluation, metabolite identification, biological interpretation of results and 

manuscripts writing. I also contributed to the maintenance of the laboratory 

instrumentations. 

My PhD studies were financed by “FIRS>T” (FEM International Research School 

in Trentino) and the PhD was part of the EU projects “CO-FREE” (grant agreement 

28949) and “INNOVA” (grant agreement 324416). This thesis has been carried out 

thanks to the collaboration between the working group “Metabolomics and Bioactive 

Compounds” headed by Ao. Univ. Prof. Dr. Rainer Schuhmacher at the Center for 

Analytical Chemistry of the BOKU Department IFA-Tulln (Austria) and the working 

group “Plant Pathology and Applied Microbiology” headed by Dr. Michele Perazzolli 

at the Edmund Mach Foundation (Italy).  
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The presented thesis is divided in three main parts. PART I describes the background 

of my research topic with a main focus on the state of the art of VOCs emitted by plants 

and soil microorganisms, in particular by Vitis spp. and Lysobacter spp., and the 

associated sampling techniques for the measurement with both HS-SPME/GC-MS and 

PTR-ToF-MS analyses. As a mid- to long-term perspective, the expected outcome of 

my PhD thesis may be helpful for the further development of novel products for 

controlling plant diseases. PART II consists of the publications, which have resulted 

from my PhD studies. For each publication, a brief motivation of the study and personal 

contribution are shortly summarised. PART III gathers my curriculum vitae and a list 

of scientific publications and contributions. 
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Abstract 

Volatile organic compounds (VOCs) play crucial ecological roles in interactions 

among organisms. For example, plant VOCs can act as a powerful deterrent of herbivore 

insects and pathogens or they can act as resistance inducers to stimulate plant defences. 

Likewise, bioactive VOCs can be emitted by beneficial microorganisms and they may 

potentially act as key molecules in the microbe-microbe and plant-microbe 

communications. However, scarce information is available concerning the role of VOCs 

produced by grapevine (Vitis vinifera) plants and beneficial bacteria belonging to the 

Lysobacter genus in defence mechanisms against two important phytopathogenic 

oomycetes, namely Plasmopara viticola and Phytophthora infestans, which are the 

causal agents of grapevine downy mildew and potato late blight, respectively. 

The major objectives of this PhD thesis were the detection, identification and the 

functional characterization of VOCs from Vitis spp. and Lysobacter spp., in order to 

better understand their role in plant-microbe and microbe-microbe communications and 

to identify new active molecules from natural origin to control phytopathogens. In 

particular, VOCs from resistant and susceptible grapevine genotypes were identified 

following P. viticola inoculation and their effect as toxic molecules against downy 

mildew was explored (publications 1 and 2). Likewise, VOCs produced by Lysobacter 

spp. were identified and characterised, in order to identify microbial VOCs able to 

inhibit P. infestans growth (publication 3). 

In order to reach these goals, a headspace solid-phase microextraction gas 

chromatography-mass spectrometry (HS-SPME/GC-MS) and proton transfer reaction 

time of flight-mass spectrometry (PTR-ToF-MS) have been used. Two downy mildew 

resistant hybrids (SO4 and Kober 5BB) and the susceptible V. vinifera cultivar Pinot 

noir were analysed in vitro using PTR-ToF-MS. We found that P. viticola inoculation 

resulted in a significant increase monoterpene and sesquiterpene emission by resistant 

genotypes (SO4 and Kober 5BB) and not by the susceptible cultivar (Vitis vinifera Pinot 

noir; publication 1). Grapevine VOCs were further identified by HS-SPME/GC-MS 

using greenhouse-grown plants. The four resistant genotypes tested (BC4, Kober 5BB, 

SO4 and Solaris) showed significantly increased production of VOCs after P. viticola 

inoculation under greenhouse conditions. Conversely, no significant emission of 

volatile terpenes was detected from Pinot noir plants after P. viticola inoculation, 

suggesting that VOCs of resistant genotypes could play an important role in grapevine 
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resistance against downy mildew. The chemical structures of P. viticola-induced VOCs 

were identified by retention index and the GC-MS spectrum evaluation and VOCs 

potentially involved in the grapevine resistance were selected according to their 

emission profiles. Pure compounds were tested against P. viticola by leaf disk assays 

and different experiments were set up, in order to elucidate the efficacy of pure VOCs 

both in a liquid suspension of P. viticola sporangia and after application via the gas 

phase. These experiments revealed six (2-phenylethanol, β-caryophyllene, β-selinene, 

trans-2-pentenal, 2-ethylfuran, and β-cyclocitral) and four VOCs (2-phenylethanol, 

trans-2-pentenal, 2-ethylfuran, and β-cyclocitral) which impaired downy mildew 

symptoms after direct application of liquid suspension and after treatment with VOC 

enriched air (without direct contact with the leaf tissue), respectively. With these results 

we demonstrated that VOCs produced by resistant grapevine genotypes are related to 

post-infection mechanisms and may contribute to grapevine resistance against P. 

viticola by inhibition of pathogen development (publication 2).  

In the second part of the PhD project, the volatilome of Lysobacter spp. was 

characterised for its inhibitory activity against the soil pathogen P. infestans 

(publication 3). The effect of VOCs emitted by Lysobacter strains was demonstrated in 

vitro by dual-culture assay and profiles were characterised by HS-SPME/GC-MS and 

PTR-ToF-MS analysis. Interestingly, the biocontrol activity and VOC profiles of 

Lysobacter spp. depended on the bacterial growth media. In particular, VOCs with 

inhibitory properties (pyrazines, pyrrole and decanal) were mainly emitted by 

Lysobacter type strains grown on a protein-rich medium, demonstrating the importance 

of the culture medium composition to optimise the biocontrol efficacy of Lysobacter 

spp. against plant pathogens. 

In summary, the presented thesis showed that both analytical chemistry techniques 

used (PTR-ToF-MS and HS-SPME/GC-MS) can be employed synergistically to detect 

and identify VOCs from different biological matrixes such as leaf tissue or bacterial 

cultures. The presented thesis also suggested that VOCs contribute to grapevine 

resistance and they can effectively be used to control economically important plant 

pathogens such as P. viticola. Furthermore, results generated in this work indicate that 

nutrient availability may affect the aggressiveness of Lysobacter spp. in the soil to 

maximise biocontrol efficacy against P. infestans. However, further metabolomic and 

transcriptomic analyses are required to investigate the VOC-mediated plant defence 
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mechanisms and to characterize metabolic changes and VOC emissions of Lysobacter 

spp. grown in soil conditions.  
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Zusammenfassung 

Flüchtige organische Substanzen (VOC´s) spielen eine wichtige Rolle in der 

Interaktion zwischen Lebewesen. VOC´s, die von Pflanzen gebildet werden, können 

beispielsweise als Abwehrstoffe gegen herbivore Insekten und mikrobielle 

Schadorganismen fungieren oder sie können zum Beispiel auch die Pflanzenabwehr 

stimulieren. Biologisch aktive VOC´s können aber nicht nur von Pflanzen sondern auch 

von (nutzbringenden) Mikroorganismen wie zum Beispiel Bakterien der Gattung 

Lysobacter gebildet werden und dabei eine zentrale Rolle in der molekularen 

Kommunikation mit anderen Mikroorganismen oder auch mit Pflanzen spielen. Trotz 

dieser allgemeinen Kenntnis über die weitreichende ökologische Bedeutung flüchtiger 

organischer Substanzen, ist deren genaue Funktion in der Wechselwirkung zwischen 

miteinander in direktem Kontakt stehenden Organismen vielfach unbekannt. So kennt 

man bisher zum Beispiel von den durch Weinreben (Vitis vinifera) in Kontakt mit 

phytopathogenen Eipilzen (Oomyceten) gebildeten und abgesonderten VOC‘s weder 

die genaue chemische Zusammensetzung noch die Bedeutung, welche diese flüchtigen 

Substanzen für die Wechselwirkung mit dem jeweiligen Schadorganismus haben. Im 

Rahmen der vorliegenden Arbeit wurde dieser Aspekt der Wechselwirkung zwischen 

der Weinrebe und dem Verursacher des Falschen Mehltaus (Plasmopara viticola) 

genauer untersucht. 

Die wichtigsten Ziele dieser Dissertation waren der Nachweis, die Identifikation und 

funktionale Charakterisierung der von Pflanzen der Gattung Vitis und Bakterien der 

Gattung Lysobacter um gebildeten VOC’s um deren Rolle in der Kommunikation 

Pflanze-Mikroorganismus bzw. Mikroorganismus-Mikroorganismus besser verstehen 

zu können und um neue aktive Substanzen natürlichen Ursprungs zu finden, die gegen 

phytopathogene Mikroorganismen eingesetzt werden können. Im Rahmen der 

vorgelegten Dissertation konnten zunächst die VOC´s, welche von unterschiedlich 

Mehltau-resistenten Vitis-Arten nach Behandlung mit P. viticola gebildet werden, 

erfolgreich identifiziert werden. Im Anschluss daran wurde die biologische Aktivität 

einiger dieser flüchtigen Substanzen näher charakterisiert und es konnte gezeigt 

werden, dass manche VOC‘s eine toxische Wirkung gegen den Falschen Mehltau 

besitzen (Publikation 1 und 2).  

In gleicher Weise wurden von Lysobacter spp. gebildete VOC´s mit dem Ziel 

identifiziert und charakterisiert, Substanzen zu finden, die das Wachstum des 
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Schaderregers der Kartoffelfäule Phytophthora infestans inhibieren können 

(Publikation 3). 

Um diese Ziele zu erreichen wurden die flüchtigen Substanzen mittels 

Gaschromatographie-Massenspektrometrie (GC-MS) nachgewiesen. Die Analysen der 

Pflanzen- und Pilzproben wurden mit zwei unterschiedlichen Techniken durchgeführt: 

Headspace-Festphasen Mikroextraktion/GC-MS (HS-SPME/GC-MS) und Protonen-

Transfer-Reaktions-Flugzeit-Massenspektrometrie (PTR-ToF-MS). Zunächst wurden 

zwei gegen Falscher Mehltau resistente Vitis Hybride (SO4 und Kober 5BB) und die 

anfällige V. vinifera Sorte Pinot noir in vitro mittels PTR-ToF-MS analysiert auf die 

Bildung flüchtiger Substanzen. Wir fanden, dass die Behandlung der Blätter mit P. 

viticola bei den Pflanzen der resistenten Genotypen (SO4 und Kober 5BB) zu einer 

signifikant erhöhten Emission an Monoterpenen und Sesquiterpenen führte, was bei der 

anfälligen Sorte Vitis vinifera Pinot noir nicht der Fall war (Publikation1). Die unter 

Infektionsbedingungen von den Weinreben gebildeten VOC-Klassen und deren 

Vertreter wurden zusätzlich an Hand von im Glashaus kultivierten Pflanzen mittels HS-

SPME/GC-MS chromatographisch aufgetrennt und auf Basis ihres GC-MS-Spektrums 

und Retententionsindex annotiert / identifiziert. Dabei zeigte sich für die vier getesteten 

resistenten Genotypen (BC4, Kober 5BB, SO4 und Solaris) nach P. viticola Inokulation 

erneut ein signifikanter Anstieg in der Produktion der VOC´s. Im Gegensatz dazu 

konnten bei den Pinot noir Pflanzen nach P. viticola Inokulation keine flüchtigen 

Terpene nachgewiesen werden, was die Vermutung nahe legt, dass die durch die 

resistenten Genotypen gebildeten VOC´s eine wichtige Rolle in der Resistenz von 

Weinreben gegen falschen Mehltau spielen können. Daher wurden die am 

interessantesten erscheinenden, potentiell an der Resistenz der Weinreben beteiligten 

VOC´s ausgewählt und weiter untersucht. Die Reinsubstanzen wurden in verschiedenen 

zum Teil im Rahmen dieser Arbeit entwickelten Testformaten auf ihre Wirkung gegen 

P. viticola getestet. Neben Tests an kreisförmig ausgestanzten Blattstücken wurde die 

Wirksamkeit der reinen VOC´s sowohl direkt gegen in flüssiger Suspension auf der 

Blattoberfläche vorliegende P. viticola Sporenbehälter getestet als auch nach deren 

Einwirkung über die Gasphase untersucht. Mit Hilfe dieser Experimente konnten die 

sechs Substanzen 2-Phenylethanol, β-Caryophyllen, β-Selinen, trans-2-Pentenal, 2-

Ethylfuran, und β-Cyclocitral gefunden werden, welche die Symptome des falschen 

Mehltaus nach direkter Anwendung der flüssigen Suspension vermindern. Vier weitere 

Substanzen (2-Phenylethanol, trans-2-Pentenal, 2-Ethylfuran, und β-Cyclocitral) 
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zeigten eine P. viticola inhibierende Wirkung nach Behandlung mit VOC-

angereicherter Luft ohne direkten Kontakt mit dem Blattmaterial. Unsere Ergebnisse 

legen nahe, dass die von den resistenten Reben-Genotypen gebildeten VOC´s in 

direktem Zusammenhang mit der Pathogenabwehr nach erfolgter Infektion stehen und 

dass diese flüchtigen Substanzen durch Inhibierung der Pathogenentwicklung zur 

Resistenz gegen P. viticola beitragen können (Publikation 2). 

Im zweiten Teil des Dissertationsprojektes wurde das Profil flüchtiger Substanzen 

(Volatilom) von Bakterien der Gattung Lysobacter spp hinsichtlich ihrer 

wachstumshemmenden Wirkung gegen den Schadorganismus Phytophthora infestans 

charakterisiert (Publikation 3). Die Wirksamkeit der durch verschiedene Lysobacter spp 

Stämme abgegebenen VOC´s wurde in vitro mit Hilfe eines dualen Kulturassays 

untersucht und die gebildeten Substanzen wurden mittels nachgewiesen und HS-

SPME/GC-MS und PTR-ToF-MS und hinsichtlich ihrer chemischen Struktur 

charakterisiert. Interessanterweise stellte sich heraus, dass sowohl die 

Biokontrollaktivität als auch die VOC-Profile des Lysobacter spp. von der 

Zusammensetzung des für die Kultivierung von Lysobacter verwendeten 

Wachstumsmediums abhängig ist. Insbesondere hemmende Eigenschaften besitzende 

VOC’s wie beispielsweise Pyrazin, Pyrrol und Decanal wurden hauptsächlich von auf 

proteinreichem Medium kultivierten Lysobacter-Stämmen emittiert. Diese Ergebnisse 

unterstreichen die Bedeutung der Medienzusammensetzung für die Wirksamkeit von 

Lysobacter spp. gegen Pflanzenpathogene. 

Zusammenfassend konnte mit der vorliegenden Arbeit gezeigt werden, dass die 

beiden verwendeten chemisch-analytischen Techniken (PTR-ToF-MS and HS-

SPME/GC-MS) ergänzend eingesetzt werden können um die Bildung von VOC´s 

unterschiedlicher biologischer Systeme wie Pflanzenblätter oder Bakterienkulturen zu 

detektieren und zu identifizieren. Die vorliegende Arbeit legte nahe, dass VOC´s zur 

Resistenz von Weinreben gegen das Pflanzenpathogen P. viticola beitragen und dass 

die biologisch aktiven Substanzen auch verwendet werden können, um wirtschaftlich 

wichtige Pflanzenkrankheiten wie Falscher Mehltau wirkungsvoll zu kontrollieren. 

Weiters zeigen die im Rahmen der der Arbeit durchgeführten Experimente, dass die 

Nährstoffverfügbarkeit die Aggressivität von Lysobacter spp. gegenüber P. infestans 

stark beeinflussen kann. Diese Ergebnisse deuten daher darauf hin, dass durch die 

Beeinflussung der Nährstoffzusammensetzung des Bodens die Biokontroll-

Wirksamkeit dieser Bakterien gegen den bodenbürtigen Schadorganismus P. infestans 
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gezielt verbessert werden kann. Weitere Forschungsarbeiten auf diesem interessanten 

Gebiet werden dazu beitragen die komplexen Wechselwirkungen zwischen lebenden 

Organismen noch besser zu verstehen um in Zukunft verbesserte Methoden im 

biologischen Pflanzenschutz entwickeln zu können. 
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1 Introduction to VOCs 

1.1 Definition of VOCs 

Volatile organic compounds (VOCs) play an important role in nature as messenger 

compounds to transmit information between and within organisms (Herrmann, 2010). 

VOCs are generally based on a hydrocarbon skeleton which may additionally contain 

oxygen, nitrogen or sulphur as part of their molecular structure. Usually, these 

molecules are lipophilic, with low molecular weight (less than 300 Da) and high vapour 

pressure (0.01 kPa or higher at 20°C) that permit them to travel from their point of 

origin through the air, porous soils and liquids to reach their putative biological targets 

(Wenke, et al., 2012, Bitas, et al., 2013, Peñuelas, et al., 2014). Such common chemical 

and physical properties make VOCs ideal signalling molecules for mediating both 

short- and long-distance interactions, playing essential ecological and biological roles 

both above- and belowground (Effmert, et al., 2012, Bitas, et al., 2013). Various type 

of organisms such as microbes, plants, humans and animals emit VOCs that affect their 

environments and each other (Schulz, 2007, Baldwin, 2010, Effmert, et al., 2012).  

 

1.2 Functions of VOCs 

VOCs perform numerous functions, as so-called “semiochemicals”, 

“infochemicals” or “pheromones”. For example, plant VOCs are notably involved in 

the attraction of pollinators (Raguso, 2008, Das, et al., 2013) and seed dispersers, above- 

and below-ground defence against herbivore insects (Unsicker, et al., 2009, Das, et al., 

2013, Heil, 2014), plant-plant and within-plant signalling (Baldwin, et al., 2006, Heil 

& Bueno, 2007, Heil & Karban, 2010), or even, as flavours and fragrances or smell to 

humans (Cappellin, et al., 2013). Likewise, microbial VOCs appear to be involved in 

antagonism, mutualism, intra- and interspecific regulation of cellular and 

developmental processes, and modification of their surrounding environments (Schulz, 

2007, Bitas, et al., 2013, Davis, et al., 2013).  
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1.2.1  Functions of plant VOCs 

Plants release a large variety of VOCs into the surrounding atmosphere, and the 

release of these substances is frequently associated with resistance to a range of biotic 

and abiotic stress factors such as oxidative stresses. Particularly, isoprenoids can 

increase the stability of membrane bilayers and they can interact with oxidants in order 

to protect plants from oxidative damage (Loreto & Velikova, 2001). Plant VOCs can 

also contribute to resistance against other abiotic stress factors, such as high temperature 

and light intensity (Schuh, et al., 1997), and water stress (Sharkey & Loreto, 1993). 

Plant VOCs are also involved in communication both within plants and with other 

organisms, such as animals (Dudareva, et al., 2013). For example, floral volatiles are 

essential to help insects to discriminate among plant species and even among individual 

flowers within a single species. Volatiles are also emitted from roots and they can 

contribute to a belowground defence system by acting as antimicrobial or anti-herbivore 

substances, or by attracting enemies of root-feeding herbivores (Rasmann, et al., 2005). 

Furthermore, floral volatiles attract pollinators and seed disseminators in order to ensure 

reproductive and evolutionary success (Dudareva, et al., 2013). For example, VOCs 

emitted by fruits determine their aroma and taste and thus have a role in attraction of 

animal seed dispersers (Goff & Klee, 2006). Moreover, the roles of plant VOCs in 

response to mechanical wounding and herbivore insect attack have been largely studied 

(Dudareva, et al., 2006, Heil, 2014). However, little information is available concerning 

the role of plant VOCs in defence mechanisms against phytopathogens (Heil, 2014).  

As of today, plant VOCs can act in three possible modes of action against plant 

pathogens. The first mode consists in direct inhibition of microbial growth. For 

example, green leaf volatiles (GLVs) (Nakamura & Hatanaka, 2002) and β-

caryophyllene (Huang, et al., 2012) which directly inhibited bacterial growth. Neri and 

collaborators (Neri, et al., 2007), as well as Fallik and colleagues (Fallik, et al., 1998) 

demonstrated that trans-2-hexenal reduced the germination of Monilinia laxa and 

Botrytis cinerea, respectively. Two monoterpenes such as limonene and β-linalool, 

together with nonanal and methyl jasmonate inhibited the germination of 

Colletotrichum lindemuthianum (Quintana-Rodriguez, et al., 2015). The second mode 

of action of plant VOCs against plant pathogens consists of induced resistance. In this 

case, plant VOCs can contribute to disease reduction on systemic parts of a locally 

attacked plant or in neighbouring plant receivers by stimulating the activation of plant 
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defence reactions (Quintana-Rodriguez, et al., 2015). For example, a mixture of two 

monoterpenes (α-pinene and β-pinene) promoted systemic acquired resistance within 

and between Arabidopsis thaliana plants (Riedlmeier, et al., 2017). Moreover, Bate and 

Rothstein (Bate & Rothstein, 1998) demonstrated that gaseous treatment of trans-2-

hexenal induced defence genes in A. thaliana plants. Finally, the third mode of action 

of plant VOCs against phytopatogens is called associational resistance and it consists 

of the adsorption of VOCs from an emitter plant to the cuticle of a receiver plant 

(Quintana-Rodriguez, et al., 2015). This accumulation of VOCs on plant surfaces could 

serve as a direct defence mechanism against pathogens, as reported for C. 

lindemuthianum (Quintana-Rodriguez, et al., 2015).  

Although the role of plant VOCs has been characterised in various pathosystems, 

scarce information is available concerning the role of VOCs emitted by grapevine. Tasin 

and colleagues (Tasin, et al., 2006) found out that three terpenoids [(E)-β-

caryophyllene, (E)-β-farnesene and (E)-4,8-dimethyl-1,3,7-nonatriene] were released 

by grapes in a specific blend ratio that attracted females of the grapevine moth Lobesia 

botrana. More recently, increasing attention has been paid to the role of VOCs in the 

grapevine/downy mildew pathosystem. For example, the emission of a sesquiterpene 

[(E,E)-α-farnesene] was associated with the resistance induced by a sulphated laminarin 

against downy mildew, indicating a possible role of this sesquiterpene as a biomarker 

of elicitor of induced resistance (Chalal, et al., 2015). Furthermore, the emission of 

benzaldehyde (Chitarrini, et al., 2017) was found to be more pronounced in resistant 

grapevine genotypes following Plasmopara viticola inoculation, indicating its 

involvement as a putative biomarker of downy mildew infection.  

My contribution to this research topic consisted of two papers. In the first paper 

(publication 1), the emission of volatile sesquiterpenes and monoteprenes was found to 

be higher in downy-mildew resistant than in susceptible grapevine genotypes, 

indicating that these VOC classes could contribute to the grapevine resistance against 

downy mildew. In the second paper (publication 2), the role of grapevine VOCs was 

investigated against downy mildew. VOCs including terpenoids, alcohols, aldehydes 

and heterocyclic compounds were found to play a role in defence mechanisms of 

resistant grapevines against P. viticola. 
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1.2.2  Functions of bacterial VOCs 

As of today, more than 1000 bacterial VOCs have been described, although this 

number is an underestimation due to the huge diversity of bacterial environmental 

niches (Audrain, et al., 2015). Bacterial VOCs play an important role in interaction with 

the environment and several studies demonstrated the involvement of bacterial VOCs 

in modulation of bacterial responses to different stress, such as the exposure to 

antibiotics. Trimethylamine, a molecule produced by Escherichia coli and many other 

Gram-negative bacteria in animal intestines and infected tissues, increases resistance to 

tetracycline in E. coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus 

subtilis (Létoffé, et al., 2014). Kim and colleagues (Kim, et al., 2013) found that 2,3-

butanedione and glycoxylic acid emitted by B. subtilis mediated global changes in gene 

expression related to antibiotic resistance in E. coli. Aerial exposure to several bacterial 

VOCs affected negatively E. coli (1-butanol) and P. aeruginosa (indole, 2-butanone, 

and acetoin) motility, while acetoin increased P. aeruginosa motility (Létoffé, et al., 

2014). Furthermore, VOCs emitted from B. subtilis negatively affected the swarming 

of E. coli, Burkholderia glumae, P. aeruginosa and Paenibacillus polymyxa (Kim, et 

al., 2013). Other bacterial VOCs are able to influence the formation of bacterial 

biofilms. For example, indole inhibits biofilm formation in aerially exposed E. coli and 

P. aeruginosa, whereas it stimulates S. aureus biofilm formation (Létoffé, et al., 2014).  

Bacterial VOCs play essential ecological roles acting as regulators of plant growth 

and inducers of plant resistance. For instance, exposure of Arabidopsis thaliana plants 

to VOCs (and in particular to 2,3-butanediol) from B. subtilis and B. amyloliquefaciens 

resulted in significant growth promotion (Ryu, et al., 2003), and B. subtilis emitting 2,3-

butanediol contributes to induced systemic resistance in A. thaliana against Erwinia 

carotovora subsp. carotovora (Ryu, et al., 2004). Bacterial VOCs influence 

differentiation and growth of other bacteria (Kai, et al., 2009, Effmert, et al., 2012, 

Wenke, et al., 2012). For example, the albaflavenone (a volatile sesquiterpene) emitted 

by Streptomyces spp. exhibits antibiotic activity against B. subtilis (Gürtler, et al., 1994) 

and dimethyl disulphide from P. fluorescens and Serratia plymuthica showed 

bacteriostatic activity against the plant pathogens Agrobacterium tumefaciens and A. 

vitis (Dandurishvili, et al., 2011). Numerous studies assessed that bacterial VOCs 

exhibit properties for growth inhibition of fungi responsible for major crop losses in 

agriculture (Weisskopf, 2013). Benzothiazole, citronellol and 1-octen-3-ol produced by 
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P. polymyxa BPM-11 inhibited Rhizoctonia solani and Phytophthora capsici mycelial 

growth (Zhao, et al., 2011). Similarly, 1-undecene from Pseudomonas strains inhibited 

P. infestans mycelium growth (Hunziker, et al., 2015). Likewise, bacteria belonging to 

genus Lysobacter spp. included species which produce non-volatile antimicrobial 

compounds, and for this reason, these bacteria may be potential candidates for 

biological control of crop diseases (Hayward, et al., 2010). However, there is a limited 

number of studied about the possible contribution of Lysobacter spp. VOCs in 

inhibitory activities against plant pathogens. These studies described VOCs emitted by 

L. gummosus KCTC 12132 and L. enzymogenes ISE13 which inhibited mycelial growth 

on nematicidal fungi (Paecilomyces lilacinus and Pochonia chlamydosporia) (Zou, et 

al., 2007) and phytopathogenic microorganisms (Colletotrichum acutatum and P. 

capsici) (Sang, et al., 2011), respectively.  

My personal contribution to this topic was to elucidate the biocontrol potential of 

Lysobacter spp. by studying the volatilome of four Lysobacter type strains grown on a 

sugar-rich and a protein-rich medium. Lysobacter volatilome differed according to the 

growth medium. Moreover, the application via gas phase of volatile pyrazines, pyrrole 

and decanal exhibited strong inhibitory activity against P. infestans (publication 3). 
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2 Biosynthesis of VOCs 

VOCs have diverse chemical structures and  arise from the activities of several 

biochemical pathways (Choudhary, et al., 2008). Biosynthesis of secondary metabolites 

including VOCs depends on the availability of carbon, hydrogen, oxygen, nitrogen and 

sulphur, as well as energy which are both provided by primary metabolism (Dudareva, 

et al., 2013). In this thesis, plant and bacterial VOCs have been studied, thus 

biosynthesis of these organisms will be presented in the following chapters in more 

detail. 

 

2.1 Biosynthesis of plant VOCs 

Plants are perhaps the most prolific producers of VOCs (Loreto, et al., 2008, 

Baldwin, 2010). Plant VOCs are produced by a range of physiological processes in 

many different plant tissues (Peñuelas & Llusià, 2004), using as much as 20% of their 

fixed CO2 (Baldwin, 2010). Based on their structure and biosynthetic pathways, plant 

VOCs can be divided into four major classes such as terpenoids, 

phenylpropanoids/benzenoids, fatty acid derivatives and amino acid derivatives (Figure 

1) (Heil & Bueno, 2007, Heil & Karban, 2010). Biosynthesis of a wide array of VOCs 

relies on a few major biochemical pathways, and various forms of enzymatic 

modifications such as hydroxylations, acetylations and methylations are also included, 

resulting in enhanced volatility or changed olfactory properties at the final step of plant 

VOCs formation (Dudareva, et al., 2004) 
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Figure 1. The four main biosynthetic pathways (showed in bold) leading the emission of plant VOCs. 
Precursors of plant VOCs originate from primary metabolism (showed in red). Dotted arrows indicate 
multiple enzymatic reactions. Abbreviations: DAHP, 3-deoxy-D-arabinoheptulosonate-7 phosphate; 
DMAPP, dimethylallyl pyrophosphate; Ery4P, erythrose 4-phosphate; FPP, farnesyl pyrophosphate; 
GGPP, geranylgeranyl pyrophosphate; GPP, geranyl pyrophosphate; IPP, isopentenyl pyrophosphate; 
NPP, neryl pyrophosphate; PEP, phosphoenolpyruvate; Phe, phenylalanine. 

 

2.1.1  Terpenoids 

Terpenoids compose the largest class of plant secondary metabolites, including many 

VOCs (Dudareva, et al., 2006, Dudareva, et al., 2013). All terpenoids originate from 

two C5-isoprene building units as precursors: isopentenyl diphosphate (IPP) and its 

isomer dimethylallyl diphosphate (DMAPP). Both IPP and DMAPP are substrates for 

short-chain prentyltransferases, which produce prenyl diphosphate precursors [geranyl 

diphosphate (GPP), farnesyl diphosphate (FPP) and geranylgeranyl diphosphate 

(GGPP)] for various terpene cyclases and terpene synthases enzymes (Dudareva, et al., 

2013).  

In plants, two independent and compartmentally separated pathways are 

responsible for the formation of IPP and DMAPP (Dudareva, et al., 2013). These are 

the mevalonic acid (MVA) and the methylerythritol phosphate (MEP) pathways.  

The subcellular localization of the MVA pathway is still unclear, however, the 

MVA pathway produces only IPP and generates only sesquiterpenes (C15) (Dudareva, 
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et al., 2013), and it consists in six enzymatic reactions starting from a condensation of 

three molecules of acetyl-CoA to 3-hydroxy-3-methylglutaryl-CoA, which forms MVA 

and IPP, as final product (Lange, et al., 2000).   

By contrast, the MEP pathway is exclusively plastidic (Hsieh, et al., 2008). This 

pathway provides both IPP and DMAPP precursors and generates hemiterpenes (C5), 

monoterpenes (C10), and diterpenes (C20). The MEP pathway involves seven enzymatic 

steps starting from the condensation of D-glyceraldehyde 3-phosphate (GAP) and 

Pyruvate to produce 1-deoxy-D-xylulose 5-phosphate which forms MEP and thus IPP 

and DMAPP as final products (Dudareva, et al., 2013).  

Both C5-isoprene building precursors (IPP and DMAPP), but also GPP and FPP 

facilitate the metabolic crosstalk between the compartmentally separated MVA and 

MEP pathways by acting as connecting metabolites(Schuhr, et al., 2003), although this 

metabolic crosstalk is mediated by an undefined metabolite transporter (Bick & Lange, 

2003). 

The huge diversity of volatile terpenoids in plants is due to the action of terpene 

synthases (TPSs) which can synthesise multiple products from a single prenyl 

diphosphate substrate (Degenhardt, et al., 2009), while other TPSs are able to accept 

more than one substrate (Tholl, et al., 2006).  

 

2.1.2  Phenylpropanoids/benzenoids  

Phenylpropanoids and benzenoid compounds constitute the second largest class of 

plant VOCs (Knudsen, et al., 2006), however, little is known about the biosynthesis of 

these class of compounds (Dudareva, et al., 2006, Dudareva, et al., 2013). This class of 

compounds originates from the aromatic amino acid phenylalanine in plastids through 

the shikimate/phenylalanine biosynthetic pathways (Maeda & Dudareva, 2012) and 

further converted to volatile compounds outside this organelle (Dudareva, et al., 2013). 

The prior reaction involved in the shikimate pathway starts with the synthesis of 3-

deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) through the DAHP synthase 

from the precursors phosphoenolpyruvate and D-erythrose 4-phosphate (Tzin, et al., 

2012). DAHP is further converted to phenylalanine through the shikimic acid pathway. 

Outside the plastids, the first step of Phe-biotransformation in the majority of 

phenylpropanoids/benzenoids is catalysed by L-phenylalanine ammonia-lyase which 

deaminates L-phenylalanine to trans-cinnamic acid (Dudareva, et al., 2013). Then, a 
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variety of hydroxycinnamic acids, aldehydes and alcohols are formed via a series of 

transformations including hydroxylation, methylation and decarboxylation reactions. 

For example, benzenoid compounds originate from trans-cinnamic acid as a side branch 

of the phenylpropanoid pathway via a CoA-dependent-β-oxidative pathway, a CoA-

independent-non-β-oxidative pathway, or via a combination of both. The first one is 

analogous to the β-oxidation of fatty acids and proceeds through the formation of four 

CoA-ester intermediates, while the second pathway involves hydrogenation of the 

trans-cinnamic acid to 3-hydroxy-3-phenylpropionic acid and side change degradation 

via a reverse aldol reaction leading to benzaldehyde, which is oxidised to benzoic acid 

by an NADP+-dependent aldehyde dehydrogenase (Dudareva, et al., 2006). Conversely, 

the biosynthesis of volatile phenylpropanoids (C6-C2) such as 2-phenylethanol, occurs 

via phenylacetaldehyde, and is in competition with trans-cinnamic acid synthesis for 

phenylalanine utilisation (Boatright, et al., 2004).  

 

2.1.3  Volatile fatty acid derivatives 

Biosynthesis of volatile fatty acid derivatives, such as C6 and C9 aldehydes or methyl 

jasmonate, relies on a plastidic pool of acetyl-CoA generated from pyruvate, the final 

product of glycolysis (Dudareva, et al., 2013). Volatile fatty acid derivatives arise from 

C18 unsaturated fatty acids, linoleic or linolenic acids (Dudareva, et al., 2013). In the 

lipoxygenase pathway, linoleic and linolenic acids undergo deoxygenation in a reaction 

catalysed by lipoxygenases (LOX) (Feussner & Wasternack, 2002). These enzymes can 

catalyse the oxygenation of polyenoic fatty acids at C9 or C13 positions (9-LOX and 13-

LOX enzymes), yielding two groups of compounds, 9-hydroperoxy and 13-

hydroperoxy intermediates. 9(S)-hydroperoxy linolenic acid and 13(S)-hydroperoxy 

linolenic acid  can be further metabolised by an array of enzymes such as allene oxide 

synthase and 13-hydroperoxyde lyase which represent the two branches of the 

lipoxygenase pathway yielding methyl jasmonate and green leaf volatiles such as 

hexanal, respectively (Song, et al., 2005, Dudareva, et al., 2013). Other enzymes such 

as alcohol dehydrogenase can also metabolise the 9(S)-hydroperoxy linolenic acid 

intermediate in other GLVs such as 3-nonenol (Dudareva, et al., 2013).  
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2.1.4  Non-aromatic amino acid derivatives 

Plant VOCs can also be synthesised from non-aromatic amino acids such as 

alanine, valine, leucine, isoleucine and methionine or their intermediates and may also 

contain nitrogen and sulphur (Dudareva, et al., 2006). These amino acid volatiles are 

highly abundant in floral scents and fruit aromas (Knudsen, et al., 2006). Similarly to 

yeast or bacteria (Tavaria, et al., Dickinson, et al., 2000), biosynthesis of non-aromatic 

amino acid plant volatiles starts from deamination or transamination, leading to the 

formation of the corresponding α–ketoacid (Dudareva, et al., 2006). These α–ketoacids 

can be further subjected to other enzymatic reactions such as reduction or esterification 

leading to the formation of volatile aldehydes, alcohols, or esters, respectively.  

 

2.2 Biosynthesis of bacterial VOCs 

Bacteria produce and emit highly diverse inorganic and organic volatile compounds, 

and they use different catabolic pathways to synthesize VOCs such as glycolysis, 

proteolysis and lipolysis (Peñuelas & Llusià, 2004, Schulz, 2007). Biosynthesis of the 

wide array of different bacterial VOCs belongs to a few primary metabolic pathways, 

and these biosynthetic pathways are aerobic heterotrophic carbon metabolism, 

fermentation, amino acid degradation, terpenoid biosynthesis and sulphur reduction 

(Peñuelas & Llusià, 2004). Several microbial VOCs are released as intermediate or end 

products of fermentative and respiratory (aerobic or anaerobic) microbial metabolic 

pathways (Peñuelas & Llusià, 2004).  

Bacterial VOCs consist of inorganic and organic VOCs (Effmert, et al., 2012) and they 

include several classes such as fatty acid derivatives, aromatic compounds, nitrogen-

containing compounds, volatile sulphur compounds, terpenoids and other compounds 

(Schulz, 2007).  

 

2.2.1  Inorganic compounds 

Carbon dioxide is the major inorganic volatile produced by all heterotrophic living 

organisms (Effmert, et al., 2012), but bacteria also emit nitric oxide synthesised by nitric 

oxide synthases from L-arginine (Mattila & Thomas, 2014), hydrogen sulphide 

produced by degradation of L-cysteine, ammonia which is produced from the 

metabolism of peptide and amino acid (L-aspartate catabolism) (Bernier, et al., 2011), 
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or hydrogen cyanide that is catalysed by hydrogen cyanide synthase (Audrain, et al., 

2015).  

 

2.2.2  Fatty acid derivatives 

Linear-chained hydrocarbons derive from products of the fatty acid biosynthetic 

pathway via elongation-decarboxylation or head-to-head condensation pathways 

(Ladygina, et al., 2006). Decarboxylation of fatty acids is responsible of the formation 

of methyl ketones, while long–chain aliphatic alcohols are produced through β- or α-

oxidation of fatty acid derivatives (Audrain, et al., 2015). Acids are the products of 

anaerobic metabolism and they are usually formed during bacterial fermentation of 

carbohydrates (Audrain, et al., 2015). Acids are less abundant than ketones and alcohols 

in bacteria volatilome and mainly consist of acetic, propionic and butyric acids (Schulz, 

2007).  

 

2.2.3  Aromatic compounds 

Aromatic compounds are less common in bacteria than in plants, and are generated 

by the shikimate pathway or by degradation of the aromatic acids L-phenylalanine and 

L-tyrosine (Schulz, 2007, Peñuelas, et al., 2014).  

 

2.2.4  Nitrogen-containing compounds 

The simplest nitrogen-containing compound is ammonia although it is very difficult 

to detect because of its high volatility and low molecular mass (Schulz, 2007). Pyrazines 

appear to constitute one of the major classes of volatiles released by bacteria and, due 

to their strong odour, they are used as important flavouring compounds (Peñuelas, et 

al., 2014). The biosynthesis of pyrazines is not well established, although methyl and 

ethyl pyrazines seem to be synthesised not enzymatically via dihydropyrazines, while 

higher alkyl pyrazines require enzymatic activity and amino acids as precursors (Schulz, 

2007). Indole production has been described in 85 bacterial species (Audrain, et al., 

2015) and is synthesised enzymatically from amino acids (i.e. tryptophan) and other 

compounds found widely in nature (Davis, et al., 2013).  
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2.2.5  Volatile sulphur compounds 

The biogenesis of sulphur volatile compounds play an important role in the global 

biogeochemical cycle of sulphur (Peñuelas, et al., 2014). This class of compounds 

originates from the degradation of L-methionine either by direct cleavage of the amino 

acid by L-methionine gamma-lyase or by its transamination to alpha-keto-gamma-

methylbutyric acid and subsequent reductive demethylations (Peñuelas, et al., 2014).  

 

2.2.6  Terpenoids 

Terpenoids are biosynthetically derived from the universal terpene building blocks 

dimethyallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP), which can 

arise either on the mevalonate pathway or on the deoxyxylulose phosphate pathway 

(Schulz, 2007). Only monoterpenes (C10) and sesquiterpenes (C15) and their 

derivatives or degradation products have been reported in bacterial volatile blends 

(Schulz, 2007). 

 

2.2.7  Other compounds 

Several other compounds are produced by bacteria. Halogenated compounds, 

volatile selenium and tellurium compounds and volatiles derived from other metal or 

metalloids are part of this class (Schulz, 2007). Moreover, iodine compounds are 

important in the global biochemical cycle of iodine, although little information is 

available about the production of volatile iodine compounds by bacteria (Schulz, 2007). 

The formation of selenium and tellurium containing volatiles by bacteria and the role 

of other metals or metalloid containing volatiles is poorly understood (Schulz, 2007). 

 

2.3 Mechanisms of VOCs emission 

 Besides VOCs biosynthesis mechanisms, in the past decade, increasing attention 

has been paid to understand VOCs regulation, especially concerning the plant system 

(Dudareva, et al., 2013). Indeed, VOCs production and release are finely regulated and 

depend on biotic and abiotic factors. The biosynthesis of VOCs in nongreen tissues, 

such as flowers or roots, occurs predominantly in epidermal cells. In vegetative organs, 

VOCs are often synthesised in the secretory cells of glandular trichomes on the leaf 
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surface (Wang, et al., 2008) and stored until mechanical disruption (Iijima, et al., 2004). 

If trichomes are not involved in vegetative VOC production, volatiles are produced in 

mesophyll cells (Köllner, et al., 2013) and released through stomata (Kesselmeier & 

Staudt, 1999), mechanical disruption or emission through cuticle (Niinemets, et al., 

2002). However, while mechanical disruption provides releasing of VOCs directly to 

the atmosphere, it remains unclear how VOCs cross plasma membrane, hydrophilic cell 

walls and, in some cases, the cuticle to exit spontaneously the cells (Widhalm, et al., 

2015). In the last decade, it is largely presumed that VOCs passively diffuse from cells 

to the environment, however, Widhalm and collaborators (Widhalm, et al., 2015) 

demonstrated, by Fick’s law that VOCs emission rates would need toxic levels to 

passively diffuse in cellular membranes and can increase membrane permeability, 

which leads to disruption of proton and ion gradients that are responsible for the 

homeostasis of the cells (Sikkema, et al., 1995). Moreover, the VOCs are primarily 

nonpolar compounds, making spontaneous diffusion into aqueous cellular 

compartments very slow. For these reasons, alternative emission paths (Figure 2) have 

been proposed by Widhalm and collaborators (Widhalm, et al., 2015).  

 Regarding VOCs synthesised in the cytosol, they can favourably reach the plasma 

membrane via endoplasmic reticulum (ER) membrane or via vesicle trafficking 

processes associated with the ER, Golgi and/or vacuole. Regarding VOC synthesised in 

other organelles such as terpenes in plastids, volatiles could be delivered to the ER via 

interorganellar membrane hemi-diffusion. Alternatively, VOCs trafficking to the 

plasma membrane could be mediated by soluble carrier proteins with hydrophobic 

pockets.  

 From the plasma membrane to the apoplast, VOCs have to cross a lipophilic layer 

and reach an aqueous environment. One solution could be the possibility of plasma 

membrane-localised transporters involved in the export of VOCs out of the cell, and 

recently, extracellular lipid transfer proteins (LTPs) have been suggested to transport 

VOCs from the plasma membrane to neighbouring cells, intercellular spaces or the 

cuticle, which imposes the largest resistance to VOCs emission and needs further 

investigations. 
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Figure 2. Proposed models for VOC trafficking in plant cells. Figure from (Widhalm, et al., 2015). VOCs 
may diffuse through the cell membrane or by unknown mechanisms similar to other hydrophobic 
compounds. Possible vesicles can transport the VOCs through the cytosol, and lipid transfer proteins 
(LTPs) or other types of carrier proteins may contribute to guide VOCs through the plastid stroma, 
cytosol, and/or cell wall. Abbreviation: GPI, glycosylphosphatidylinositol. 
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3 Measurement of VOCs 

The volatile fraction of a biological sample is generally defined “as a mixture of 

volatiles that can be sampled because of their ability to vaporise spontaneously and/or 

under suitable conditions or by employing appropriate techniques” (Herrmann, 2010). 

The most important task in the measurement of VOCs is to detect, identify and, when 

necessary, quantify the volatile component(s) that are marker(s) of the investigated 

biological phenomenon (Hayward, et al., 2010). This requires analytical methods and 

technologies to be adopted that are sensitive enough to detect variations in the 

composition of volatiles, and to enable the dynamics of the reaction of a living organism 

to be monitored when its metabolism is altered (Hayward, et al., 2010). Advances on 

automated analysis of VOCs have allowed the monitoring of fast changes in VOC 

emissions and facilitated in vivo studies of VOC biosynthesis (Tholl, et al., 2006). 

Indeed, automated VOC analysis systems have become indispensable for monitoring 

fast changes of volatile profiles during development of a biological system under 

investigation or under experimentally controlled stress conditions (Aylor, et al., 2001). 

The approach to the measurement of VOCs needs several important steps in order to 

obtain the highest level of information from the samples investigated. These steps 

consist of sample handling, sample extraction, VOCs determination (which includes 

VOCs separation and detection), VOCs annotation/identification, and data analysis.  

 

3.1 Sample handling 

One of the most important parts of VOCs measurement consists of a correct sample 

handling. After a thorough analysis of the biological experiment, samples must be taken 

and processed for the VOCs measurement. VOCs can be sampled by various techniques 

grouped in two main categories. The first category of VOCs sampling encompasses the 

non-invasive methods which allow the investigation of the living organisms without 

influencing their biological system (i.e. the bacterial cultures or in vitro plantlets used 

in this thesis). The second category of VOCs sampling includes the invasive procedures 

which permit sampling of parts of the biological sample for investigation of the 

desirable target (i.e. foliar VOCs, as described in this thesis). The first step of the latter 

procedures is quenching biological samples in order to stop instantly the metabolism by 

inhibiting the endogenous enzymes upon harvesting. To be useful and effective, 
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quenching must be very fast in order to avoid any metabolic change of the sample. 

During sampling, the damage of cells must be minimised and the technique itself must 

not lead to any change in terms of chemical properties. After quenching, samples shall 

be usable for further sample treatments. There are two main quenching techniques 

reported in literature and they are based on rapid modification of sample conditions, 

usually pH or temperature (Álvarez-Sánchez, et al., 2010). In this thesis, both sampling 

categories have been used. As in the case of grapevine leaves from greenhouse 

(publication 2), an invasive method has been used and grapevine samples have 

efficiently been quenched in liquid nitrogen in order to literally freeze the metabolic 

state of the leaves at the time point of sampling. This is the most simple and rapid 

procedure that can be applied after harvesting (Kim & Verpoorte, 2010). Conversely, 

the in vitro grapevine plants (publication 1) were as well as bacterial cultures reported 

in publication 3 sampled in a non-invasive way.  

Once the quenching procedure is successfully carried out, samples shall be analysed 

as fast as possible or shall be stored properly until their preparation and analysis. For 

example, as reported for publication 2, after quenching, samples were immediately 

stored at -80°C in order to avoid any degradation of VOCs. Conversely, no storage has 

been used for publications 1 and 3 because we measured VOCs from living plant and 

bacteria, respectively. Sample quenching is generally followed by sample preparation 

which is defined as all sample manipulation steps between quenching and instrumental 

analysis (Weingart, et al., 2013). Freeze-drying is frequently used as further sample 

stabilization measure in metabolomics, but was not used here because the aim of this 

thesis is the investigation of VOCs and freeze-drying could lead to a high loss of VOCs 

(Aprea, et al., 2011). Sample homogenisation is the next sample preparation step prior 

to extraction. Homogenisation can be done with mortar and pestle, vibration mill, 

ultrasonic bath of thermomixer and when possible, this step should be performed under 

cooled conditions in order to not only prevent sample defrosting (Álvarez-Sánchez, et 

al., 2010), but also to avoid loss of VOCs. As reported in publication 2, leaf samples 

were homogenised with a ball mill using both milling containers and stainless balls 

previously cooled in liquid nitrogen. Immediately after the homogenisation step, 

samples were weighed into 20 mL headspace vials and analysed.  
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3.2 Extraction of VOCs 

In the past decade, volatile analysis has improved by the design of relatively 

inexpensive but sensitive bench-top instruments for GC-MS (Tholl, et al., 2006). The 

development of headspace techniques for collection of volatiles has significantly 

improved our understanding of the biosynthesis and ecology of plant and bacterial 

VOCs (Tholl, et al., 2006). Methodology commonly used for airborne volatile analysis 

is based on headspace analysis followed by gas chromatography (GC) analysis (Farag, 

et al., 2013). No single analytical method can comprehensively survey the entire set of 

volatile metabolites of a living organism i.e., plants or bacteria (Farag, et al., 2013). The 

approach to the analysis of VOCs has radically changed during the last 15-20 years and 

the number of techniques available to extract VOCs is quite large. Examples include 

distillation techniques such as vacuum-, dry-, steam- or hydro-distillation (Li, et al., 

2014), highly effective solvent extraction techniques such as ultrasound (Alissandrakis, 

et al., 2003), microwave-assisted extraction hydrodistillation (MA-HD) (Ferhat, et al., 

2006), or conventional extraction with organic solvents (liquid-liquid extraction, LLE) 

(Castro, et al., 2004), pressurised solvent extraction (PSE), or supercritical fluid 

extraction (SFE) (Bicchi, et al., 1999). However, most of these approaches are typically 

time-consuming and labour-intensive, use significant amounts of environmentally 

unfriendly solvents, and involve multi-step procedures, which can lead to analyte losses 

and a reduction of sensitivity (Mendes, et al., 2012). In most cases, the search of 

adequate extraction techniques that minimise the use of harmful organic solvents or 

even use solvent-free procedures that could be easily implemented, has attracted the 

attention of many scientists in the last years. Nowadays, VOCs are usually extracted by 

headspace techniques which give a more realistic picture of the volatile profile emitted 

by a biological sample (Tholl, et al., 2006). According to the definition of Kolb and 

Ettre, (Kolb & Ettre, 1997), headspace sampling is a solvent free technique aimed at 

sampling the gaseous of vapour phase in equilibrium (or not) with a solid or liquid 

matrix in order to characterise its composition. Traditionally, headspace sampling 

operates either in dynamic or static mode. Headspace techniques are based on either the 

static or dynamic accumulation of volatiles on polymers operating in absorption and/or 

adsorption modes, or on solvents (Bicchi, et al., 1999). 

Dynamic headspace sampling represents the most frequently used technique in plant 

volatile analysis (Tholl, et al., 2006), and it consists of a continuous gas stream flowing 
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through the sample container as a carrier gas, which increases the headspace sample 

size. Dynamic headspace extraction can be carried out in a closed (i.e. closed-loop 

stripping) or open (i.e. purge and trap) system. VOCs are trapped and enriched on an 

adsorbing matrix and further eluted from the trap by organic solvents or the loaded trap 

is directly connected to the carrier gas stream of the gas chromatograph (GC), thus 

VOCs are desorbed onto the GC column by rapidly heating the trap to high temperatures 

(thermodesorption). Although dynamic headspace techniques are highly sensitive, 

impurities from the incoming air may lead to artifacts (Tholl, et al., 2006). 

In static headspace, samples are enclosed in a container (i.e. headspace vials) and 

VOCs are enriched on the adsorbing matrix without continuous gas stream as for 

dynamics techniques. After a period of time for equilibration, the headspace is sampled 

either  by the withdrawal of a defined-volume aliquot from the headspace (i.e. by sample 

loop or gas-tight syringe) or the introduction of an adsorptive/absorptive material 

attached to the sampling device (Weingart, et al., 2013). An important progress in static 

headspace technique was the development of solid phase microextraction (SPME).  

In the following paragraphs two headspace sampling techniques used in the 

publications reported in this thesis will be described in more details. Solid phase 

microextraction, and on-line sampling.  

 

3.2.1  Headspace solid phase microextraction (HS-SPME) 

Most of the sample-preparation techniques currently available rely on trapping the 

analytes of interest from the sample (gas, liquid or solid) by an adsorbent material 

(Baltussen, et al., 2002). The first headspace technique to appear was HS-SPME 

introduced by Zhang and Pawliszyn in 1993 (Zhang & Pawliszyn, 1993). They showed 

that analyte recovery from headspace by a fibre depends on two closely-related but 

distinct equilibria: the first is the matrix/headspace equilibrium responsible for the 

headspace composition, the second is the headspace/polymeric fibre coating 

equilibrium (Zhang & Pawliszyn, 1993). SPME is based on ad/absorption and 

desorption of volatiles from an inert fibre coated with different types of ad/absorbents 

(Tholl, et al., 2006). The fibre is located inside the needle of a modified syringe and 

volatiles can be sampled by inserting the needle through a septum of a headspace 

collection container and pushing the plunger to expose the fibre (Figure 3).  
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Figure 3. SPME sampling. The fibre is placed in the headspace above the sample during extraction. The 
amount of analyte extracted onto the fibre coating is at a maximum when the analyte concentration has 
reached the equilibrium between the sample matrix and the fibre coating. Next, the enriched analytes can 
be desorbed from the fibre to the chromatographic column through the GC inlet (modified from 
http://web.sonoma.edu). 

 

Different coatings of the fibre are available, and they vary according to the chemical 

properties of the metabolites of interest. The coating is fixed on a fused silica core, and 

depending on the coating material, the analytes of interest are adsorbed or absorbed to 

the coating material (Table 1).  

 

Table 1. Fibre coatings, thickness and polarity of different SPME fibres.  

Coating Thickness (µm) Polarity 

Polydimethyl-siloxane (PDMS) 7, 30, 100 Apolar 

Polyacrilate (PA) 85 Polar 

Polyethylene glycol (PEG) 60 Polar 

Carbopack/Z PDMS 15 Bipolar 

PDMS/Divinylbenzene (DVB) 65 Bipolar 

Carboxen (CAR)/PDMS 85 Bipolar 

DVB/CAR/PDMS 55/30 Bipolar 
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In SPME, the concentration of the analyte bound to the fibre is related to the 

concentration of the same analyte in the sample and it depends on the distribution 

constant (diffusion of the metabolites between the phases) which is temperature 

dependent. Ideally, the extraction of VOCs shall last until equilibrium between the 

metabolites on the fibre and the HS has been reached. Following equilibration between 

the fibre and the volatile sample (typically a few minutes to approximately one hour), 

the fibre is retracted into the needle and can be transferred to a gas chromatograph for 

direct thermal desorption (Tholl, et al., 2006). Thermal desorption of VOCs from the 

fibre eliminates the need for solvents that may contain impurities which will interfere 

with sample analysis (Tholl, et al., 2006). By carefully selecting the polarity and 

thickness of the fibre coating, VOCs of different polarity and volatility ranging from 

high-boiling or semi-volatile to volatile compounds can be sampled (Tholl, et al., 2006). 

A further important factor that contributed greatly to the development of HS techniques 

is the increasing knowledge of sorption material. Such sorption materials (coatings) are 

homogeneous, non-porous materials in which the analytes can dissolve so that they do 

not undergo real bonding with the material, but are retained by dissolution (Baltussen, 

et al., 2002). Several companies offer GC autosamplers with a SPME option for rapid 

successive processing of multiple samples (Tholl, et al., 2006). Automated SPME-GC 

allows high-throughput analysis of volatile profiles emitted from plant foliage or 

bacteria, as presented in this thesis. Despite the enormous advantages of this technique, 

static headspace and in particular, SPME has some disadvantages. It is nearly 

impossible to quantify absolutely and precisely a large number of metabolites with 

diverse polarities and volatility at the same time with SPME. This problem is typical of 

complex biological samples, such as plant leaves or bacteria, which contain VOCs with 

various chemical and physical properties.  

In order to reach the best results possible with the highest number of peaks, the 

equilibration time and temperature have been optimised before (Weingart, et al., 2013) 

and extraction time and temperature used were 40 minutes and 60°C, respectively for 

the analysis of grapevine leaves (publication 2). Concerning the Lysobacter spp. VOCs 

(publication 3), 30 minutes at 25°C for both equilibration and extraction were used, and 

polydimethylsiloxane/divinylbenzene/carboxen (PDMS/DVB/CAR) fibre was used for 

both the publications.  
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3.2.2  On-line sampling 

Automated VOC analysis systems with on-line capability have become 

indispensable for monitoring fast changes of volatile profiles from biological samples 

(Tholl, et al., 2006). The need for real-time measurements has led to considerable 

interest in non-chromatographic methods, most often involving mass spectrometry [e.g. 

proton transfer reaction (PTR)-MS]. The major contribution made by PTR-MS is that 

it provides instruments by which traces of gases and volatiles in headspace above liquid 

and solid samples (e.g. plant leaves or bacterial cultures) can be measured qualitatively 

and quantitatively in real time, obviating sample collection into bags or onto traps. Thus, 

the sample and its analytes are not modified or disturbed, and, since many VOCs are 

fragile molecules, this is obviously advantageous (Smith & Španěl, 2011). A second 

innovation was the drift tube. Instead of employing a carrier gas to transport ions along 

the tube, the analyte/air sample is directly injected into the drift tube and analysed 

(Blake, et al., 2009). In the following section, this technique is described in detail. 

 

3.2.2.1 Proton-transfer reaction mass spectrometry (PTR-MS) 

Proton-transfer reaction mass spectrometry (PTR-MS) was first developed by 

Professor Werner Lindinger and collaborators in the late 1990s (Lindinger, et al., 1998). 

This instrument typically consists of four parts: discharge ion source, drift tube reaction 

chamber, mass analyser and ion detection unit (Figure 4). 
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Figure 4. Proton transfer reaction-time of flight mass spectrometer (PTR-ToF-MS) scheme. The 

hydronium H3O+ are generated from water vapour and electrically forced to the drift tube where they 

collide with VOCs, transferring a proton to them. Protonated VOCs are guided to the ToF analyser where 

they are separated according to their m/z prior to detection (modified from https://alchetron.com). 

 

In PTR-MS, the neutral VOC molecules are ionised via a proton transfer reaction, 

typically with the hydronium ion (H3O+). These ions are generated in the ion source by 

a hollow cathode discharge on the water vapour which is injected into the ion source 

region (Hansel, et al., 1995). Ions produced in the ion source are allowed to enter into 

the PTR-MS drift tube. Here the gaseous samples are also injected. H3O+ ions undergo 

proton-transfer reaction with most organic species, while such reaction does not occur 

with air constituents, such as O2, N2, CO2, or noble gases. This is because the proton 

affinity of water is smaller than most VOCs but larger than the constituents of clean air 

(Lindinger, et al., 1998). Proton-transfer reactions take place in a buffer gas (usually 

air) which flows through the drift tube and protons are transferred from primary H3O+ 

ions to trace VOCs that have smaller proton affinity than water. The reaction is: 

 

H3O+ + VOC → H2O + VOC•H+ 
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Protonated VOCs are separated in a mass analyser according to the m/z ratio and 

finally detected by an ion detection unit. In this PhD thesis, I used a PTR-MS coupled 

with a time-of-flight (ToF) mass spectrometer. The instrument gives raw data in count 

per scan (cps) which have to be converted in absolute concentrations. For this reason, 

the instrument needs to be calibrated with a mixture of standard gases, provided by gas 

cylinders, with a known concentration (Materić, et al., 2015). In the present PhD thesis, 

and in particular in publications 1 and 3, a PTR-ToF 8000 instrument (Ionicon Analytik 

GmbH, Innsbruck, Austria) was used. In the papers 1 and 3, the H3O+ primary ion mode 

was used and similar ion drift tube conditions were used, which means drift tube 

pressure was maintained to 2.3 mbar, the temperature of the drift tube was set at 110°C. 

Drift tube voltage was set to 550 V and 480 V for paper 1 and paper 3, respectively, 

while the E/N ratio (E represents the electric field strength and N represents the density 

of the drift tube gas molecules) was maintained at 140 Td for paper 1 and at 120 Td for 

paper 3 (1 Td = 1 Townsend = 10-17 Vcm2).  

 

3.3 Chromatographic separation of VOCs  

The most widely used tool for qualitative and quantitative determination of VOCs 

is gas chromatography-mass spectrometry (GC-MS) (Blake, et al., 2009). However, 

although it is a highly sensitive and reliable technique, absolute quantification needs 

strict sampling parameters and a detailed evaluation of matrix effects (Tholl, et al., 

2006). Furthermore, it is also necessary to pre-concentrate the samples for a few 

minutes, leading the GC-MS to be a relatively slow technique for separating and 

subsequently detecting VOCs (Blake, et al., 2009, Materić, et al., 2015). However, if 

speed is not important, than GC-MS is probably the most powerful technique available 

for measuring trace levels of VOCs (Blake, et al., 2009). In the next section, GC will 

be described. 

 

3.3.1  Gas chromatography (GC) 

Plant and bacterial VOCs trapped on adsorbing matrices are routinely separated by 

the well-established technique of gas chromatography which is commonly used for 

separation of low boiling and low mass compounds, even in complex mixtures (Tholl, 
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et al., 2006, Materić, et al., 2015). A gas chromatograph usually consists of a sample 

inlet, an oven with a chromatographic column, and a detector (Figure 5).  

 

Figure 5. Gas chromatography-mass spectrometry instrument scheme. Samples are introduced via a 

heated inlet and then transported by the carrier gas (usually helium) through the column. Each of the 

VOCs interacts differently with the stationary phase of the column. Then, VOCs elute from the column 

at different times after injection (retention time) and reach the ion source, mass analyser and finally the 

detector (modified from https://www.netzsch-thermal-analysis.com). 

 

In case of SPME, the enriched analytes from the sample must be desorbed from the 

coated fibre by placing it directly in a thermal desorption tube of the GC inlet, heated 

to 250-300°C. The thermically released volatiles can also be concentrated by a cold trap 

prior to their separation on the GC column (Tholl, et al., 2006). Samples are introduced 

via a heated inlet and then transported by the mobile phase through the column (Materić, 

et al., 2015). The core part of a gas chromatograph is the column, which is placed in the 

oven of the instrument. Generally, there are two types of columns: packed and capillary, 

however capillary columns are more commonly used in VOCs research (Materić, et al., 

2015). The stationary phase is a highly viscous film capable of absorbing and separating 

compounds according to their vapour pressure and their interaction with the stationary 

phase. Each of the VOCs interacts differently with the stationary phase of the column 

and is therefore differentially partitioned between the stationary phase and mobile phase 

which consists of a carrier gas flow. Generally, VOCs are separated on fused silica 

capillary columns coated with different stationary phases such as non-polar dimethyl 
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polysiloxanes (e.g. DB-5, HP-5) or more polar polyethylene glycol polymers such as 

Carbowax® 20M or DB-Wax) (Tholl, et al., 2006). For our purposes, a DB-5MS non-

polar column (5% diphenyl polysiloxane, 95% dimethyl-diphenyl polysiloxane; 30m of 

length, 0.25mm of internal diameter, 0.25µm of film thickness) has been used for 

publication 2, while a polar column HP-InnoWax [polyethylene glycol (PEG); 30m, 

0.32mm, 0.5µm] has been used in publication 3. The GC instrument also contains a 

temperature-controlled oven, capable of being rapidly ramped up reproducibly from 

room temperature to over 300°C (Materić, et al., 2015). An increase in temperature 

(temperature gradient) during separation leads to changes of the partition coefficient, 

thus VOCs widely differing in volatility elute from the column and reach the detector 

at different time points, resulting in a detection of substances with largely different 

boiling points within one run (Materić, et al., 2015). Although GC is a very powerful 

tool for efficiently separating complex mixtures, it is not possible to achieve a complete 

separation of all analytes. This is because there are compounds which are very similar 

in terms of molecular structure that cannot be completely separated. For this reason, 

mass spectrometry (MS) detectors are needed to increase selectivity and detection in 

case of co-elution to the GC. In this PhD thesis and in particular in publications 2 and 

3, two different CG instruments were used. In publication number 2, an Agilent 6890N 

(Agilent, Waldbronn, Germany) has been used, while in publication 3 an Auto System 

XL gas chromatograph (Perkin Elmer, Norwalk, CT, USA) has been used. One end of 

the GC column is connected to the inlet, and the other end is connected to the detector. 

Mass spectrometry detectors are the most popular type of detector for routine plant and 

bacterial volatile analysis (Tholl, et al., 2006, Farag, et al., 2013) and have also been 

used in this PhD thesis.  

 

3.4 Detection of VOCs 

The detection of VOCs requires analytical techniques that are sensitive enough in 

order to distinguish variations in the composition of the samples and their metabolism. 

Mass spectrometry is based on the principle that molecules are ionised and, depending 

on the ionisation technique, can be fragmented further into a number of structurally 

significant fragments which, together with the molecular ions, can be separated 

according to their mass-to-charge ratio by a magnetic or electromagnetic field (Knepil, 

1999). A typical mass spectrometer consists of an ion source, a mass analyser, an ion 
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detector, a vacuum system and a computer. In the following sections, the types of ion 

source and mass analysers which were used in the presented thesis, will be explained in 

more detail.  

 

3.4.1  Ion source 

The analytes exiting the GC column are ionised in the ion source in a characteristic 

and reproducible way usually by either chemical ionisation (CI) or electron ionisation 

(EI).  

 

3.4.1.1 Chemical ionisation (CI)  

The CI is a “soft ionisation technique” and it forms intact ions called ion molecules 

which are nearly not fragmented. The charge of the ions formed is transferred to the 

sample molecules leading to protonation, deprotonation or ion-molecule adduct 

formation (Knepil, 1999). This process requires an ion-source pressure of about 0.1 to 

1 mbar, while the pressure outside the ion source must be kept below 10-5 mbar to 

maintain a sufficient free path length without any collision with other molecules or ions. 

PTR used in publications 1 and 3 is based on chemical ionisation of the VOCs under 

investigation within a drift reactor tube (King, et al., 2013).  

 

3.4.1.2 Electron ionisation (EI) 

EI is a “hard ionisation technique” and it was applied in this thesis (publications 2 

and 3). It consists of the creation of the resulting positively charged molecule ions which 

are further fragmented due to their excess in internal energy. The ionisation process 

occurs within about 10-16 to 10-15 seconds and is several orders of magnitude faster than 

the oscillation period of a chemical bond. In the ion source, high-energy electrons are 

created from a resistively heated metal filament and accelerated across the source 

(typically using potential difference in the range 5–100 V) to the stream of neutral 

analyte molecules in the gas phase. The general equation is:  

M + e- → M+• + 2e- 

 

As a consequence of the very rapid ionisation process, the geometry of the molecules 

does not change during ionisation (Knepil, 1999). The energy content of the electrons 
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employed for ionisation is usually expressed in electron volts (eV). The extent of 

fragmentation and thus the formed fragment ions depend on the energy used for 

ionisation. Typical ionisation energies of common organic analytes will range from 5 

eV to 15 eV, however, having higher energy (usually set at 70 eV) than is required to 

affect ionisation, improves the efficiency and the repeatability of the ionisation process. 

Moreover, an energy of 70 eV does not alter the absolute or relative intensities of ions 

within the spectrum, which is of additional value when using literature libraries for 

analyte annotation/identification (Taylor, 2015).  

 

3.4.2  Mass analyser 

The most common gas chromatograph detectors are flame ionisation detectors (FID) 

and mass spectrometers (MS) (Materić, et al., 2015). In the GC-MS analyses carried 

out in this thesis, I used a quadrupole mass analyser. Other common mass analysers that 

can be used in combination with GC are: ion trap (IT), triple quadrupole (QqQ) and 

time-of-flight (ToF), this latter has been used in publications 1 and 3. In all types of 

mass analysers, molecular ions and derived fragments are separated according to their 

mass-to-charge (m/z) ratio. The resulting mass spectra are plotted by the software of the 

GC instrument and the m/z values of the intact molecular ion and the corresponding 

fragments (x-axis) as well as the intensity (or abundance, y-axis) are shown (Figure 6). 

Each mass spectrum is characteristic for the substance measured and provides 

information about the structure of the analyte. 

 

 
Figure 6. Mass spectrum of β-cyclocitral recorded for grapevine leaves of the hybrid Kober 5BB infected 

with P. viticola (publication 2). 
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3.4.2.1 Quadrupole mass analyser 

Quadrupole mass analyser is the most popular device used in routine analysis 

(Herrmann, 2010). A typical quadrupole mass analyser consists of four rods of 

molybdenum alloys because of their inherent inertness (Figure 7). Because of the 

voltage oscillating at a radio frequency, each pair of oppositely located rods becomes 

successively positive, then negative and so forth in order to have always a pair of 

positive and negative rods. An ion travelling through the quadrupole will successively 

be attracted and then repelled from each rod, generating oscillating trajectories. In 

parallel to the oscillating voltage, direct current voltage is applied between the pairs of 

opposite rods, both of which can be ramped together with the alternating current voltage 

amplitude and direct current voltage value at a constant ratio. For each ion with a certain 

m/z ratio, there is a set of voltages which generates stable trajectories through the 

quadrupole, and only ions with this m/z can pass though the quadrupole and reach the 

detector. A typical transfer time through the quadrupole filter is between 25 and 250 

ms. All other ions with different m/z leave the quadrupole or collide with the rods and 

thus do not reach the detector. In this thesis, a quadrupole was used in full scan mode 

and the recorded mass range ranged from 35 to 500 m/z and from 30 to 300 m/z for 

VOCs analysis of grapevine and Lysobacter VOCs (papers 2 and 3, respectively).  

 

 
Figure 7. Scheme of a quadrupole mass analyser. 

 

3.4.2.2 Time of flight mass analyser 

Another mass analyser used in this PhD thesis is the time-of-flight (ToF) that was 

coupled with PTR (see also 3.2.2). The ions are accelerated by a defined voltage so that 

they have equal kinetic energy before entering the flight tube that is a field free drift 

region (Figure 8). This mass analyser works by deflecting a batch of ions into a field 

free flight tube and then separating them according to their flight times to a detector 
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(Blake, et al., 2009). Since the kinetic energy gained by the ions through acceleration 

by the electronic field is equal for all ions and corresponds to ½ mv2, where m is the 

mass of the ion and v is the ion velocity, the lower the ion’s mass, the greater the 

velocity, and shorter its time of flight. The travel time through the flight tube to the 

detector can be transformed to the m/z value, and thus into a mass spectrum (Blake, et 

al., 2009). The ability to acquire the whole mass spectrum at once at high mass 

resolution without sacrificing speed or sensitivity makes ToF-MS an excellent choice 

for qualitative analyses in the presence of complex matrices.  

 

 
Figure 8. Scheme of a time of flight mass analyser. 

 

3.4.3  Electron multiplier 

The electron multiplier is used to detect the presence of ion signals emerging from 

the quadrupole mass analyser. The task of the electron multiplier is to detect every ion 

which has passed the mass filter. The operation of an electron multiplier is based on the 

secondary electron emission. Basically, a dynode is an electrode in high vacuum that 

emits electrons when an ion (or electron) with sufficient kinetic energy slams into it. 

When a charged particle (ion or electron) strikes a surface, it causes secondary electrons 

to be released from atoms in the surface layer. The ions are thus accelerated into the 

back of the dynode by a high negative potential (in case of positively charged ions). 

This process of emitting electrons is called secondary electron emission. The number 

of secondary electrons released depends on the type of incident primary particle, its 

energy and characteristic of the incident surface. Usually, two types of electron 

multiplier are used in mass spectrometry: the discrete-dynode electron multiplier and 

the continuous-dynode electron multiplier.  
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The discrete-dynode uses a series of dynodes that are chained together by resistors. 

A negative voltage is applied to the first dynode where the ions enter the multiplier 

device. The voltage difference between the front and the back of the discrete-dynode 

results in a gradual voltage drop down the direction of the electrons, thus an exponential 

increase in electron count occurs down the length of the chain. The continuous-dynode 

uses the same principle of the discrete-dynode, but it has an uninterrupted electrode that 

has a sufficient resistance to make the voltage gradually drop from the front to the back 

of the detector. In this way, the secondary electrons are accelerated towards the back of 

the detector by the potential drop. The output current is then converted to a voltage 

signal which finally can be translated to an intensity value. 

3.5 Spectra analysis and compound identification/annotation 

In order to achieve the aims of my PhD thesis, it was necessary to assign a biological 

role to the detected VOCs. For this purpose, it was necessary to at least annotate the 

metabolites and to compare relative concentrations between the samples. A key step in 

VOC profiling is compound annotation/identification. Compound identification in 

untargeted analyses with PTR-MS is challenging and usually requires further 

information to be pursuable (Cappellin, et al., 2013). As reported in this PhD thesis, 

corroborating tentative identifications with compound annotation/identification by GC-

MS, has been revealed as the most straightforward choice.  

 

3.5.1  Spectra analysis in PTR-ToF-MS 

Since no chromatographic separation of the biological VOCs is used in case of PTR-

ToF-MS, the resulting mass spectra are highly complex and mass peak extraction 

procedures are mandatory in order to extract manageable datasets which can be used as 

inputs for data visualization or data mining procedures (Cappellin, et al., 2013). Mass 

calibration in PTR-ToF-MS raw data is nowadays limited to external calibration which 

implies fixing a set of calibration coefficients employed during the entire data 

acquisition process. However, because of the fluctuations in instrumental parameters, 

such as fluctuations in ion tube length caused by temperature variations, such procedure 

does not guarantee high accuracy for a sufficient long time, hence there is also the need 

of internal calibration.  
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3.5.2  Annotation and identification in GC-MS 

Identification of metabolites is essential to convert analytical data into meaningful 

biological knowledge (Creek, et al., 2014). In 2007, the Metabolomics Standards 

Initiative (MSI) recommended minimum reporting standards of compound 

identification for chemical analysis in metabolomics These reporting standards were 

based on a four-level system ranging from level 1 (identified compound), levels 2 and 

3 (putatively annotated compounds and compound classes) to level 4 (unidentified or 

unclassified metabolites which can be differentiated based on spectral data) (Sumner, 

et al., 2007). Briefly, they include: 

1. Identified compounds. A minimum of two independent and orthogonal 

properties relative to an authentic compound analysed under identical conditions are 

proposed as necessary to validate non-novel metabolite identifications (i.e. retention 

time/index and mass spectrum). The use of literature values reported for authentic 

reference standards by other laboratories are generally believed insufficient to validate 

a rigorous identification.  

2. Putatively annotated compounds. Compounds without chemical reference 

standards, based on physiochemical properties and/or spectral similarity with 

public/commercial spectral libraries 

3. Putatively characterised compound classes. Compounds based on 

physiochemical properties of a chemical compound class, or by spectral similarity to 

known compounds of a chemical class. 

4. Unknown compounds. Although unidentified or unclassified, these metabolites 

can still be differentiated and quantified based on spectral data.  

GC-MS offers two features, which permit the annotation/identification of sample 

compounds: mass spectrum and retention index.  

Recently, Schymanski and collaborators (Schymanski, et al., 2014) suggested a new 

level system to ease the identification step in high resolution-MS analysis (Figure 9). 

The differences include: 

Level 1. Confirmed structure. This is the ideal situation and it includes the 

confirmation of the structure by measuring a reference standard. 

Level 2. Probable structure. It considers two sub-levels: Level 2a: library, which 

involves matching literature or library spectrum data where the spectrum-structure 
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match is unambiguous. Level 2b: diagnostic, where no structures fit the experimental 

information, but no standard and literature information is available for confirmation. 

Level 3. Tentative candidate. This level marks the evidence of a possible structure, 

however there are very few information about only one exact structure (i.e. positional 

isomers).  

Level 4. Unequivocal formula. It gives information about the formula by using 

spectral information (i.e. adducts, isotopes, and fragments information), but there are 

no sufficient information about the possible structures. 

Level 5. Exact mass (m/z). This level gives important information about the 

investigation, however no unequivocal information about the formula or structure 

exists. In this case it is possible to record a MS spectrum of a level 5 and save it as 

“unknown spectrum” in a database. 

 

 

Figure 9. Proposed identification confidence levels in high resolution mass spectrometric analysis. 

Figure from Schymanski, et al. (2014). 

 

3.5.2.1 Mass spectrum 

In case of electron ionisation, the analytes reaching the mass spectrometer are 

bombarded with a stream of electrons carrying an energy of tens of electronvolts (eV), 

and some of this energy is transferred to the molecule to generate positive ions 

(molecular ion M+). These ions are possessing an excess of internal energy and are 

therefore unstable and brake up into smaller fragments. Only charged fragments are 

accelerated, deflected and detected by the mass spectrometer and they produce a 

fragmentation patterns that can be displayed in form of mass spectra (MS). Ionisation 
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energy of most molecules are in the range of 7 to 15 eV. However, the majority of the 

MS instruments are set up with electron ionisation at a standardised ionisation energy 

(IE) of 70 eV. A reason to use this energy in the mass spectra of almost all libraries is 

that the ion signal is most intense at around 70 eV (Figure 10) and when the energy is 

decreased, the spectrum will be less fragment rich and the signal intensity decreases 

dramatically (www.shimadzu.com). Moreover, the plateau of the ionisation efficiency 

curve around 70 eV makes small variations in electron energy negligible (Hesse, 2004).  

 

 
Figure 10. Spectrum of ethyl acetate obtained from an ionisation energy of 14 eV (A). Spectrum of ethyl 

acetate obtained from an ionisation energy of 70 eV (B) (figure from www.shimadzu.com). 

 

This set up facilitates comparison of generated spectra with library spectra using 

manufacturer-supplied software or software developed by the National Institute of 

Standards (NIST). Spectral reference libraries are well established and extensively used. 

For example, in this PhD thesis, NIST (www.nist.gov) and in-house MS libraries have 

been used for annotation/identification of metabolites.  
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3.5.2.2 Retention index 

The retention index of a compound is defined as a relationship between the retention 

of the analyte and two members of a homologous series enclosing it (i.e. alkane 

standards). In 1958, Kováts (Kováts, 1958) published a model to generate an isothermal 

retention index. Complex mixtures of VOCs are often preferably analysed using 

temperature programming regimes (Girard, 1996). For this reason, Van den Dool and 

Kratz (van Den Dool & Dec. Kratz, 1963) first produced an equation expanding the use 

of the retention index to linear temperature-programmed GC:  

 

tRi  Retention time of metabolite 

tRn  Retention time of earlier eluting alkane 

tR(n+1) Retention time of later eluting alkane 

n  Number of C-atoms of earlier eluting alkane 

The linear temperature-programmed retention index (LTPRI) is calculated based on 

the alkane standards, one eluting before and the other eluting after the analyte (Figure 

11). 

 

 
Figure 11. Calculation of the linear temperature-programmed retention index (LTPRI). C14: tetradecane, 

C15: pentadecane.  
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These features are provided by different software such as AMDIS software (Stein, 

1999), Tagfinder (Luedemann, et al., 2008), and MetaboliteDetector (Hiller, et al., 

2009) which has been used in this PhD thesis (publication 2). Starting from raw GC-

MS data, MetaboliteDetector software detects and annotates potential metabolites.  

Although the retention index is characteristic for each substance, it is not sufficient 

for an unambiguous annotation/identification when used as a single criterion. Therefore, 

the RI should be used in combination with mass spectra. In this thesis, RI were 

automatically calculated by TurboMass 5.4.0 software (Perkin Elmer, Norwalk, CT; 

USA) in publication 3 and by MetaboliteDetector software in publication 2. This 

software automatically determines appropriate quantification ions and performs an 

integration of single ion peaks. Finally, the analysis results can directly be converted to 

and illustrated as a data matrix making it accessible for further statistical analysis 

(Hiller, et al., 2009). 

 

3.5.2.3 Deconvolution 

 Frequently, compounds of highly complex metabolite mixtures (partly) co-elute 

(elute at similar time points) during GC-MS analysis. If the retention times of two or 

more components differ in only a few scans, they often tend to form a single, only 

slightly distorted peak in the total ion current (TIC) chromatogram. This means that it 

is impossible to extract pure mass spectra for these compounds. Although these 

components appear as a single compound within the TIC, the peaks of the single ion 

chromatograms can be separated on their apex. In order to detect these components as 

independent ones and to extract pure mass spectra, it is essential to perform a 

deconvolution step (Hiller, et al., 2009). Deconvolution is the process of 

computationally separating partly co-eluting components and creating a pure spectrum 

for each component (Figure 12). Specifically, for each observed extracted ion current 

(EIC) chromatogram that results from two or more components, the contribution of each 

component to the EIC is calculated by the aid of a deconvolution algorithm (Du & 

Zeisel, 2013). One of the most popular algorithm is AMDIS (Automated Mass 

spectrometry Deconvolution and Identification System) (Stein, 1999). However, during 

this thesis I applied the MetaboliteDetector software to measure the spectra of 

publication 2.  
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Figure 12. Total ion current (TIC) chromatogram of closely co-eluting compounds (A). Overlay of the 

single ion chromatograms depicted in orange and blue (B) are the result of a deconvolution step, giving 

their corresponding mass spectra (C) (www.leco.com). 

 

 The principle behind MetaboliteDetector software is that it detects 

chromatographic peaks from the beginning to the end by calculating the first derivative 

of the smoothing process obtained from the equation used by Savitzky-Golay (Savitzky 

& Golay, 1964) used to smooth both the spectral as well as the retention time 

(chromatographic) dimension of the raw data: 

 

where f (x) is the filtered value for the intensity x, while x-2, x-1, x+1, and x+2 are the 

intensities of the neighbouring mass peaks of the mass peak under investigation x. The 

resulting peak is valid if:  

1) the peak consists of more than three values; 

2) the height above the baseline in signal-to-noise units of the maximum peak 

value exceeds a predefined threshold; 

3) the quality of the peak shape is in a predefined range. 
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The quality of the peak shape is named discrepancy index qp which is the ratio of the 

nonideal to ideal slopes of the peak: 

 

where reasonable values of qp should be between 0% and 10%. Finally, in order to 

determine the model peak shape for each perceived component, MetaboliteDetector 

software, sorts all single ion peaks of a compound having qp values below 10% and 

the top 25% of the peaks in terms of the sharpness value are summed to form the 

model peak for that compound.  

 

3.5.3  Compound identification in PTR-ToF-MS 

As already mentioned above, compound identification and quantification in PTR-

MS is challenging and usually requires two premises (Cappellin, et al., 2013). The 

first one is that the chemical ionisation process gives a VOC•H+ which do not undergo 

secondary ion-molecule reactions. The second premise is that the H3O+ ion signal is 

not depleted by reaction with organic analyte molecules (Goff & Klee, 2006). 

However, given the high mass resolution, PTR-ToF-MS strongly enhances compound 

identification, although isomers are not distinguishable. As no chromatographic 

separation step is used, for this reason, in this PhD work, the complementary 

combination between GC-MS and PTR-ToF-MS for identification/annotation of 

bacterial and plant VOCs has been used. PTR-ToF-MS is able to determine the 

compound sum formula, and recently, Cappellin and co-workers (Cappellin, et al., 

2011) proposed a method to automate the workflow analysis from PTR-ToF-MS raw 

spectra to data mining which starts from the dead time correction and internal 

calibration followed by baseline removal, noise reduction, peak detection and peak 

extraction. The output is a data matrix of peak intensities (Cappellin, et al., 2011). 

Then, preliminary data visualisation methods or advanced data mining procedures 

may be applied.  

 

3.5.3.1 Dead time correction 

Commercial instruments are equipped with ToF systems whose linearity is affected 

by the detector dead time (Stephan, et al., 1994). This means that ions reaching the ion 
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detecting device (usually a multi-channel plate) during dead time are irrevocably lost, 

causing distortion of intense mass signals. Analytical corrections of such effects are 

commonly based on Poisson statistics.  

 

3.5.3.2 Internal calibration 

Due to a lack of stability in instrumental parameters, external calibration in 

commercial PTR-ToF-MS instruments does usually not guarantee mass accuracy for 

sufficiently long time periods (Cappellin, et al., 2011). A common solution to this 

problem is the use of an internal calibration based on the known exact mass of selected 

ions such as NO+, O2
+ and protonated acetone at nominal masses 30, 32 and 59, 

respectively which are permanently present in the analytical system (Cappellin, et al., 

2011). 

 

3.5.3.3 Baseline removal and noise reduction 

PTR-ToF-MS spectra are characterised by a baseline, which is subtracted by specific 

MATLAB functions that have been implemented for data pre-processing procedures 

(Cappellin, et al., 2011). Furthermore, a PTR-ToF-MS spectrum can be composed of a 

high number of m/z values, each referring to an equally separated range of ion time of 

flights (Cappellin, et al., 2011). Thus, if many spectra of the same sample are available, 

random noise is reduced and the quality of the signal is improved by simply averaging 

over all available spectra. This procedure is appropriate only if the spectra are properly 

aligned in terms of mass scale (Cappellin, et al., 2011).  

 

3.5.3.4 Peak detection 

The peak position is determined by the m/z value of the protonated VOC, while the 

peak area represents the number of ions that reach the MS detector during the set 

acquisition time. Mass peaks referring to compounds of similar masses having close 

enough m/z values are superimposed within the spectrum, resulting in highly complex 

structures, approximately Gaussian especially in the top part, while asymmetries often 

appear as right-side (higher m/z) tails. In order to provide a satisfactory shape matching, 

Gaussian functions to fit mass spectrometric peaks are employed (Cappellin, et al., 

2011).  
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3.5.3.5 Mass peak extraction 

Automatic peak extraction is performed on the spectra corresponding to each of the 

elements. For each nominal mass, a linear sum of Gaussian functions with fixed mean 

parameters is fitted and the peak heights are estimated as the maximum height of the 

corresponding Gaussian distribution. Peak widths are then determined from an average 

resolution estimated. At the end of the whole procedure, a data matrix of peak areas is 

constructed. Each row corresponds to different elements and each column corresponds 

to a peak with a defined m/z value. This matrix is the starting point for further data 

analysis and data mining (Cappellin, et al., 2011). 

 

3.6 Data analysis 

Several data analysis software tools have been developed in order to process all the 

data collected by the instruments. TurboMass (Perkin Elmer, Norwalk, CT; USA) used 

in publication 3, MetaboliteDetector (Hiller, et al., 2009) used in publication 2, 

represent useful software tools for GC-MS data analysis. However, the analysis of large 

amounts of data such as the volatilome of leaves or bacteria samples, needs robust 

statistical methods, as well. For this reason, software providing statistical tools can be 

used for further data treatment. In this thesis, R (www.r-project.org) used in publication 

1, 2, and 3, and Statistica (Dell, Round Rock, TX, USA) used in publication 2 and 3, 

have been utilised for statistical data analysis.  

 

3.7 GC-MS or PTR-MS for VOCs sampling? 

The common techniques used in qualitative and quantitative analysis of VOCs are 

based on mass spectrometry instruments, with or without previous chromatographic 

separation (Materić, et al., 2015). In this thesis, two different techniques have been 

used: gas chromatography-mass spectrometry (GC-MS), and proton-transfer reaction-

time of flight-mass spectrometry (PTR-ToF-MS). The first technique is based on a 

chromatographic separation of VOCs by capillary columns followed by a hard 

ionisation technique (electron ionisation EI), the second technique is based on a soft 

chemical ionisation (PTR) and it does not need any chromatographic separation, giving 

VOCs as their protonated molecular mass. The limited selectivity obtained from 

monitoring only the protonated parent mass leads the PTR-MS to measure only the total 
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concentration of volatile isomers and gives no information on the exact chemical 

composition of a sample constituent (Tani, et al., 2003). For example, PTR-MS can 

only be used to measure the total concentration of monoterpene or sesquiterpene 

isomers and it gives no information on the terpene composition of a sample under 

investigation (Tani, et al., 2003). For this reason, the combination of GC-MS and PTR-

MS techniques is a powerful methodology for comprehensively measuring and 

identifying of VOCs (Farag, et al., 2013), with PTR-MS having become a useful 

addition to GC analysis of plant and bacteria VOCs measurements. Indeed, in order to 

distinguish between isomers, combined experiments using GC (which provides high 

selectivity) together with the fast PTR-MS method are the most suitable to monitor and 

identify fast-changing concentration of VOCs at trace levels from different types of 

samples, such as plants or bacteria cultures. In this thesis, VOCs have been analysed 

combining the two mentioned techniques (exception for publication 1 where only PTR-

ToF-MS has been used for a preliminary screening of VOCs emitted by three grapevine 

hybrids) in order to achieve the comprehensive measurement of VOCs from complex 

biological matrices. It shall be mentioned however that even in case of (one-

dimensional) GC-MS, limitations exist for the analysis of the usual highly complex 

mixtures of VOCs with respect to chromatographic separation as well as compound 

identification. 

In conclusion, although the PTR-MS method has found numerous applications and 

has greatly expanded the capability for relatively fast measurements of VOCs there 

remain significant weaknesses such as difficulties in the detection of particular VOC 

species (e.g. monoterpenes and sesquiterpenes). Furthermore, the lack of physical 

separation of the VOCs results in a limited selectivity obtained from monitoring only 

the protonated parent mass, which may lead to complications in the interpretation of ion 

signals measured (Jordan, et al., 2009). On the other side, GC-MS is a powerful 

technique able to separate very similar chemical compounds (i.e. isomers such as α- and 

β-pinene) in case of at least partly chromatographic separation. However, GC-MS is not 

suitable for research where high time resolution is needed. Therefore, a complementary 

approach combining the two techniques is recommended in order benefit from the 

advantages of both GC-MS and PTR-MS. 
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4 VOCs and interactions in grapevine defence 

mechanisms and in biocontrol processes of beneficial 

bacteria 

Damaged plants have been reported to release VOCs which can be used by nearby 

plants to recognise impending danger (Heil, 2014). Likewise, beneficial 

microorganisms are able to emit VOCs to inhibit the growth of phytopathogens 

(Weisskopf, 2013), promote plant growth (Ryu, et al., 2003, Blom, et al., 2011) or 

induce plant resistance (Ryu, et al., 2004). In this chapter, two different interactions are 

outlined in order to better describe how plant and beneficial bacteria interplay with two 

important plant pathogens, respectively: P. viticola and P. infestans. 

 

4.1 Interaction between grapevine and Plasmopara viticola 

The biotrophic oomycete P. viticola (Berk. and Curt.) Berl. and de Toni is the causal 

agent of downy mildew, that is one of the most economically important grapevine 

diseases worldwide, particularly in warm and wet climates (Gessler, et al., 2011). P. 

viticola is a heterotallic oomycete and it is an obligate biotrophic pathogen that 

overwinters as oospores in leaf litter and soils. P. viticola attacks all green parts of the 

grapevine where functional stomata are present, and it penetrates only these natural 

openings (Gessler, et al., 2011). The first visible symptoms are yellowish lesions (called 

oil spots) on the adaxial leaf surface, while sporulation can be observed on the abaxial 

side of the leaf, on the surface of tendrils, inflorescences and young berries (Buonassisi, 

et al., 2017). P. viticola overwinters as sexually oospores in fallen leaves and berries 

(Figure 13).  
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Figure 13. The life cycle of P. viticola (Buonassisi, et al., 2017). 

 

In spring, the oospores germinate giving macrosporangia which can be spread 

directly onto leaves by rain splash or have become airborne with turbulence (Gessler, 

et al., 2011). It is assumed (Baldacci & Refatti, 1956) that the necessary conditions for 

primary infection are a minimum atmospheric temperature of 10°C, at least 10 mm of 

rain and a shoot length of at least 10 cm. Macrosporangia release zoospores which can 

swim in free water on the grapevine surface towards stomata, where they encyst. 

Zoospores produce a germinative tube which penetrate through the stomata and they 

form substomatal vesicles. After 48 hours, the substomatal vesicles develop and give 

rise to the intercellular mycelium. After seven-ten days of incubation time (Gessler, et 

al., 2011), sporulation occurs on the abaxial surface of the host tissue and 

sporangiophores with sporangia emerge through stomata. P. viticola sporulation occurs 

with a minimum of 98% of relative humidity, 4 hours of darkness and an optimal 

temperature of 19°C (Gessler, et al., 2011). After the sporulation, the sporangia are 

dispersed by wind and rain splash leading to the liberation of zoospores and marking 

the start of a new infection cycle (Buonassisi, et al., 2017). Secondary infections can 

occur repeatedly during the summer season. At the end of grapevine growing season, 

P. viticola sexual production starts within the infected host tissue through the 

fertilization of oogonia by anteridia and the resulting oospore represents the 
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overwintering structure with a source of genetic variation and the new primary 

inoculum for the following season. 

The wine industry relies predominantly on the European V. vinifera cultivars, which 

are highly susceptible to downy mildew (Gessler, et al., 2011). Grapevine downy 

mildew is currently controlled with repeated applications of fungicides that lead to 

environmental pollution, development of resistant population of the pathogen and 

residual toxicity (Pimentel, et al., 1992) which have sparked off growing interest in 

alternative approaches in the pest management, such as the application of resistance 

inducers on susceptible cultivars or the use of resistant Vitis spp. hybrids (Gessler, et 

al., 2011). In particular, the application of substance known to induce resistance in 

susceptible V. vinifera cultivars has been largely characterised (Gessler, et al., 2011). 

For example, treatments with chitosan (Aziz, et al., 2006), plant extracts of Solidago 

canadensis (Harm, et al., 2011) or the use of microorganisms such as Trichoderma 

harzianum T39 (Perazzolli, et al., 2008) significantly increased grapevine resistance to 

downy mildew. On the other side, resistance traits have been identified in American 

wild grapevine species including V. riparia, V. rupestris, V. amurensis and Muscadinia 

rotundifolia, probably because of their co-evolution with the pathogen in the place of 

origin (Boso, et al., 2014). Indeed, efforts to insert resistant traits into V. vinifera 

genotypes have yielded some commercially important resistant interspecific hybrids, 

such as BC4 (Kozma, et al., 2009), Kober 5BB (Cadle-Davidson, 2008), SO4 (Boso, et 

al., 2014) and Solaris (www.vivc.de) which efficiently halt hyphal growth. It is already 

known that grapevine resistance traits to P. viticola are quantitatively inherited 

(Moreira, et al., 2011). These resistance traits are based on both physical (hairy and 

water repellent leaf surface) and chemical (phytoanticipins) constitutive factors 

(Kortekamp & Zyprian, 1999), and inducible defence mechanisms such as localised cell 

death, production of reactive oxygen species, synthesis of phytoalexins such as 

resveratrol and viniferins (Pezet, et al., 2004, Chitarrini, et al., 2017) and pathogenesis-

related proteins (Kortekamp, 2006, Polesani, et al., 2010, Malacarne, et al., 2011). The 

involvement of grapevine VOCs in resistance mechanisms against P. viticola has been 

recently investigated. For example, the emission of (E,E)-α-farnesene in grapevine was 

recently associated with the resistance induced by a sulphated laminarin against downy 

mildew (Chalal, et al., 2015), and, thanks to our contributions (publications 1 and 2), 

we demonstrated that grapevine VOCs of resistant genotypes can contribute to the plant 

defence against downy mildew inoculation. Particularly, downy mildew significantly 
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increased the production of defence-related VOCs in resistant, but not in susceptible 

grapevine genotypes (publication 1 and 2). Moreover, VOCs contribute to grapevine 

resistance against downy mildew by direct inhibition of downy mildew thanks to the 

accumulation of VOCs with direct inhibitory activities against P. viticola development 

(publication 2).  

 

4.2 Interactions between Lysobacter spp. and Phytophthora 

infestans 

Phytophthora infestans (from the Greek words “plant destroyer”) causes potato late 

blight, a disease with major historical impact, although even nowadays P. infestans 

remains a major problem in agriculture and recalcitrant to disease suppression (Fry, 

2008, Kamoun, et al., 2015). P. infestans is a heterothallic oomycete, and it is a near-

obligate hemibiotrophic pathogen under natural and agricultural conditions (Fry, 2008), 

which means that during infection, it has a biotrophic phase where it forms haustoria. 

This is then followed by a necrotrophic phase where hyphae kill the plant tissue for 

nutrient acquisition (Perfect & Green, 2001). Life cycle of P. infestans is divided in 

sexual and asexual stages. During the asexual phase, sporangia are produced on 

sporangiophores that grow from infected tissue (Figure 14) and are released from aerial 

dispersal during a drop in relative humidity or water splashes (Aylor, et al., 2001).  



51 

 

 
Figure 14. The life cycle of P. infestans (Vetukuri, et al., 2012). 

 

Sporangia in free water germinate either via germ tube at an optimal temperature 

between 20°C and 25°C, or release from 3 to 8 wall-less bi-flagellated motile zoospores 

when the optimal temperature is between 10°C and 15°C. P. infestans zoospores 

become encysted and germinate via a germ tube in order to penetrate plant tissue (Fry, 

2008). Both sporangia and zoospores form germ tubes and appressoria prior to 

penetration (Tucker & Talbot, 2001). Symptoms are visible after two days from the 

infection and generally consist of small areas of necrosis. Then, the mycelium grows 

within and between plant cells, until the whole foliage is totally wilted one week after 

infection. Moreover, sporangia and zoospores can infect tubers which can be 

responsible for the inoculum during the following season. During the sexual phase, the 

sexual spore (called oospore) is formed by fertilisation between the anteridium and the 

oogonium, respectively the male and the female organ. The oospore represents a source 

of genetic variation is very robust and is able to survive in soil and at low temperatures 
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(Fay & Fry, 1997, Mayton, et al., 2000) and it develop into a sporangium starting a new 

asexual cycle (Schumann & J., 2000).  

The basic knowledge on P. infestans in the last decade is starting to have an impact 

on the management of the late blight disease. Indeed, to control late blight, farmers 

largely rely on agrochemicals, many with unknown modes of action and environmental 

effects (Kamoun, et al., 2015). Moreover, resistance traits were selected in some 

pathogen populations, thus the efficacy of many fungicides declined noticeably (Fry, 

2008). For these reasons, development of reliable, environmentally benign and 

economically feasible management tactics is of primary importance (Fry, 2008). 

Interactions between beneficial bacteria and plant pathogenic oomycetes occur in the 

rhizosphere and could lead the death of the phytopathogens or promote the growth of 

plants (Haas & Defago, 2005). In the last decade, increasing attention has been paid to 

the functional roles of bacterial VOCs in soil microbial interactions (Effmert, et al., 

2012), and bacteria belonging to the Lysobacter genus are frequently found in soil and 

showed a great potential for biological control of crop diseases (Hayward, et al., 2010). 

The antagonistic effects of four type strains of Lysobacter spp. (L. antibioticus, L. 

capsici, L. enzymogenes and L. gummosus) are known for the production of lytic 

enzymes and antibiotics against numerous soil phytopathogens (Kobayashi & Yuen, 

2007, Xie, et al., 2012, Puopolo, et al., 2016). However, little is known about the 

chemical composition of Lysobacter VOCs and their toxic activity against P. infestans. 

In this thesis, publication 3 answered to these question, demonstrating that the chemical 

profiles of the Lysobacter volatilome differed according to the growth medium and a 

protein-rich substrate maximised the toxic effect of the four Lysobacter type strains 

tested against P. infestans. 
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5 Conclusions and outlook 

The interest in alternative approaches has become of primary importance in the 

management of plant pests because of the impact of synthetic fungicide overuse on 

human health and the environment, as well as the development of resistant populations 

of plant pathogens. The final aim of this PhD thesis was to identify possible novel 

alternative compounds of natural origin to control the two major crop pathogens 

Plasmopara viticola and Phytophthora infestans in order to deeply understand the role 

of VOCs in interactions between beneficial bacteria or grapevine, and plant pathogenic 

oomycetes. In order to reach this aim, my PhD studies were focused on VOCs and their 

role in the grapevine defence mechanisms against P. viticola and in the biocontrol 

processes of Lysobacter spp. against P. infestans. In particular, VOCs produced by four 

resistant Vitis spp. genotypes and four Lysobacter type strains were screened, identified 

and functionally characterised. In a first attempt, we found out that downy mildew 

significantly increased the emission of the compound classes of volatile monoterpenes 

and sesquiterpenes in the resistant grapevine genotypes Kober 5BB and SO4 

(publication 1) but not in the susceptible V. vinifera cultivar Pinot noir in vitro. A more 

detailed analysis of grapevine VOCs produced by susceptible (Pinot noir) and resistant 

genotypes (BC4, Kober 5BB, SO4 and Solaris) by HS-SPME/CG-MS revealed the 

(putative) structures for a number of individual VOCs. Our results demonstrated that 

resistant genotypes produced monoterpenes, sesquiterpenes and other VOC classes 

upon P. viticola inoculation under greenhouse conditions, while Pinot noir did not. 

Furthermore, six identified VOCs were functionally tested by leaf disk assays and they 

were able to impair the development of downy mildew symptoms, suggesting that the 

production of VOCs from resistant grapevine genotypes acts as a post-infection 

mechanism with direct inhibitory activities against P. viticola (publication 2). Further 

metabolomics and transcriptomics studies are required in order to understand the role 

of grapevine VOCs in the activation of plant resistance mechanisms in more detail. This 

will also help to test and optimize their potential for future application in biocontrol 

with appropriate encapsulating formulation under field conditions. The second part of 

this thesis was focused on VOCs emitted by the beneficial microorganisms Lysobacter 

spp. in order to identify biocontrol VOCs with inhibitory activities against P. infestans. 

VOCs emitted by four type strains of Lysobacter spp. that were grown on two different 

growth media were analysed using HS-SPME/GC-MS and PTR-ToF-MS analyses 
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(publication 3). The P. infestans inhibiting effect of Lysobacter VOCs was 

demonstrated in vitro by dual-culture assays and the biocontrol activities and VOCs 

profiles were clearly dependent on the composition of the bacterial growth medium. 

These results highlight the importance of the nutrient source in order to induce the 

formation of volatile metabolites which results in biocontrol activity against P. 

infestans. Further validations are needed in order to understand the possible scenario of 

VOCs emitted by Lysobacter spp. under natural conditions in the soil. In conclusion, 

four grapevine (2-ethylfuran, 2-phenylethanol, β-cyclocitral or trans-2-pentenal) and 

four Lysobacter spp. VOCs (2,5-dimethyl pyrazine, 2-methoxy-3-methyl pyrazine, 

decanal and pyrrole) with strong inhibitory activity against P. viticola and P. infestans 

were identified respectively. Future studies will reveal the potential of these molecules 

from natural origin for being further developed into new bio-pesticides. 
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Overview of Part II 

Downy mildew and late blight of potato and tomato are controlled by massive use of 

fungicides which cause environmental pollution and development of resistant pathogen 

populations (Chen, et al., 2007, Fry, 2008). The main objectives of my PhD thesis were 

to better understand the role of plant and microbial VOCs in the communications among 

organisms and to identify alternative molecules from natural origin to control plant 

pathogens. The main tasks of this work were the studies of VOC involvement in the 

grapevine defence mechanisms against P. viticola and in the biocontrol processes of 

beneficial Lysobacter spp. against P. infestans. Plant defence is based on different 

mechanisms, and VOCs play an important role in response to insects and pathogens. 

Although resistance mechanisms and the production of secondary metabolites have 

been widely characterised in resistant grapevine genotypes, the emission of VOCs was 

not yet investigated following P. viticola inoculation. Our PTR-ToF-MS analysis 

revealed that resistant and susceptible grapevine genotypes clearly differed in terms of 

VOCs emission and downy mildew inoculation significantly increased the emission of 

terpenes in resistant genotypes. Thus, volatile terpenes could play an important role in 

grapevine defence against downy mildew (publication 1). In order to investigate the 

exact identity of grapevine VOCs, a HS-SPME/GC-MS analysis was then carried out. 

We confirmed that downy mildew significantly increased the emission of 

monoterpenes, sesquiterpenes and other VOC classes by resistant grapevine genotypes. 

Moreover, terpenoids, aldehydes, furans and alcohols were tested as pure VOCs against 

P. viticola by leaf disk assays and four of them impaired the development of downy 

mildew symptoms by treatments in air volume without direct contact with the leaf tissue 

(publication 2). The second task of this PhD project was focussed on the identification 

and functional characterization of VOCs emitted by Lysobacter spp. type stains. We 

found out that VOCs profiles and volatile-dependent biocontrol activity against P. 

infestans was affected by on the bacterial growth media. Volatile pyrazines, pyrrole and 

decanal significantly inhibited P. infestans and were mainly emitted by Lysobacter spp. 

grown on a protein-rich medium, demonstrating that the nutrient availability strongly 

affect the metabolic pathways and the biocontrol properties of Lysobacter spp. against 

plant pathogens (publication 3).   
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monoterpenes in grapevine genotypes following 
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Alberto Algarra Alarcon*, Valentina Lazazzara*, Luca Cappellin, Pier Luigi 

Bianchedi, Rainer Schuhmacher, Georg Wohlfahrt, Ilaria Pertot, Franco Biasioli and 

Michele Perazzolli 

Journal of Mass Spectrometry, 50, 1013-1022. 2015. 
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*Alberto Algarra Alarcon and Valentina Lazazzara have contributed equally to this 
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MOTIVATION OF THE STUDY 

 Grapevine resistance mechanisms and the production of non-volatile secondary 

metabolites upon P. viticola inoculation have been widely characterised in resistant 

genotypes. However, VOCs emission has not yet been investigated. This publication 

described a PTR-ToF-MS analysis for the detection of VOCs emitted by resistant and 

susceptible grapevine genotypes grown in vitro inoculated with P. viticola. The 

grapevine genotypes differed in terms of VOC emission and downy mildew inoculation 

significantly increased the emission of monoterpenes and sesquiterpenes in resistant but 

not in susceptible genotypes, indicating a possible role of volatile terpenes as toxic 

molecules against plant pathogens. 
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Emission of volatile sesquiterpenes and
monoterpenes in grapevine genotypes
following Plasmopara viticola inoculation in vitro

Alberto Algarra Alarcon,a,b† Valentina Lazazzara,a,c† Luca Cappellin,a*
Pier Luigi Bianchedi,d Rainer Schuhmacher,c Georg Wohlfahrt,b,e

Ilaria Pertot,a Franco Biasiolia and Michele Perazzollia

The grapevine (Vitis vinifera) is one of the most widely cultivated fruit crops globally, and one of its most important diseases in
terms of economic losses is downy mildew, caused by Plasmopara viticola. Several wild Vitis species have been found to be resis-
tant to this pathogen and have been used in breeding programs to introduce resistance traits to susceptible cultivars. Plant
defense is based on different mechanisms, and volatile organic compounds (VOCs) play a major role in the response to insects
and pathogens. Although grapevine resistance mechanisms and the production of secondary metabolites have been widely char-
acterized in resistant genotypes, the emission of VOCs has not yet been investigated following P. viticola inoculation. A Proton
Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS) was used to analyze the VOCs emitted by in vitro-grown plants
of grapevine genotypes with different levels of resistance. Downy mildew inoculation significantly increased the emission of
monoterpenes and sesquiterpenes by the resistant SO4 and Kober 5BB genotypes, but not by the susceptibleV. vinifera Pinot noir.
Volatile terpenes were implicated in plant defense responses against pathogens, suggesting that they could play a major role in
the resistance against downy mildew by direct toxicity or by inducing grapevine resistance. The grapevine genotypes differed in
terms of the VOC emission pattern of both inoculated and uninoculated plants, indicating that PTR-ToF-MS could be used to
screen hybrids with different levels of downy mildew resistance. Copyright © 2015 John Wiley & Sons, Ltd.

Additional supporting information may be found in the online version of this article at the publisher’s web site.

Keywords: PTR-ToF-MS; volatile organic compounds; grapevine; downy mildew resistance; in vitro plants

Introduction

The grapevine is one of the most widely grown fruit crops globally,
both for fresh produce (table grapes) and processed products
(wine) consumption. The grapevine industry relies predominantly
on Vitis vinifera, which is susceptible to a large spectrum of patho-
gens. The biotrophic oomycete Plasmopara viticola is the causal
agent of one of the most damaging diseases, namely, grapevine
downy mildew.[1] Downy mildew is controlled by frequent applica-
tions of chemical fungicides, particularly in warm andwet climates,[1]

but concerns about the environmental impact of pesticide overuse[2]

and the development of resistant P. viticola populations[3] have
sparked off growing interest in alternative approaches in the pest
management, such as the use of resistant Vitis spp. hybrids.

Resistance traits have been identified in wild grapevine species,
and the defense mechanisms to downy mildew have been charac-
terized in resistant genotypes.[1] American grapevine species, such
as V. riparia, V. rupestris, and V. rotundifolia, are resistant or tolerant
to the disease, probably because of their long coevolution with
the pathogen in the place of origin.[4] Soon after the introduction
of the pathogen in Europe in the 19th century, breeding for grape-
vine resistance to downy mildew started by combining the quality
traits of European cultivars (V. vinifera) with the downymildew resis-
tance traits of American hybrids.[1] Hybrids of V.berlandieri and
V. riparia, such as SO4 and Kober 5BB (Kober), developed as resis-
tant rootstocks to an important pest (Daktulosphaira vitifoliae), are

also resistant to downymildew.[4,5]Grapevine resistance to P. viticola
is based on both constitutive factors (structural barriers, hairy and
water repellent leaf surfaces, and phytoanticipins) and inducible
defense mechanisms (localized cell death, production of reactive
oxygen species, synthesis of phytoalexins and pathogenesis-related
proteins).[6,7] Although the presence of non-volatile secondary
metabolites, such as stilbenic phytoalexins and other antimicrobial
compounds, have been largely characterized in resistant
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genotypes,[8–10] the emission of volatile organic compounds
(VOCs) has not yet been investigated following downy mildew in-
oculation. Plants have evolved complex pathways to adapt to the
environment, and plant VOCs play a crucial role in communica-
tions between plants and the other organisms.[11] Several studies
have characterized the production of plant VOCs in response to
herbivore attack and demonstrated the role of VOCs in the de-
fense mechanisms, both by directly deterring herbivores and by
attracting their predators.[11,12] VOCs are also emitted by plants
in response to pathogen infection, and they typically consist of
green leaf volatiles, terpenoids,[13,14] methyl jasmonate (MeJA),[15]

methyl salycilate (MeSA),[16] aldehydes,[17,18] and terpenes.[19–22]

However, little is known about the role of these VOCs in the de-
fense mechanisms against pathogens.[20,23] Some pathogen-
induced VOCs could have direct antimicrobial effects against
pathogens,[24] such as 2-carene, β-caryophyllene, 2-hexenal, 2-
nonenal, C9-aldehydes against Botrytis cinerea,[25] and trans-2-
hexenal against Monilinia laxa.[26] Plant VOCs could also mediate
the activation of defense reactions in distal parts of the same plant
(within-plant signaling) or in neighboring plants (plant-plant
communication).[20,27,28] For example, VOCs emitted by a resistant
common bean were able to enhance the resistance to the fungus
Colletotrichum lindemuthianumin in a susceptible cultivar,[20] indi-
cating a major role for VOCs in plant-plant communication among
resistant and susceptible genotypes.
The VOC emission by grapevine plants has been little investigated

and has mainly been studied using gas chromatography-mass
spectrometry (GC-MS) analysis, with different preparation methods,
such as VOC trapping in activated charcoal[29] and direct VOC
extraction.[30,31] A wide range of compounds have been identified,
such as aldehydes, ketones, alcohols, esters, terpenoids, and aro-
matic compounds.[29–31]However, headspace analysis of VOCs using
chromatographic techniques is a laborious and time-consuming
approach. On the other hand, proton transfer reaction-mass spec-
trometry (PTR-MS)[32] is an ultra-high sensitivity technique for VOC
detection[33] based on the principles of chemical ionization intro-
duced by Munson and Field in the 1960s[34] and allows online anal-
ysis of air samples. The most innovative instruments couple a PTR
source to a Time-of-Flight (ToF) mass analyzer[35] to achieve a mass
resolution more than 5000 times greater than quadrupole-based in-
struments and time resolution of a full spectrum in a split second.
The aim of this work was to analyze the VOC profile produced by dif-
ferent grapevine genotypes in response to P. viticola inoculation
using PTR-ToF-MS analysis. In vitro-grown plants were used in order
to ensure axenic conditions, meaning that only the grapevine spe-
cies was cultivated in a sterile environment, to avoid the interference
of possible contaminant microorganisms.[36] The axenic conditions
also ensured constant high humidity to permit pathogen infection,
symptom development, and sporulation. VOCs emitted by suscepti-
ble and resistant genotypes were screened at different time points
after inoculation, and the VOC emission pattern was compared with
the severity of the disease. The final goal was to further develop
innovative methods for downy mildew control, based on a better
understanding of the role of VOC emission in the grapevine de-
fense mechanisms.

Materials and methods

Plant material

Plants of the susceptible V. vinifera cv Pinot noir ENTAV115 and the
resistant grapevine hybrids (V.berlandieri×V. riparia) SO4[4] and

Kober 5BB[5] were grown in vitro in 200ml glass vessels for plant
tissue culture (SigmaAldrich, St. Louis, MO, USA), covered with
Magenta B-cap (SigmaAldrich) on 30ml of half-strength Murashige–
Skoog (MS) basal medium supplemented with 0.6mg l�1 thiamine,
100mg l�1myo-inositol, 3% (w/v) sucrose and 0.6% (w/v) agar. Plants
were grown for 2months in a growth chamber at 23±1 °C with a
photoperiod of 16h light. To measure the headspace air of the vessel,
caps were replaced before VOC analysis with a sterile customized cap
with four 5-mm holes, covered with 18mm PTFE/silicone septa
(Agilent Technologies, Santa Clara, CA, USA) and gluedwithmelted sil-
icone. Plants were then acclimated in a plant growth cabinet
(Climacell CLC 707) at 23±1 °C with a photoperiod of 16h light for
three days before VOC analysis.

Grapevine inoculation with Plasmopara viticola

A P. viticola population was collected from an untreated vineyard in
northern Italy (Trentino region) in 2014 and maintained through
subsequent inoculations onto Pinot noir plants under greenhouse
conditions at 25±1 °C, with a photoperiod of 16h light and a rela-
tive humidity (RH) of 70±10%.[37] To obtain a sterile inoculum sus-
pension, infected leaves showing early symptoms of P. viticola (oil
spots) were collected and washed in a 1% sodium hypochlorite so-
lution for 10min, with orbital shaking at 80 rpm.[38] These surface-
sterilized leaves were washed twice for 5min each in sterile distilled
water, with orbital shaking at 80 rpm. Leaves were transferred with
the abaxial side uppermost onto sterile moist filter paper (three
foils) in autoclaved Petri dishes (9 cm diameter)[39] and incubated
overnight in the dark at room temperature to permit downy mil-
dew sporulation. Leaves bearing freshly sporulating lesions were
transferred to 50-ml sterile tubes and gently washed with 4ml of
cold sterile distilled water. The inoculum suspension was filtered
with a sterile fine net, and the concentration was adjusted to
4×104 sporangia ml�1 by counting with a hemocytometer.

For P. viticola inoculation, the abaxial surface of each leaf of
in vitro-grown plants was inoculated with six to eight drops of
20μl of the fresh sporangia suspension under sterile conditions
(P. viticola-inoculated plants). As a control, the abaxial surface of
each leaf of in vitro-grown plants was treatedwith six to eight drops
of sterile distilled water under the same conditions (control plants).
The plants were incubated overnight in the dark at 25±1 °C to al-
low P. viticola infection, and on the following day each leaf of the
P. viticola-inoculated and control plants was dried using sterile filter
paper under sterile conditions. The plants were then incubated for
10days in a plant growth cabinet (Climacell CLC 707) in the condi-
tions described earlier.

Assessment of downy mildew severity and leaf weight

Development of downy mildew symptoms was visually assessed
during incubation in the plant growth cabinet. At the end of VOC
analysis, all the leaves of each plant were collected and washed in
1ml of distilled water by gently vortexing to collect the sporangia.
The sporangia suspension was centrifuged at 1600×g for 5min at
4 °C, the pellet was re-suspended in 50μl of distilled water, and
sporangia were counted with a hemocytometer under a light mi-
croscope. The leaves of each plant were dehydrated by incubating
them at 80 °C for 48 h, and dry weight was measured (Table S1) to
normalize the number of sporangia and the emission of VOCs per
gram of leaf dry weight. We used leaf dry weight because it is less
variable than fresh weight[40] and is positively correlated to the leaf
area.[41]
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Headspace analysis of volatile organic compounds by

PTR-ToF-MS

Analysis of the VOCs emitted by the grapevine plants was carried
out by sampling the headspace air in the jars through the
PTFE/silicone septa on the lid. A heated (110 °C) PEEK tube (diame-
ter of 0.055 in.) was connected to one septum, and the headspace
air was withdrawn using a PTR-TOF 8000 instrument (Ionicon
Analytik GmbH, Innsbruck, Austria) at a rate of 100 standard cubic
centimeters per minute for a total record of 180 s. A second PEEK
tube was connected to another septum to permit the injection of
humidified (80% of RH) zero air generated with a gas calibration
unit equipped with a catalytic VOC scrubber (GCU, Ionicon Analytik
GmbH, Innsbruck, Austria) to remove VOCs. After each measure-
ment, both PEEK tubes were removed from the septa, and the jar
was incubated in a plant growth cabinet for 3 days, to allow VOC
accumulation in the headspace before subsequent measurement.

The PTR-TOF 8000 instrument was equipped for primary ion
switching, and the H3O

+ primary ionmode was used. The following
conditions were set in the instrument drift tube: 110 °C drift tube
temperature, 2.3mbar drift pressure, 550 V drift voltage, leading
to an E/N ratio (E represents the electric field strength and N repre-
sents the gas number density) of about 140 Td (1 Td=10�17Vcm2).
This E/N value was selected to limit the number of cluster ions pres-
ent in themeasured spectra and the excessive fragmentation of the
product ions as described in the literature.[42] The ions exiting from
the drift tube were detected using a ToF mass analyzer with the
standard configuration (V mode). The sampling time per channel
was 0.1ns during ToF acquisition, accounting for about 350 000
channels for a mass spectrum ranging up to m/z= 400. Each indi-
vidual spectrum was the sum of about 28 600 acquisitions lasting
for 35μs, resulting in a time resolution of 1 s. Because the analysis
time for each sample was set to 180 s, 180 spectra were acquired
for each jar during each measurement.

Two experiments were carried out independently. In the first
experiment, five replicates (plants) of the Pinot noir and SO4
genotypes were analyzed for each condition (control and P. viticola-
inoculated plants). Five untreated plants per genotype were
uprooted, and jars containing only the substrate were used as
negative controls for background correction of VOCs. In the second
experiment, seven replicates (plants) of the Pinot noir, SO4, and
Kober genotypes were analyzed for each condition. In this case,
six plants per genotype were uprooted, and jars containing only
the substrate were used as negative controls for background
correction.

One day before P. viticola inoculation (T0) the headspace of each
jar was cleaned by flushing with humidified zero air. One day later,
plants of each genotype were inoculated with P. viticola or treated
with water, and 1day after inoculation, the headspace was cleaned
by flushing with zero air. All samples were measured at 3-day inter-
vals after the second headspace cleaning, corresponding to 4 (T4), 7
(T7), and 10 (T10) days after P. viticola inoculation. At each time
point, the inoculated plants, control plants, and jars containing only
the substrate were analyzed, using a randomized complete block
design. Plants were kept in the plant growth cabinet between
measurements.

Analysis of PTR-ToF-MS spectra

The ToF spectra produced by PTR-ToF-MS were processed accor-
ding to the methodology reported by Cappellin et al.,[43]with slight
modifications. In the first post-processing step, the spectra were

corrected for count losses related to the detector dead time using
a correction based on the Poisson statistics.[44] Because the external
mass axis calibration provided by the acquisition software was not
accurate, all spectra were subjected to internal mass axis calibration
according to Cappellin et al.[43] This procedure led to a mass accu-
racy better than 0.001 Th and allowed the identification of the
sum formula of the ions corresponding to the spectral peaks in
most cases. To reduce the spectral noise, baseline removal and
peak intensity extraction were carried out according to Cappellin
et al.,[43] using modified Gaussian fits to the spectral peaks. The in-
tegrated signal over the 180 s of spectra acquisition was used for
VOC concentration determination. Headspace VOC concentrations,
expressed as ppbv (parts per billion by volume), were calculated
from the peak intensities of both protonated parent molecules
and known fragment ions, according to the formula described by

Figure 1. Downy mildew severity on the Pinot noir (P), SO4 (S), and Kober
5BB (K) genotypes in the (a) first and (b) second in vitro experiments. Disease
severity was assessed 11 days after inoculation as the number of Plasmopara
viticola sporangia per gram of leaf dry weight. Box plots of five and seven
replicates (plants) are presented for each genotype in the first and second
experiment, respectively. Different letters indicate significant differences
among genotypes, according to the Kruskal–Wallis test (p< 0.05).
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Lindinger et al.,[32] considering H3O
+ as primary ion and a constant

reaction rate coefficient of 2× 10�9 cm3 s�1 in the calculations, and
this introduced a systematic error of up to 30%.[45]

Identification of volatile organic compounds

Peak selection related to VOC emissions by the in vitro-grownplants
was carried out as follows. For each spectrometric peak, themedian
of the VOC concentration (ppbv) was calculated for the jars contain-
ing only the substrate, control plants or P. viticola inoculated plants,
for each genotype and time point. Values from the jars containing
only the substrate were subtracted from the intensities of the re-
spective peak of the control and P. viticola inoculated plants for
each genotype and time point, in order to obtain the background-
corrected headspace concentration. After background correction,
the headspace concentration of each peak was normalized using
the leaf dry weight of each plant and the number of days of
emission and expressed as ppbvg�1d�1. In order to discard noise,

a t-test analysis (p=0.05) was carried out for each genotype and
condition, and peaks with a background-corrected headspace
concentration significantly greater than zero for at least two thirds
of the time points were considered as significantly emitted by grape-
vine plants.

The molecular formula of significantly emitted VOCs was identi-
fied according to the mass/charge ratio (m/z), and the background-
corrected headspace VOC emission was expressed as μgg�1d�1

for identified compounds. Significantly emitted VOCs were identified
based on VOC reference standards (National Institute of Standards
and Technology, NIST), our database of reference standard frag-
mentation patterns, and the available literature.

Statistical analysis

The background-corrected concentrations of the VOCs emitted by
the grapevine genotypes were analyzed using an analysis of vari-
ance simultaneous component analysis (ASCA) to consider large

Table 1. Volatile organic compounds of in vitro-grown grapevines measured by Proton Transfer Reaction-Time of Flight-Mass Spectrometer analysis in
the second experiment

Volatile organic compoundb

m/z= 42.0385 m/z= 58.9833 m/z= 59.0491 +

60.0524

m/z= 81.0698 +

137.1324 + 138.1358

m/z= 205.1950 +

206.1984

Samplea Alcohols/aldehydes/

esters fragment

isotope

Sulfur based

compound [52,53]

Acetone [50] Monoterpenes [50,54] Sesquiterpenes

[50,54]

K_C_T0 n.d. n.d. n.d. n.d. n.d.

P_C_T0 n.d. 0.005 ± 0.003 a 3.606 ± 3.115 a n.d. 0.021 ± 0.034 a

S_C_T0 0.039 ± 0.033 0.002 ± 0.002 b 1.906 ± 1.653 a n.d. n.d.

K_C_T4 n.d. n.d. n.d. n.d. n.d.

K_I_T4 n.d. n.d. n.d. n.d. 0.334 ± 0.247 a

P_C_T4 n.d. 0.003 ± 0.002 a 2.830 ± 1.590 a n.d. n.d.

P_I_T4 n.d. 0.003 ± 0.001 a 3.241 ± 1.165 a n.d. 0.025 ± 0.023 c

S_C_T4 0.022 ± 0.022 a 0.002 ± 0.001 a 1.685 ± 0.755 b n.d. n.d.

S_I_T4 0.020 ± 0.020 a n.d. 1.323 ± 1.544 b 0.235 ± 0.201 0.112 ± 0.086 b

K_C_T7 n.d. n.d. n.d. n.d. n.d.

K_I_T7 n.d. n.d. n.d. n.d. 0.545 ± 0.451 a

P_C_T7 n.d. 0.002 ± 0.001 a 3.363 ± 1.226 a n.d. n.d.

P_I_T7 n.d. 0.002 ± 0.001 ab 4.044 ± 1.297 a n.d. 0.073 ± 0.052 b

S_C_T7 0.015 ± 0.016 0.002 ± 0.001 ab 2.038 ± 0.944 b n.d. n.d.

S_I_T7 n.d. 0.001 ± 0.001 b 1.891 ± 1.487 b 0.125 ± 0.148 0.394 ± 0.232 a

K_C_T10 n.d. n.d. n.d. n.d. n.d.

K_I_T10 n.d. n.d. n.d. n.d. 0.371 ± 0.444 a

P_C_T10 n.d. 0.003 ± 0.001 a 3.452 ± 1.153 a n.d. n.d.

P_I_T10 n.d. 0.003 ± 0.002 a 4.456 ± 1.406 a n.d. 0.056 ± 0.049 b

S_C_T10 0.017 ± 0.012 a 0.002 ± 0.001 a 2.343 ± 1.031 b n.d. 0.010 ± 0.010 c

S_I_T10 0.019 ± 0.016 a 0.002 ± 0.001 a 2.414 ± 1.202 b 0.102 ± 0.074 0.411 ± 0.235 a

VOC, volatile organic compounds; PTR-ToF-MS, Proton Transfer Reaction-Time of Flight-Mass Spectrometer.

n.d. indicates not determined VOCs that showed a background-corrected headspace concentration not significantly greater than zero.
aGrapevine plants of the Pinot noir (P), Kober 5BB (K), and SO4 (S) genotype were inoculated (I) or not (C) with Plasmopara viticola, and VOCs were

assessed at zero (T0), 4 (T4), 7 (T7), and 10 (T10) days after inoculation. Two independent experiments were carried out, and the results of the

second experiment are reported in this table.
bThe VOCs were identified by the mass/charge ratio (m/z) of the PTR-ToF-MS analysis and assigned to the class by looking up the m/z in the NIST

database and the cited references. The background-corrected headspace concentrations are expressed as micrograms per gram of leaf dry weight

per day (μg g�1 d�1) and mean, and standard deviation of seven replicates (plants) are presented for each genotype and condition of the second

experiment. For each time point, different letters indicate significant differences among genotypes and conditions according to the Kruskal–Wallis

test (p< 0.05).
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metabolomics data sets with different time points.[46] The Kruskal–
Wallis multiple comparison test (p< 0.05) was carried out on the
background-corrected headspace concentrations of the significantly
emitted peaks, in order to detect significant differences among
genotypes and conditions at each time point. Statistical analysis
and box plots were obtained with the open source program
R,[47] using the MetStaT[48] and Agricolae[49] packages for ASCA
and Kruskal–Wallis analysis, respectively. In the box plots pre-
sented, the box represents the range between the first and third
quartiles; the line inside the box represents the median; the
whiskers extend to the most extreme data within 1.5 times the in-
terquartile range from the box, and the outliers are represented
by separate dots.

Results and discussion

Two independent experiments were carried out, in order to charac-
terize the VOC emission of different grapevine genotypes in re-
sponse to P. viticola inoculation. The resistant SO4 and the
susceptible Pinot noir genotypes were analyzed in the first experi-
ment, and another resistant genotype called Kober was added in
the second experiment.

Severity of downy mildew on grapevine genotypes

Downy mildew sporulation appeared on the abaxial leaf surface of
the susceptible cultivar Pinot noir 7 days (T7) after inoculation. Pinot
noir plants also showed sporulation on the upper leaf surface, peti-
oles, and stems after 10days (T10), as reported for susceptible grape-
vines grown in vitro.[50] SO4 showed only slight sporulation on the
abaxial surface of the leaves and small necrotic spots at T10, in
agreement with the resistance to downymildew described in green-
house and leaf disk tests.[4] Kober 5BB showed no sporulation and
diffuse necrotic spots at T10, demonstrating the successful defense
response. Necrotic spots were one of the earliest phenotypic diffe-
rences that we noticed between susceptible and resistant genotypes,
and they were attributed to a hypersensitivity reaction causing pro-
grammed cell death at the infection site and associated with reduc-
tions in pathogen performance and symptom development.[51]

Assessment of disease severity at T10 showed high production of
sporangia on Pinot noir leaves (Fig. 1). The disease severity was
lower in SO4 and Kober than in Pinot noir plants, in agreement with
the resistance reported for these genotypes under greenhouse
conditions.[4,5] The slight sporulation observed on the resistant
hybrid SO4 could be due to the high humidity, which may have
favored the development of downy mildew sporangia on in vitro-
grown resistant grapevines.[36]

Table 2. Other volatile organic compounds of in vitro-grown grapevines measured by PTR-ToF-MS analysis in the second experiment

Volatile organic compoundb

Samplea m/z= 77.0569
(C3H9O2

+)
m/z= 84.0827
(C5H10N

+)
m/z= 95.0467

(C6H7O
+)

m/z= 113.0227
(C5H5O3

+)
m/z= 149.1253

K_C_T0 n.d. n.d. 0.080 ± 0.100 0.004 ± 0.006 n.d.

P_C_T0 n.d. n.d. n.d. n.d. n.d.

S_C_T0 n.d. 0.817 ± 0.545 n.d. n.d. n.d.

K_C_T4 n.d. n.d. n.d. n.d. n.d.

K_I_T4 n.d. n.d. 0.065 ± 0.084 0.005 ± 0.005 0.028 ± 0.036

P_C_T4 0.002 ± 0.002 a n.d. n.d. n.d. n.d.

P_I_T4 0.002 ± 0.002 a n.d. n.d. n.d. n.d.

S_C_T4 n.d 0.109 ± 0.094 b n.d. n.d. n.d.

S_I_T4 n.d 0.201 ± 0.128 a n.d. n.d. n.d.

K_C_T7 n.d. n.d. n.d. 0.003 ± 0.003 a n.d.

K_I_T7 n.d. n.d. n.d. 0.002 ± 0.002 b 0.043 ± 0.057 a

P_C_T7 0.003 ± 0.002 a n.d. n.d. n.d. n.d.

P_I_T7 0.004 ± 0.002 a n.d. n.d. n.d. n.d.

S_C_T7 n.d. 0.040 ± 0.040 b n.d. n.d. n.d.

S_I_T7 n.d. 0.179 ± 0.104 a n.d. n.d. 0.025 ± 0.033 ab

K_C_T10 n.d. n.d. n.d. 0.002 ± 0.001 n.d.

K_I_T10 n.d. n.d. 0.004 ± 0.005 n.d. n.d.

P_C_T10 0.004 ± 0.003 ab n.d. n.d. n.d. n.d.

P_I_T10 0.005 ± 0.003 a n.d. n.d. n.d. n.d.

S_C_T10 0.003 ± 0.002 ab n.d. n.d. n.d. n.d.

S_I_T10 0.003 ± 0.002 b 0.143 ± 0.076 n.d. n.d. 0.028 ± 0.031

VOC, volatile organic compound; PTR-ToF-MS, Proton Transfer Reaction-Time of Flight-Mass Spectrometer.

n.d. indicates not determined VOCs that showed a background-corrected headspace concentration not significantly greater than zero.
aGrapevine plants of the Pinot noir (P), Kober 5BB (K), and SO4 (S) genotype were inoculated (I) or not (C) with Plasmopara viticola, and VOCs were

assessed at zero (T0), 4 (T4), 7 (T7), and 10 (T10) days after inoculation. Two independent experiments were carried out, and the results of the

second experiment are reported in this table.
bThe VOCs were identified by the mass/charge ratio (m/z) of the PTR-ToF-MS analysis. The background-corrected headspace concentrations are

expressed as micrograms per gram of leaf dry weight per day (μg g�1 d�1), and the mean and standard deviation of seven replicates (plants) are

presented for each genotype and condition of the second experiment. For each time point, different letters indicate significant differences among

genotypes and conditions according to the Kruskal–Wallis’ test (p= 0.05).
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Assessment of volatile organic compounds emitted by

in vitro-grown grapevines

Although production of non-volatile secondary metabolites was
widely largely characterized in grapevines following downymildew
inoculation,[8–10] this is the first time that the emission of VOCs was
investigated in such conditions. The background-corrected head-
space concentration of most of the significantly emitted VOCs
was relatively low in both experiments (Tables 1, 2, and S2), demon-
strating the potential of PTR-ToF-MS analysis to assess VOC emis-
sions by in vitro plants. The low headspace concentrations of
VOCs strongly limit the use of most traditional chromatographic
techniques (e.g., GC-MS), while PTR-ToF-MS is a suitable method
because of its high level of sensitivity, time resolution, and the lack
of sample preparation or fiber incubation.
The ASCA analysis showed that the VOCs emitted by the in vitro-

grown plants permits a clear distinction between the three grape-
vine genotypes in the absence of P. viticola infection (Fig. 2a). The
first and the second principal components accounted for 86.9%
and 13.1% of the variance, respectively, and the genotype factor
accounted for the largest (39.3%) contribute to the sum of
squares of the centered data. The time factor accounted for
16.2%; the interaction between time and genotype contributed
for 10.8%, and the remaining 33.7% was due to residuals. After
P. viticola inoculation, differences in the three genotypes were
better highlighted by the significantly emitted VOCs, with the
first and second principal components accounting for 90.7%
and 9.3% of variance, respectively, and the genotype factor
accounting for the largest percentage (60.1%) contribution to
the sum of squares of the centered data (Fig. 2b). The sum of
squares of the centered data for the time factor accounted for
6.3%; the interaction between time and genotype accounted for
2.4%, and the residuals for 31.2% in P. viticola-inoculated plants.
Clustering of genotypes in separate regions of the ASCA analysis was
better for inoculated plants (Fig. 2b) than for control plants (Fig. 2a),
indicating that the resistance to downy mildew was mainly based on
post-infection mechanisms, in agreement with gene expression
analysis.[55]

The VOC emission by control plants differed significantly ac-
cording to the plant genotype. For instance, the peaks found at
m/z=58.9833 and m/z=59.0491, corresponding to sulfur-based
compounds and acetone,[56] respectively, were emitted by Pinot
noir and SO4 and not by Kober 5BB control plants at T0, T4, T7,
and T10 in the second experiment (Table 1). The emission of
sulfur-based compounds, acetone (Table 1), and five unidentified
VOCs (Table 2 and S2) was not significantly affected by P. viticola
inoculation, suggesting that it was mainly related to the grape-
vine genotype and was not stimulated in response to pathogen
infection. However, the concentrations and profiles of sulfur-
based compounds and acetone differed during the experimental
repetition, possibly because of a diverse number of replicates or
to a noisy background.

Emissions of sesquiterpenes

No emission of sesquiterpenes (m/z 205.1950 and 206.1984) by
control plants was detected, except a slight emission by SO4
plants at T10 (Fig. 3a) and Pinot noir plants at T0 (Table 1). In
particular, the SO4 genotype emitted sesquiterpenes at T4, T7,
and T10 in the first experiment (Fig. 3a) and the second experi-
ment (Fig. 3b). Kober 5BB plants emitted sesquiterpenes at T4,
T7, and T10, while Pinot noir plants showed only slight emission

after P. viticola inoculation. The emission of sesquiterpenes by
P. viticola-inoculated plants was greater from resistant geno-
types (SO4 and Kober 5BB) than from the susceptible geno-
type (Pinot noir). The level of sesquiterpene emission by P.
viticola-inoculated SO4 and Kober 5BB plants was statistically
comparable, except at T4 when it was greater from Kober
5BB than SO4.

Sesquiterpenes play a major role in resistance mechanisms
against insect pests,[56,57] and their accumulation is also induced
by inoculation with a pathogen or its metabolites, such as lettucenin
A by Bremia lactucae, Botrytis cinerea, and Pseudomonas syringae pv.
phasealicola in lettuce plants[58] and capsidiol by an elicitor from
Phytophthora megasperma in tobacco cell cultures.[59] Lettucenin A
and the sequiterpenes β-elemene exhibited antifungal activity
against B. cinerea, Br. lactucae, Ps. syringae pv. phasealicola,[58] and
Magnaporthe oryzae,[14] respectively, indicating the direct effect
of sesquiterpenses against plant pathogens. Moreover, Himejima
and colleagues[24] demonstrated that the sesquiterpene longifolene
exhibited activity against Bacillus subtilis and Brevibacterium

ammoniagenes. Likewise, the β-caryophyllene produced by tomato
leaves was able to inhibit B. cinerea[25] and was implicated in

Figure 2. Analysis of variance simultaneous component analysis of volatile
organic compounds emitted by (a) control (uninoculated) and (b) Plasmopara
viticola-inoculated grapevines of the Pinot noir (crosses), Kober 5BB (open
circles), and SO4 (solid squares) genotypes in the second in vitro experiment.
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the resistance of Arabidopsis thaliana to infections of Ps. syringae
pv. tomato DC3000 on floral stigmas,[60] suggesting a possible
role for sesquiterpenes as toxic molecules against pathogens.

Emissions of monoterpenes

Emission of monoterpenes (m/z 137.1325, 138.1358, and 81.0698)
was only detected from P. viticola-inoculated plants of the SO4
genotype (Fig. 4). In particular, SO4 plants showed emission of
monoterpenes at T4, T7, and T10 following P. viticola inoculation
in both experiments. On the other hand, Pinot noir and Kober
5BB plants did not emit monoterpenes from either the control
or P. viticola-inoculated plants. The control plants did not emit
monoterpenes, except for the SO4 genotype at T4 in the first
experiment, demonstrating that the production of volatile mono-
terpenes was activated in response to P. viticola inoculation.
Although the volatile terpenes emitted by P. viticola-inoculated
plants could be synthesized either by the grapevine or the patho-
gen, their emission was high in genotypes with low pathogen
development, suggesting that they are mainly produced by plant
cells.

Pathogen-dependent emission of monoterpenes was previously
reported in rice plants after inoculation withMagnaporthe grisea.[21]

However, the role of monoterpenes in plant defense against plant
pathogens has been little investigated to date. The monoterpene
linalool displayed antimicrobial activities against Xanthomonas

citri, Penicillium italicum,[61] and C. lindemuthianum.[20] Likewise,
the monoterpenes γ-terpinene, β-pinene, and α-pinene inhibit
growth and germination of Leptographium spp.,[62] as well as citral,
citronellal, and linalool inhibited spore germination and hyphal
growth of the fungal pathogen Alternaria alternata.[52] Citral in-
terfered with the membranes of Aspergillus spp. spores,[53] and
α-pinene, β-pinene, 3-carene, limonene, and terpinolene showed
antimicrobial activity against Saccharomyces cerevisiae,[24] suggest-
ing the general antifungal role of monoterpenes against phyto-
pathogens. Limonene was also able to inhibit the growth of the
pathogens Mucor mucedo[24] and C. lindemuthianum.[20] Moreover,
the monoterpene allo-ocimene, together with C6-aldehydes, was
able to confer greater resistance against B. cinerea by inducing the
expression of defense genes in A. thaliana,[54] also demonstrating
the role ofmonoterpenes to induce plant resistance. To summarize,
it seems that monoterpenes could have several roles in the defense
mechanisms against pathogens, suggesting that the production of
monoterpenes in SO4 plants may possibly be associated with the
defense mechanisms activated in resistant genotypes to downy
mildew.

Figure 3. Emission of sesquiterpenes by grapevine plants inoculated with Plasmopara viticola in the (a) second experiment and (b) first in vitro experiment.
Grapevine plants of the Pinot noir (P), Kober 5BB (K), and SO4 (S) genotypes were inoculated (I) or not (C) with P. viticola, and volatile organic compounds were
assessed using Proton Transfer Reaction-Time of Flight-Mass Spectrometer analysis at 4 (T4), 7 (T7), and 10 (T10) days after inoculation. Box plots of
background-corrected headspace concentrations from five and seven replicates (plants) are presented for each genotype and condition in the first and
second experiments, respectively. For each time point, different letters indicate significant differences among genotypes and conditions, according to the
Kruskal–Wallis test (p< 0.05).
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Conclusions

There is no information available in the literature on the VOCs emit-
ted by grapevine plants following inoculation with P. viticola. Here,
we have shown that the PTR-ToF-MS is a powerful tool for analyzing
VOC emission by in vitro-grown grapevines after downy mildew
inoculation, which may be also extended to other pathosystems.
The analysis of in vitro-grown plants allowed precise identification of
compounds produced by control plants under axenic conditions
and in response to P. viticola inoculation, without possible external
factors and contaminants. Our method discriminated between the
three tested genotypes based on VOC emissions and showed signifi-
cant differences between the American hybrids and the V. vinifera
genotype both in P. viticola-inoculated and control plants. The
emission ofmonoterpenes by SO4 plants and the emission of sesqui-
terpenes by SO4 andKober 5BB plantswere significantly greater than
in Pinot noir after inoculation. Because monoterpenes and sesquiter-
penes are known to be involved in plant resistance to insects and
pathogens, our results raise the question of the possible role of
volatile terpenes in the defense reaction against P. viticola in resistant
genotypes. Clarifying this role requires assessment of direct toxic
activity against P. viticola and/or the validationof their role in the activa-
tion of plant resistance, whichwill be further investigated in the future.
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 Grapevine VOCs represent possible mediators of plant defence against 

phytopathogens such as P. viticola (publication 1). However, the contribution of VOCs 

in grapevine defence mechanisms against downy mildew has not yet been investigated. 

In this study, HS-SPME/GC-MS analysis was used to analyse VOC profiles of four 

resistant and one susceptible grapevine genotypes upon P. viticola inoculation under 

greenhouse conditions. Results revealed that downy mildew significantly increased the 

production of defence-related VOCs in resistant, but not in susceptible grapevine 

genotypes. Particularly, active VOCs against P. viticola were identified and they 

possibly contribute to grapevine resistance by direct inhibition of downy mildew in the 

emitting tissues and in systemic parts of locally attacked plants.  
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Abstract 

Volatile organic compounds (VOCs) play a crucial role in the communication of plants with 

other organisms and are possible mediators of plant defence against phytopathogens. Although 

the role of non-volatile secondary metabolites has been largely characterised in resistant 

genotypes, the contribution of VOCs to grapevine defence mechanisms against downy mildew 

(caused by Plasmopara viticola) has not yet been investigated. In this study, more than 50 

VOCs from grapevine leaves were annotated/identified by headspace-solid-phase 

microextraction gas chromatography-mass spectrometry analysis. Following P. viticola 

inoculation, the abundance of most of these VOCs was higher in resistant (BC4, Kober 5BB, 

SO4 and Solaris) than in susceptible (Pinot noir) genotypes. The post-inoculation mechanism 

included the accumulation of 2-ethylfuran, 2-phenylethanol, ȕ-caryophyllene, ȕ-cyclocitral, ȕ-

selinene and trans-2-pentenal, which all demonstrated inhibitory activities against downy 

mildew infections in water suspensions. Moreover, the development of downy mildew 

symptoms was reduced on leaf disks of susceptible grapevines exposed to air treated with 2-

ethylfuran, 2-phenylethanol, ȕ-cyclocitral or trans-2-pentenal, indicating the efficacy of these 

VOCs against P. viticola in receiver plant tissues. Our data suggest that VOCs contribute to the 

defence mechanisms of resistant grapevines and that they may inhibit the development of 

downy mildew symptoms on both emitting and receiving tissues. 
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Introduction 

Plants are constantly exposed to environmental stressors and have evolved complex ways to 

defend themselves against pathogens, herbivorous arthropods, parasitic plants and 

neighbouring plant competitors1. Plants can produce a wide variety of volatile organic 

compounds (VOCs), which play a crucial role in the interaction of plants with other organisms 

and in the regulation of plant responses against biotic stresses1,2. VOCs constitute 

approximately 1% of plant secondary metabolites3 and are usually lipophilic molecules that 

can freely diffuse into the environment and pass biological membranes, thanks to their low 

molecular weight and high vapour pressure4. Based on their structure and biosynthetic 

pathways, plant VOCs can be divided into four main classes: terpenoids, 

phenylpropanoids/benzenoids, fatty acid derivatives and those derived from non-aromatic 

amino acids2,3. Volatile terpenoids are synthesized by the cytosolic mevalonic acid and 

plastidial methylerythritol phosphate pathway, which leads to the formation of carotenoids, 

mono-, di-, hemi- and sesquiterpenes2. Phenylpropanoid/benzenoid compounds are the second 

largest class of plant VOCs and they originate from phenylalanine through the 

shikimate/phenylalanine biosynthetic pathway2. Volatile fatty acid derivatives mainly derive 

from linoleic and linolenic acids through the lipoxygenase pathway2, while volatile amino acid 

derivatives contain nitrogen and sulphur and are synthesized from alanine, valine, leucine, 

isoleucine or methionine3. 

The production and roles of plant VOCs in response to mechanical wounding or herbivore 

insects have been extensively investigated, but little is known about their involvement in 

defence mechanisms against pathogens5,6. Pathogen-induced VOCs typically consist of methyl 

salicylate (MeSA)7-9, mono- and sesquiterpenes7,8,10-12, heterocyclic compounds7, green leaf 
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volatiles (GLVs) and ketones10,11. Three possible modes of action against pathogens have been 

attributed to plant VOCs, namely direct inhibition of microbial growth, induced and 

associational resistance6. For example, GLVs13 and ȕ-caryophyllene14 directly inhibited 

bacterial growth and trans-2-hexenal reduced the germination of Monilinia laxa15 and Botrytis 

cinerea conidia16. Likewise, monoterpenes (limonene and ȕ-linalool), nonanal and methyl 

jasmonate (MeJA) inhibited the germination of Colletotrichum lindemuthianum6, and esters 

(methyl propanoate and methyl prop-2-enoate) reduced the development of Fusarium 

culmorum and Cochliobolus sativus17. As a result of induced and associational resistance, 

VOCs can contribute to disease reduction in systemic parts of a locally attacked plants or in 

neighbouring plant receivers6. For example, VOC blends emitted by resistant plants6,18 induced 

defence-related processes in neighbouring plants, such as monoterpenes (α-pinene and ȕ-

pinene)19, MeSA20, MeJA and GLVs21. Finally, VOCs can be adsorbed to the cuticle of a 

receiver plant and these ‘sticky’ VOCs can persist on the leaf surface22
, thereby exerting 

inhibitory effects against fungal pathogens and establishing the associational resistance6. 

The involvement of plant VOCs in resistance mechanisms against pathogens is supported 

by specific VOC emission profiles in resistant and susceptible genotypes of maize to 

Aspergillus flavus23, citrus plants to Candidatus liberibacter asiaticus24 and grapevine plants to 

Plasmopara viticola12. In the latter, the emission of the sesquiterpene and monoterpene classes 

was found to be more pronounced in downy mildew-resistant than in susceptible grapevine 

genotypes12
, and the emission of a sesquiterpene [(E,E)-α-farnesene] was associated with the 

resistance induced by a sulphated laminarin against downy mildew25. Downy mildew, caused 

by the biotrophic oomycete Plasmopara viticola, is one of the most destructive diseases of the 

grapevine26. Resistance traits have been identified in wild grapevine species (Vitis riparia, V. 
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rupestris, V. amurensis and Muscadinia rotundifolia) and the defence mechanisms against 

downy mildew have been investigated in resistant genotypes27. For example, physical (hairy 

and water repellent leaf surface) and chemical (phytoanticipins) barriers represent constitutive 

factors against pathogen infection28, while the accumulation of reactive oxygen species, 

pathogenesis-related proteins and non-volatile secondary metabolites (stilbenic phytoalexins 

and other antimicrobial phenolic compounds) has been shown to be a key post-inoculation 

mechanism involved in limiting P. viticola infection29-31. Although resistant genotypes produce 

some VOC classes after P. viticola inoculation12, identification of the underlying compounds 

and their functional role in grapevine resistance mechanisms have not yet been investigated. 

The aim of this study was to annotate/identify VOCs produced by resistant and susceptible 

grapevine genotypes in response to P. viticola inoculation using headspace-solid-phase 

microextraction gas chromatography-mass spectrometry analysis (HS-SPME/GC-MS) and to 

test their effects against downy mildew. Due to the obligate biotrophic lifestyle of P. viticola, 

inhibitory effects of VOCs can be tested only in the presence of host tissues and the final goal 

was to better understand the contribution of grapevine VOCs to limit downy mildew 

development in susceptible leaves. 

 

Results 

Profiles of VOCs detected in grapevine leaves. The evaluation of resistance levels confirmed 

a lower degree of resistance for the susceptible V. vinifera cultivar Pinot noir ENTAV 115 in 

both greenhouse experiments, as compared with the four downy mildew-resistant genotypes: 

BC4 [M. rotundifolia × V. vinifera32], Kober 5BB [V. berlandieri × V. riparia33], SO4 [V. 

berlandieri × V. riparia34] and Solaris [Merzling (Seyve-villard 5276 × Freiburg 379-52) × 
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Geisenheim 6493 (Severnyi × Muscat Ottonel); www.vivc.de] (Fig. 1). Specifically, leaves of 

susceptible Pinot noir plants showed dense sporulation of P. viticola, chlorotic spots and the 

absence of necrosis (mean OIV-452 score: 3), while those of BC4, Kober 5BB, SO4 and Solaris 

showed diffuse necrotic spots with sparse or absent sporangiophores (mean OIV-452 scores 

ranged from 7 to 9). 

Leaf samples were collected immediately before inoculation (0 dpi) and six days post 

inoculation (6 dpi) with P. viticola, frozen in liquid nitrogen, ground to a fine powder and 

subjected to VOCs analysis according to the protocol optimized for grapevine leaves by 

Weingart, et al. 63 (Supplementary Fig. S1). A total of 56 and 52 VOCs were found in the five 

grapevine genotypes in the first and second experiment, respectively. In particular, 41 VOCs 

were properly annotated and 16 were found as unknown compounds according to the measured 

retention index (RI) of the HS-SPME/GC-MS analysis (Supplementary Tables S1, S2 and S3). 

Three pairwise comparisons were analysed to detect VOCs with significant changes in 

abundance (Kruskal-Wallis test p ≤ 0.05 and a fold change > 1.5) between each resistant 

genotype and Pinot noir at 0 dpi (R vs. PN 0 dpi) and 6 dpi (R vs. PN 6 dpi) or between 6 and 

0 dpi for each genotype (6 vs. 0 dpi). VOC profiles of the tested grapevine genotypes were 

mainly consistent in the two experiments, and they differed according to the grapevine 

genotypes and time points (Figure 2, Supplementary Tables S1 and S2). Slight differences in 

VOC abundance occurred in resistant genotypes and the susceptible Pinot noir at 0 dpi 

(constitutive differences). On the other hand, the abundance of most of the annotated VOCs 

was consistently higher in resistant genotypes than in Pinot noir at 6 dpi in both experiments 

(post-inoculation differences). This is also reflected by the observation that most of the VOCs 
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showed an increase in abundance at 6 dpi as compared with 0 dpi within each resistant 

genotype, but not in Pinot noir. 

More specifically, VOCs were divided into six metabolite groups according to changes in 

abundance between resistant and susceptible genotypes consistently found in both 

experimental repetitions. The first metabolite group included two sesquiterpenes (Ȗ-cadinene, 

δ-cadinene) and unknown compound 1, whose abundance was consistently higher in all 

resistant genotypes than in Pinot noir at 6 dpi in both experiments (Metabolite group 1). 

Moreover, Ȗ-cadinene and δ-cadinene already showed higher constitutive levels in two (Kober 

5BB and SO4) and three (BC4, Kober 5BB and SO4) resistant genotypes as compared with 

Pinot noir at 0 dpi in both experiments, respectively.  

The metabolite group 2 summarises 12 compounds whose abundances were 

consistently higher in two or more resistant genotypes than in Pinot noir at 6 dpi in both 

experiments. ȕ-caryophyllene, ȕ-selinene and ledol and the two unknown compounds 2 and 3 

were consistently more abundant in P. viticola-inoculated leaves of three resistant genotypes 

(BC4, Kober 5BB and Solaris) than in Pinot noir. The abundance of 2-ethylfuran and ȕ-

cyclocitral was higher in P. viticola-inoculated leaves of the resistant genotypes Kober 5BB 

and Solaris as compared with Pinot noir in both experiments. All the other unknown 

compounds (from 4 to 8) of this metabolite group showed higher levels in P. viticola-inoculated 

leaves of two of the four resistant genotypes as compared with Pinot noir at 6 dpi in both 

experiments.  

The abundance of 17 VOCs was consistently higher in only one resistant genotype as 

compared with Pinot noir at 6 dpi in both experiments (Metabolite group 3). Specifically, α-

caryophyllene, α-muurolene and epizonarene were consistently more abundant in P. viticola-
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inoculated leaves of BC4 than in Pinot noir. The abundance of trans-2-pentenal and unknown 

compound 9 was higher in Kober 5BB than in Pinot noir. Together with  and cadinene, 

trans-2-pentenal and unknown compound 9 belonged to a group of four VOCs that were not 

only found to be induced by the pathogen inoculation but were also constitutively more 

abundant in Kober 5BB than in Pinot noir before inoculation. Moreover, α-eudesmol, Ȗ-

selinene and ȕ-linalool showed higher abundance in Kober 5BB as compared with Pinot noir 

after P. viticola inoculation. P. viticola inoculation increased the abundance of a diester 

(diisobutyl phthalate) and eight VOCs [2-penten-1-ol-(E), ȕ-ionone, 2-phenylethanol, decanal, 

ethyl-benzaldehyde and unknown compounds 10, 11 and 12] in SO4 and Solaris as compared 

with Pinot noir at 6 dpi, respectively.  

In contrast to the high number of P. viticola-induced VOCs, two alcohols (3-ethyl-4-

methyl-1-pentanol and benzyl alcohol) and two aldehydes [2,4-heptadienal (E-E)- and 

benzenacetaldehyde] were consistently less abundant in at least one resistant genotype and 

time point as compared with Pinot noir (Metabolite group 4). While the results described for 

metabolite groups 1-4 were consistent across both experiments, the profiles of 15 VOCs 

differed in the two experiments (Metabolite group 5). Moreover, five VOCs (α-copaene, 

germacrene B, germacrene D, dihydroactinidiolide and (+)-aromadendrene) and one VOC 

(octanoic acid) were detected only in the first or second experiment, respectively (Metabolite 

group 6).  

 

Effects of pure VOCs on downy mildew severity. Eight VOCs were selected according to 

their consistent changes in abundance between resistant and susceptible genotypes in both 

experiments and they were tested as single pure compounds against P. viticola at different 
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dosages in water suspension and air volume (Supplementary Fig. S1). More specifically, a 

mixture of ɣ- and δ-cadinene isomers was selected since they were consistently more abundant 

in all resistant genotypes at 6 dpi; three compounds (ȕ-caryophyllene, ȕ-selinene and ledol) 

and two compounds (2-ethylfuran and ȕ-cyclocitral) were selected due to their consistently 

higher abundance in three (BC4, Kober 5BB and Solaris) and two resistant genotypes (Kober 

5BB and Solaris) as compared with Pinot noir at 6 dpi respectively; trans-2-pentenal and 2-

phenylethanol were selected as Kober 5BB (at 0 and 6 dpi) and Solaris (at 6 dpi) specific 

compounds, respectively. Leaf disks inoculated with the P. viticola sporangia suspension only 

(control) displayed severe sporulation at 6 dpi, while those inoculated with sporangia 

suspensions containing 10.0 g/L of each pure VOC had no disease symptoms (Fig. 3A). 

However, treatments with 10.0 g/L in water suspension of cadinene, ledol, trans-2-pentenal, 2-

ethylfuran and ȕ-cyclocitral caused phytotoxic effects on leaf tissues (diffuse chlorotic spots). 

Trans-2-pentenal, 2-ethylfuran and ȕ-cyclocitral prevented downy mildew symptoms at the 

dosage of 1.0 g/L with no visible phytotoxic effects (Fig. 3B). At a VOC concentration of 0.1 

g/L in water suspension, only trans-2-pentenal reduced downy mildew symptoms (Fig. 3C), 

with a disease reduction (efficacy) of 29.0 ± 9.2% (mean ± standard error, both expressed as a 

percentage), calculated according to the following formula: (disease severity of control disks - 

disease severity of VOC-treated disks)/(disease severity of control disks) × 100. No reduction 

in downy mildew severity was observed with pure VOCs at 0.01 g/L each (efficacy ranged 

from 0.0 ± 0.1% to 0.1 ± 0.0%) or with a blend of eight (2-phenylethanol, cadinene, ȕ-

caryophyllene, ȕ-selinene, ledol, trans-2-pentenal, 2-ethylfuran, and ȕ-cyclocitral) or three 

(trans-2-pentenal, 2-ethylfuran, and ȕ-cyclocitral) pure VOCs at dosages of 0.1 (efficacy of 0.0 
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± 0.0% and 0.3 ± 0.1%, respectively) or 0.01 g/L in water suspension for each compound 

(efficacy of 0.0 ± 0.0% and 0.2 ± 0.1%, respectively; Kruskal-Wallis test, p > 0.05). 

The eight pure VOCs were also tested against P. viticola at different dosages in air 

volume without direct contact with the leaf tissue. These tests showed that 2-phenylethanol, 

trans-2-pentenal, 2-ethylfuran and ȕ-cyclocitral reduced downy mildew symptoms at a dosage 

of 20 mg/L in air volume, while cadinene, ȕ-caryophyllene, ȕ-selinene and ledol did not (Fig. 

4A). Leaf disks exposed to ȕ-caryophyllene at a concentration of 50 mg/L in air volume 

showed phytotoxic effects, while those exposed to cadinene (78.0 ± 8.9%), ȕ-selinene (85.6 ± 

4.8%) and ledol (94.0 ± 0.9%) showed a disease severity comparable to control disks (98.8 ± 

0.8%, Kruskal-Wallis test p > 0.05) and therefore these VOCs were not further used in activity 

tests. By lowering the concentration to 5.0 and 0.5 mg/L in air volume, only trans-2-pentenal 

reduced downy mildew symptoms with an efficacy of 100.0 ± 0.1% and 46.7 ± 10.3%, 

respectively (Figs 4B and 4C). The dependence of efficacy on the concentration was tested in 

more detail for trans-2-pentenal, and at a concentration of 2.5 mg/L in air volume it was able 

to completely suppress downy mildew symptoms (efficacy 100.0 ± 0.1%) without any visible 

phytotoxic effects (Fig. 5). 

The four active VOCs in air volume (2-ethylfuran, 2-phenylethanol, ȕ-cyclocitral or 

trans-2-pentenal) were further characterised with microscopic analysis, using the lowest 

concentrations at which the highest efficacy without visible phytotoxicity was observed (i.e. 

optimised concentrations), namely 2.5 mg/L in air volume of trans-2-pentenal and 20 mg/L in 

air volume of 2-ethylfuran, 2-phenylethanol or ȕ-cyclocitral. Aniline blue-staining revealed 

marked differences between control and VOC-treated leaf disks after P. viticola inoculation 

(Fig. 6). At 1 dpi, the pathogen had already penetrated the stomata of control leaf disks, and 
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encysted zoospores and substomatal vesicles were visible. The number of zoospores that had 

successfully entered stomata at 1 dpi was reduced in leaf disks treated with 2-phenylethanol, 

2-ethylfuran or ȕ-cyclocitral, while no infection structures were visible on trans-2-pentenal-

treated disks. At 2 dpi, elongated and branched hyphae with haustoria were visible in control 

leaf disks, while primary haustoria and primary hyphae were occasionally visible in 2-

phenylethanol-, 2-ethylfuran-, and ȕ-cyclocitral-treated leaf disks. Again, no pathogen 

structures were visible in trans-2-pentenal-treated leaf disks at 2 dpi and sporulation was still 

not visible at 6 dpi. At 6 dpi, P. viticola mycelium had already spread to the parenchyma and 

produced sporangiophores in control leaf disks, while P. viticola sporulated areas were reduced 

in 2-phenylethanol-, 2-ethylfuran- and ȕ-cyclocitral-treated samples.  

 

Effects of pure VOCs on Plasmopara viticola sporangia. In order to assess the effects on P. 

viticola sporangia, the four active VOCs were tested at their respective optimised 

concentrations in air volume, as calculated from the experiments described above. Trans-2-

pentenal and ȕ-cyclocitral reduced sporangia length and width, while 2-phenylethanol and 2-

ethylfuran did not (Figs 7A and 7B). However, sporangia vitality was not affected by VOC 

treatments and the disease severity of disks inoculated with 2-phenylethanol- (77.8 ± 4.5%), 

2-ethylfuran- (80.4 ± 2.7%), ȕ-cyclocitral- (76.2 ± 10.4%) and trans-2-pentenal-treated 

sporangia (77.3 ± 11.4%) was comparable to that of control sporangia (79.8 ± 1.7%; Kruskal-

Wallis test p > 0.05). 
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Discussion 

VOCs are known to play a crucial role in the communication between plants and other 

organisms1,2 and three possible modes of action against plant pathogens have been 

hypothesised so far6. More specifically, it has been shown that VOCs can directly inhibit 

pathogen growth, induce plant resistance mechanisms in neighbouring plants and mediate 

associational resistance by adsorption to the cuticle of receiver tissues6,35. The emission of 

some VOC classes has been demonstrated in resistant grapevines after P. viticola 

inoculation12,35, but annotation of their chemical structures and assessment of their functional 

roles in defence mechanisms have not yet been investigated. In agreement with previous 

literature on transcriptional regulation and accumulation of non-volatile metabolites29,30, VOC 

profiles were mainly related to post-inoculation mechanisms and significant increases in 

abundances were detected for 20 annotated VOCs at 6 dpi as compared with 0 dpi in all the 

four resistant grapevine genotypes tested (BC4, Kober 5BB, SO4 and Solaris). The role of 

VOCs in grapevine defence mechanisms was supported by the higher abundance in resistant 

genotypes as compared with the susceptible V. vinifera cultivar (Pinot noir) after P. viticola 

inoculation. For example, 11 terpenoids (α- and ȕ-caryophyllene, α-muurolene, α-eudesmol, 

ȕ-linalool, Ȗ- and δ-cadinene, ȕ- and Ȗ-selinene, epizonarene and ledol) showed higher 

abundance in at least one resistant genotype as compared with Pinot noir, in agreement with 

the increased emission of this VOC class by P. viticola-inoculated plants previously shown by 

proton-transfer-reaction time-of-flight mass spectrometry analysis12. Moreover, the abundance 

of trans-2-pentenal, Ȗ- and δ-cadinene also differed in resistant and susceptible genotypes 

before P. viticola inoculation, suggesting their involvement in constitutive defence 

mechanisms of resistant genotypes as well. Moreover, the majority of the unknown compounds 
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(from 1 to 12) showed an increase in abundance in resistant genotypes as compared with Pinot 

noir at 6 dpi, but further studies are required to better identify the chemical structure and 

potential roles of these compounds. 

Functional assays demonstrated that treatments with 2-ethylfuran, 2-phenylethanol, ȕ-

caryophyllene, ȕ-cyclocitral, ȕ-selinene and trans-2-pentenal in water suspensions reduced the 

development of downy mildew symptoms on Pinot noir leaf disks with no visible phytotoxic 

effects. Previous studies have indicated that VOCs are more abundant in the emitting leaf than 

in its surrounding gas space6 and they possibly accumulate in correspondence with the 

stomata36, suggesting that active VOCs can reach sufficiently high concentrations at stomatal 

infection sites to limit P. viticola infections. Thus, VOCs synthesized by resistant genotypes 

possibly contribute to resistance mechanisms by inhibiting downy mildew development in the 

plant emitter. Two active VOCs (ȕ-caryophyllene and ȕ-selinene) inhibited P. viticola only 

when applied in the water sporangia suspension, possibly due to the relatively low volatility of 

sesquiterpenes37, and they may form protective envelopes on the leaf surfaces of the plant 

emitter, with scarce migration to neighbouring plants. Moreover, four active VOCs (2-

ethylfuran, 2-phenylethanol, ȕ-cyclocitral and trans-2-pentenal) also prevented downy mildew 

symptoms on the susceptible Pinot noir leaf disks when applied in the air volume without direct 

contact with leaf tissues, indicating possible migration of these VOCs from plant emitters to 

neighbouring plants receivers. Previous studies have suggested that resistance induction can 

be impaired in detached leaves38 and this plant defence mechanism can show negligible effects 

on leaf disks6, indicating that these four active VOCs may contribute to associational resistance 

and reduce the severity of downy mildew symptoms on receiver plant tissues. Indeed, it has 

been reported that some VOCs can be adsorbed to the cuticle of the receiver and persist on its 
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leaf surface22 and display inhibitory activities against phytopathogens through associational 

resistance mechanisms6. However, inhibitory effects of VOCs against downy mildew can be 

tested only in the presence of host tissues, due to the obligate biotrophic lifestyle of P. viticola. 

Thus, possible indirect effects of VOCs on host tissues cannot be totally excluded, such as the 

induction of plant resistance or slight phytotoxic effects. Indeed, sporangia vitality was not 

affected by the exposure to air treated with the four active VOCs, and only trans-2-pentenal 

and ȕ-cyclocitral slightly reduced sporangia diameter. Thus, active VOCs could act against P. 

viticola once zoospores are released from sporangia and/or they possibly need the presence of 

host tissues to display the inhibitory activities. However, more precise functional and 

molecular studies on zoospore motility and grapevine resistance induction after VOC 

treatments are required to better understand the VOC activities against P. viticola. Moreover, 

stereochemical analyses are also needed to identify the stereoisomeric configuration of 

grapevine VOCs and the specificity of stereoisomers against downy mildew. 

In the conditions applied in our study, trans-2-pentenal strongly inhibited downy 

mildew symptoms and was found in Kober 5BB plants before and after P. viticola inoculation. 

Trans-2-pentenal belongs to α,ȕ-unsaturated aldehydes, which are categorised as GLVs39. Due 

to their chemical structure, α,ȕ-unsaturated aldehydes can react with nucleophiles (such as 

protein sulphydryl or amino groups)40 and cause morphological deformations, collapse and 

deterioration of fungal structures16, as in the case of trans-2-hexenal against B. cinerea16 and 

M. laxa15. Therefore, the same mechanism of action can be hypothesised for trans-2-pentenal 

against P. viticola and can also explain the phytotoxic effects observed on grapevine leaf disks 

at dosages higher than 5 mg/L in air volume. Moreover, 2-phenylethanol, 2-ethylfuran and ȕ-

cyclocitral displayed moderate efficacy against downy mildew in air volume and they were 
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mainly produced by one (Solaris) and two (Kober 5BB and Solaris) resistant genotypes after 

P. viticola inoculation, respectively. 2-phenylethanol (also known as benzeneethanol or 

phenylethyl alcohol) is present in plant essential oils41 and has previously been shown to have 

antimicrobial activity against Escherichia coli and Rhizoctonia solanacearum41, Penicillium 

digitatum and P. italicum42, Candida albicans, Gram-positive and negative bacteria43. 

Moreover, it has been reported that 2-ethylfuran accumulated during fatty acid oxidation in 

wild rocket44 and olive oil45
, and it has nematicidal activity against Meloidogyne incognita46. 

Likewise, Ikawa, et al. 47 and Ozaki, et al. 48 respectively demonstrated that ȕ-cyclocitral 

inhibited Chlorella pyrenoidosa and Cyanobacterium microcystis. 

Sesquiterpenes (ȕ-caryophyllene and ȕ-selinene) reduced downy mildew symptoms in 

water suspensions and terpenes have already been classified as markers of genetic12 and 

induced resistance25 against grapevine downy mildew. Terpenes are generally recognised to 

contain antimicrobial metabolites49 and can interfere with mitochondrial membranes causing 

microbial cell death50. Infections of Magnaporte oryzae and Pseudomonas syringae pv. 

maculicola increased the emission of ȕ-caryophyllene in rice leaves51 and tobacco plants8, 

respectively. Our results are also in agreement with Huang, et al. 14, who demonstrated that ȕ-

caryophyllene inhibits P. syringae pv. tomato DC3000 in water suspensions and not in air 

volume (without direct contact). Likewise, ȕ-selinene reduced downy mildew symptoms in 

water suspension and has previously been found in plant essential oils, with antimicrobial 

activities against Staphylococcus aureus and C. albicans52, Bacillus licheniformis and 

Trypanosoma brucei brucei53. Moreover, our results indicate that resistant genotypes can 

produce at least a further six terpenes (α-caryophyllene, α-eudesmol, α-muurolene, ȕ-linalool, 

Ȗ-selinene and epizonarene), one isoprenoid (ȕ-ionone), one alcohol [2-penten-1-ol-(E)] and 
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two aldehydes (decanal and ethyl-benzaldehyde), and some of these VOCs are known for their 

inhibitory activities against plant pathogens. For example, ȕ-linalool inhibited C. 

lindemuthianum6 and P. aeruginosa54 and induced resistance against Xanthomonas oryzae in 

rice55. Likewise, ȕ-ionone showed fungistatic activity against C. musae56 and decanal inhibited 

Phytophthora infestans57, indicating that several putative defence-related VOCs are 

synthesized by resistant genotypes in response to P. viticola. 

In conclusion, P. viticola inoculation significantly increased the production of defence-

related VOCs in resistant, but not in susceptible grapevine genotypes. Resistant grapevines 

accumulated six VOCs (2-ethylfuran, 2-phenylethanol, ȕ-caryophyllene, ȕ-cyclocitral, ȕ-

selinene and trans-2-pentenal) that reduced downy mildew symptoms on leaf disks and other 

putative defence-related VOCs (ȕ-linalool, ȕ-ionone and decanal) that possibly contribute to 

the inhibition of P. viticola infection. Moreover, downy mildew symptoms were impaired on 

leaf disks of susceptible grapevines exposed to air treated with 2-ethylfuran, 2-phenylethanol, 

ȕ-cyclocitral or trans-2-pentenal, indicating that these four active VOCs possibly contribute to 

grapevine defence against downy mildew in systemic parts of a locally attacked plants or in 

neighbouring plants. Particularly, trans-2-pentenal was the most efficient VOC identified in 

this study and it represent a promising molecule from natural origin that could be further 

developed for downy mildew control of grapevine possibly with appropriate encapsulating 

formulations. Thus, VOCs could contribute to grapevine defence against downy mildew, but 

further metabolomic and transcriptomic analyses are required to investigate the possible VOC 

adsorption of the leaf cuticle and the possible indirect effects of VOCs on plant tissues, such 

as the activation of resistance mechanisms. 
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Methods  

 

Inoculation of grapevine plants and assessment of disease severity. Grapevine rooted 

cuttings were grown under greenhouse conditions as described by Banani, et al. 58. A P. viticola 

population was collected from an untreated vineyard in the Trentino region (northern Italy) and 

maintained by subsequent inoculations on V. vinifera Pinot Noir plants under greenhouse 

conditions59. Grapevines were inoculated with a suspension of P. viticola sporangia (2.5 × 105 

sporangia/mL) as described by Perazzolli, et al. 59. The degree of downy mildew resistance 

was assessed at 7 dpi according to the OIV-452 descriptor60
, and category scores from 1 (the 

most susceptible) to 9 (totally resistant) were assigned according to disease symptoms61. Ten 

replicates (plants) per genotype were assessed in a randomised complete block design. The 

experiment was carried out twice in two consecutive years (namely first and second 

experiment). 

 

Sample collection and VOC analysis. Leaf samples were collected immediately at 0 dpi and 

6 dpi with P. viticola, to maximise the accumulation of non-volatile stilbenic phytoalexins29,62. 

Each sample comprised three leaves (from the fourth-sixth node) immediately frozen in liquid 

nitrogen, with five replicates (plants) being collected for each genotype and time point.  

Samples were processed according to the protocol optimized by Weingart, et al. 63 for 

grapevine leaves. Each frozen leaf sample was ground to a fine powder using a mixer-mill 

disruptor (MM301 Retsch) for 30 sec at 30 Hz, with pre-cooled 10 mL stainless steel beakers 

(Retsch) and a 9 mm stainless steel ball (Retsch). Leaf powder was transferred into 50 mL 

tubes and stored at -80°C. Each sample (100 mg) was weighed in a 20 mL headspace vial (HS 

vials; Gerstel, Mülheim a.d. Ruhr), which was immediately sealed with a screw cap, assembled 
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with a 1.3 mm silicone/PTFE septum (Supelco). As a quality control sample (QC sample), 

equal aliquots of each leaf sample were homogenised to determine technical variability63. 

Samples were measured in a randomised complete block design and a QC sample (100 mg) 

was analysed every eight grapevine samples.  

VOCs were measured using HS-SPME/GC-MS analysis according to Weingart, et al. 63. 

Briefly, each HS vial was placed in the auto-sampler at 15°C (MPS2XL, Gerstel), after 20 min 

at 60°C, a Divinylbenzene/Carboxen/Polydimethylsiloxane fibre (2 cm 50/30 µm; Supelco, 

Sigma-Aldrich) was inserted into the HS vial and the VOC extraction was carried out for 40 

min at 60°C. Analytes were desorbed in splitless mode at 250°C for 2 min using an Agilent 

6890 N gas chromatograph coupled to a quadrupole mass spectrometer 5975B Mass Selective 

Detector (MSD; Agilent Technologies). A non-polar DB-5MS column (Agilent Technologies) 

was operated at a constant 1 mL/min-flow of helium. The oven temperature was ramped from 

35°C to 260°C with an increase of 5°C per minute and the transfer line was set at 270°C. Mixed 

alkane standard solutions for RI calibration were included in the sample list to ensure stable 

retention times and three SPME conditions were applied to obtain good peak shapes63. 

Raw data were acquired with an Agilent MSD ChemStation (G1701EA E.02.00.493, 

Agilent Technologies) and the abundance of each VOC was calculated as the integrated peak 

area, expressed as counts per scan (cps), using MetaboliteDetector software, version 

3.020151231 Ra-Linux64. The mass spectrum deconvolution settings were: peak threshold of 

4, minimum peak height of 4, deconvolution width (scans) of 5, required number of peaks set 

at 5. For compound annotation, deconvoluted mass spectra were compared with the NIST14 

database (National Institute of Standards and Technology, www.nist.gov) and with an in-house 

library of authentic reference standards. Compound annotation was achieved imposing a 
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relative deviation of RI value lower than 2%63 and according to the highest mass spectrum 

similarity score, which was set to more than 70% after first successful annotation, in order to 

include low-abundance substances or substances where the deconvolution process did not lead 

to a complete elimination of interfering mass signals63. The in-house library was obtained with 

authentic reference standards in duplicate using the instrument and parameters reported above. 

VOCs with an average signal-to-noise ratio (S/N) lower than 10 (used as the limit of 

quantification65) were checked manually and only included in the data matrix if their 

abundance was significantly higher than 10 times S/N for at least one time point or genotype. 

To assess the technical precision of each experiment, the relative standard deviation of peak 

areas was calculated for every compound detected in the QC sample (RSD = 100*standard 

deviation / average of peak areas) and compounds with a RSD greater than 30% were 

discarded66. For each of the two experiments, five replicates (plants) were analysed per 

genotype and time point. 

 

Standard solutions and pure VOCs. Alkane standard solutions from C8 to C20 (40 mg/L each 

in hexane) and C21 to C40 (40 mg/L each in toluene) were purchased from Sigma-Aldrich. A 

standard solution from C5 to C10 was prepared using pure substances in a ratio resulting in 

narrow and symmetric peak shapes as described by Weingart, et al. 63.  

Pure VOCs were selected according to the SPME/GC-MS results, such as Benzenethanol, 

ȕ-caryophyllene, trans-2-pentenal, 2-ethylfuran and ȕ-cyclocitral (Sigma-Aldrich); cadinene 

(a mixture of ɣ-cadinene and δ-cadinene; (BOC Sciences); ȕ-selinene and ledol (Xiamen 

Freede Industry). Pure VOCs were used in functional assays and for identity confirmation with 

HS-SPME/GC-MS analysis (Supplementary Fig. S2) 
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Effects of pure VOCs against downy mildew. Leaves (from the fourth-sixth node) of Pinot 

noir plants were sterilised as described by Palmieri, et al. 67. Leaf disks (18 mm diameter) were 

placed onto wet sterilised filter paper in Petri dishes, with the abaxial surface uppermost. Each 

pure VOC was diluted ten-fold in DMSO (Sigma-Aldrich) and serially diluted in distilled water 

to obtain the appropriate concentration for each treatment. 

To assess the effects of pure VOCs against P. viticola in water suspension, each leaf disk 

was inoculated with five 5 μL-drops of a P. viticola suspension (2.5 × 105 sporangia/mL), 

mixed with 0 (control), 0.01, 0.1, 1.0 and 10.0 g/L of the respective pure VOC (VOC-treated), 

calculated assuming the complete VOC dissolution in the water suspension. Dishes were 

incubated in the dark at 24 ± 1° C overnight, then dried under a laminar hood and incubated 

for six days under greenhouse conditions as described by Palmieri, et al. 67. 

To assess the effects of pure VOCs on P. viticola in air volume, the respective pure VOC 

(0, 0.05, 0.5, 2.0 and 5.0 mg) was applied to a filter paper disk on the dish lid (without physical 

contact with the leaf tissue) as previously described6,68, corresponding to a concentration of 0 

(control), 0.5, 5.0, 20 and 50 mg/L in air volume (VOC-treated) calculated assuming the 

complete VOC evaporation from the filter paper. Dishes were sealed with Parafilm (Beims) 

and incubated in the dark at 24 ± 1° C for 24 h. Each leaf disk was inoculated with five 5 μL-

drops of a P. viticola suspension (2.5 × 105 sporangia/mL), the respective pure VOC was 

applied again to the filter paper disk in the appropriate concentration. Dishes were sealed with 

Parafilm and incubated in the dark at 24 ± 1° C overnight. Leaf disks were dried under a 

laminar hood and incubated for six days under greenhouse conditions. 
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Disease severity was assessed at 6 dpi as a percentage of the leaf disk surface covered by 

sporulation69, calculated as the sum of the five inoculum drops. Each inoculum drop was scored 

as: 0%, no sporulation; 10%, scarce sporulation; 20%, dense sporulation. Five replicates 

(dishes) were assessed for each treatment and the experiments (i.e. in water suspension and air 

volume) were carried out twice. 

Inoculated disks were collected at 1, 2 and 6 dpi and stained with aniline blue as reported 

by Lenzi, et al. 70 by incubation in 1 M KOH at 95°C for 15 min and staining with 0.05% 

aniline blue (Sigma-Aldrich) in 0.067 M K2HPO4 at pH 8 for 15 min Leaf disks (18 mm 

diameter) were observed under a LMD7000 microscope (Leica Microsystems) using an A4 

filter (320–400 nm excitation, 400 nm dichroic mirror and 470 nm emission). Three leaf disks 

were analysed for each treatment and time point, and the experiment was carried out twice. 

 

Effects of VOCs on Plasmopara viticola sporangia. Sporulated leaves of Pinot noir plants 

were collected, leaf disks (18 mm diameter) were cut out and placed onto wet sterilised filter 

paper in Petri dishes, with the abaxial surface uppermost. The respective pure VOC was applied 

to a filter paper disk placed on the dish lid (without physical contact with the leaf tissue) at a 

concentration of 0 (control), 2.5 and 20 mg/L in air volume (VOC-treated), dishes were sealed 

with Parafilm and incubated at 24 ± 1°C overnight. Sporangia were collected by washing five 

disks for each replicate in 2 mL of cold distilled water. Sporangia length and width were 

measured with a LMD7000 microscope (Leica Microsystems). One hundred sporangia were 

measured for each replicate (dish of five disks each), five replicates were assessed for each 

treatment and the experiment was carried out twice. 
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In order to assess sporangia vitality, each sporangia suspension (adjusted to 2.5 × 105 

sporangia/mL) was used to inoculate Pinot noir leaf disks as described above. Nine replicates 

(dishes with five disks each) were assessed for each treatment and the experiment was carried 

out twice. 

 

Statistical analysis. Each experiment was carried out twice and data on the degree of downy 

mildew resistance, disease severity and sporangia dimension were analysed using the Statistica 

13.1 software (Dell). Each experimental repetition was analysed singularly and a Kruskal-

Wallis test was used to demonstrate equivalent results in the two experiments (p > 0.05, non-

significant differences between experimental repetitions). Data from the two experimental 

repetitions were pooled and a Kruskal-Wallis test was then used to detect significant 

differences among treatments (p ≤ 0.05).  

VOC abundance was processed using an in-house R-script (R version 3.1.0). Data were 

inspected for outliers using the Dean-Dixon outlier test71. The Kruskal-Wallis test (p ≤ 0.05) 

and a fold change of VOC abundance greater than 1.5 were set to classify VOCs with 

significant changes in abundance in three pairwise comparisons: i) between each resistant 

genotype and Pinot noir before inoculation (R vs. PN 0 dpi) or ii) six days post inoculation 

with P. viticola (R vs. PN 6 dpi) and iii) between 6 and 0 dpi for each genotype (6 vs. 0 dpi). 
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Figures 

Figure 1. Degree of resistance of grapevine plants to downy mildew. Susceptible (Pinot noir; 
PN) and resistant grapevine plants [BC4, Kober 5BB (KBB), SO4, and Solaris (SOL)] were 
inoculated with Plasmopara viticola and the degree of resistance was assessed at seven days 
post inoculation according to the OIV-452 scores. Classes were assigned from the most 
susceptible (class 1) to the totally resistant (class 9) phenotype, according to the occurrence of 
sporangiophores and necrotic spots60. As Kruskal-Wallis test indicated no significant 
differences between two experiments (p > 0.05, n = 5 replicates per experiment), data from the 
two experiments were pooled. The pooled mean and standard error values of ten replicates 
(plants) are reported for each genotype. Different letters indicate significant differences among 
genotypes according to the Kruskal-Wallis test (p ≤ 0.05). 
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Figure 2. Profiles of volatile organic compounds (VOCs) of grapevine leaves. Susceptible 
(Pinot noir; PN) and resistant grapevine plants [BC4, Kober 5BB (KBB), SO4, and Solaris 
(SOL)] were inoculated with Plasmopara viticola and VOCs were detected before inoculation 
(0 dpi) and six days post inoculation (6 dpi) with P. viticola in two greenhouse experiments 



30 

 

(Supplementary Tables S1 and S2). Three pairwise comparisons were carried out between 
VOC abundance in each resistant genotype and Pinot noir at 0 dpi (R vs. PN 0 dpi) or at 6 dpi 
(R vs. PN 6 dpi) and between 6 and 0 dpi for each genotype (6 vs. 0 dpi). Green and red cells 
indicate significantly higher and lower VOC abundance (Kruskal-Wallis test p ≤ 0.05 and fold 
change > 1.5) in two (dark colour) or one (light colour) experiment, respectively. Metabolite 
groups were identified according to the VOC profiles: higher abundance in all resistant 
genotypes in both experiments at 6 dpi (Group 1), higher abundance in two or more resistant 
genotypes in both experiments at 6 dpi (Group 2), VOCs with a higher abundance in only one 
resistant genotype in both experiments at 6 dpi (Group 3), VOCs with a lower abundance in at 
least one resistant genotype in both experiments (Group 4) as compared with Pinot noir. 
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Figure 3. Effects of pure volatile 
organic compounds (VOCs) on 
downy mildew in water 
suspension. Leaf disks were 
inoculated with a Plasmopara 

viticola suspension without VOCs 
(control) or with 10.0 (A), 1.0 (B) 
and 0.1 (C) g/L of pure VOCs in 
water suspension (corresponding to 
0.5, 0.05 and 5 × 10-3 mg/L in air 
volume, respectively). Five 
replicates (dishes with five disks 
each) were assessed for each 
treatment and the experiment was 
carried out twice. As the Kruskal-
Wallis test indicated no significant 
differences between the two 
experiments (p > 0.05, n = 5 
replicates per experiment), data 
from the two experiments were 
pooled. The pooled mean and 
standard error values of ten 
replicates are presented for each 
treatment. For each chart, different 
letters indicate significant 
differences among treatments 
according to the Kruskal-Wallis 
test (p ≤ 0.05). Asterisks indicate 
phytotoxic effects on leaf disks.  
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Figure 4. Effects of pure volatile 
organic compounds (VOCs) on 
downy mildew in air volume. Leaf 
disks were treated with water 
(control) or a pure VOC at 
concentrations of 20.0 mg/L (A), 
5.0 (B) and 0.5 (black) mg/L in air 
volume, on a filter paper disk 
without contact with leaf tissues. 
Five replicates (dishes with five 
disks each) were assessed for each 
treatment and the experiment was 
carried out twice. As the Kruskal-
Wallis test indicated no significant 
differences between the two 
experiments (p > 0.05, n = 5 
replicates per experiment), data 
from the two experiments were 
pooled. The pooled mean and 
standard error values of ten 
replicates from the two 
experiments are presented for each 
treatment. For each chart, different 
letters indicate significant 
differences among treatments 
according to the Kruskal-Wallis 
test (p ≤ 0.05). Cadinene, ȕ-
caryophyllene, ȕ-selinene and ledol 
(20.0 mg/L in air volume) did not 
affect downy mildew severity as 
compared with the control disks 
(Kruskal-Wallis test p > 0.05) and 
severity data are therefore not 
shown here. Asterisks indicate 
phytotoxic effects on leaf disks. 
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Figure 5. Effects of different concentrations of trans-2-pentenal on downy mildew in air 
volume. Leaf disks were treated with water (control) or trans-2-pentenal at different 
concentrations expressed in mg/L of air volume. Trans-2-pentenal was applied on a filter paper 
disk without contact with leaf tissues. Five replicates (dishes with five disks each) were 
assessed for each concentration and the experiment was carried out twice. As Kruskal-Wallis 
test indicated no significant differences between two experiments (p > 0.05, n = 5 replicates 
per experiment), data from the two experiments were pooled. The pooled mean and standard 
error values of ten replicates from the two experiments are presented for each treatment. Letters 
indicate significant differences among concentrations according to the Kruskal-Wallis test (p 
≤ 0.05). Asterisks indicate phytotoxic effects on leaf disks. 
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Figure 6. Effects of pure volatile organic compounds (VOCs) on downy mildew development. 
Leaf disks were treated with water (control), 2.5 mg/L (trans-2-pentenal) or 20 mg/L in air 
volume (2-phenylethanol, 2-ethylfuran or ȕ-cyclocitral) on a filter paper disk without contact 
with leaf tissues. Disks were inoculated with Plasmopara viticola and the respective pure VOC 
was applied again to the filter paper disk. Pathogen development was monitored at one (A-E), 
two (F-J) and six (K-T) days post inoculation (dpi) using aniline blue staining. A 
representative leaf disk of ten is shown for each treatment and the experiment was carried out 
twice. Abbreviations: eZ, encysted zoospore; pHA, primary haustorium, pHy, primary hyphae; 
sV, substomatal vescicle. VOC concentrations, expressed as mg/L in air volume, are shown in 
brackets. 
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Figure 7. Effects of pure volatile organic compounds (VOCs) on Plasmopara viticola 
sporangia. Sporulated leaf disks were treated with water (control), 2.5 mg/L (trans-2-pentenal) 
or 20 mg/L in air volume (2-phenylethanol, 2-ethylfuran or ȕ-cyclocitral) on a filter paper disk 
without contact with leaf tissues. Dishes were incubated overnight, after which P. viticola 
sporangia length (A) and width (B) were assessed. One hundred sporangia were measured for 
each replicate, five replicates (dishes) were assessed for each treatment and the experiment 
was carried out twice. As the Kruskal-Wallis test indicated no significant differences between 
the two experiments (p > 0.05), data from the two experiments were pooled. The pooled mean 
and standard error values of ten replicates are presented for each treatment. For each chart, 
different letters indicate significant differences according to the Kruskal-Wallis test (p ≤ 0.05). 
VOC concentrations, expressed as mg/L in air volume, are shown in brackets. 
 



 

 

Figure S1. Overview of the experimental design. Leaf samples of the susceptible Vitis vinifera cultivar 

Pinot noir and four resistant Vitis spp. hybrids (BC4, Kober 5BB, SO4 and Solaris) were collected 

immediately before inoculation (0 dpi) and six days post inoculation (6 dpi) with Plasmopara viticola. 

Ground leaves were subjected to headspace-solid-phase microextraction gas chromatography-mass 

spectrometry analysis (HS-SPME/GC-MS) and two independent experimental repetitions were analysed 

to annotate/identify volatile organic compounds (VOCs). VOCs were selected according to their different 

levels in resistant and susceptible genotypes after pathogen inoculation and they were tested as single 

pure compounds in the functional assays. Two protocols were tested to asses the effect of pure VOCs 

against P. viticola i) in water suspension and ii) in air volume without direct contact with the leaf tissue. 
 

  



 

 

Figure S2. Comparison of the measured mass spectra of the volatile organic compounds (VOCs) in 

grapevine leaf samples with that of the corresponding pure VOC: 2-phenylethanol (A), ɣ-cadinene (B), 

δ-cadinene (C), β-caryophyllene (D), trans-2-pentenal (E), 2-ethylfuran (F), and β-cyclocitral (G). The 

mass spectrum similarity score and retention index values are reported for each VOC. 
 

  



 

 

 



 

 

 



 

 

 

 

  



 

 

Supplementary Tables and Table Legends 

Table S1. Volatile organic compounds (VOCs) detected by headspace-solid phase microextraction-gas 

chromatography-mass spectrometry from five grapevine genotypes in the first experiment.  

 

Table S2. Volatile organic compounds (VOCs) detected by headspace-solid phase microextraction-gas 

chromatography-mass spectrometry from five grapevine genotypes in the in the second experiment.  

 

Leaf samples were collected from susceptible [Pinot noir (PN)] and resistant [BC4, Kober 5BB (KBB), 

SO4, Solaris (SOL)] grapevine genotypes before inoculation (0 dpi) and six days post inoculation (6 dpi) 

with Plasmopara viticola and volatile organic compounds (VOCs) were measured using a headspace-

solid phase microextraction-gas chromatography-mass spectrometry analysis (HS-SPME-GC-MS). Two 

independent repetitions of the experiment were carried out (namely first and second experiment). 

 

Column A. VOCs were grouped in six metabolite groups according to their profiles in: VOCs with a 

higher abundance in all resistant genotypes as compared with Pinot noir in both experiments in at least 

one time point (Group 1); VOCs with a higher abundance in two or more resistant genotypes as compared 

with Pinot noir in both experiments in at least one time point (Group 2), VOCs with a higher abundance 

in only one resistant genotype as compared with Pinot noir in both experiments in at least one time point 

(Group 3); VOCs with a lower abundance in at least one resistant genotype as compared with Pinot noir 

in both experiments in at least one time point (Group 4); VOCs with different abundance profiles in the 

two experiments (Group 5); VOCs only found in the first or in the second experiment (Group 6). 

 

Column B. Names of VOCs found in grapevine leaves using a HS-SPME-GC-MS analysis. Green cells 

represent VOCs with increased abundance consistent in the two experiments. Orange cells represent 

VOCs with decreased abundance consistent in the two experiments. White cells represent VOCs with 

increased or decreased abundance in one of the two experiments. 

 

Column C. CAS Registry Numbers. Source: http://webbook.nist.gov/chemistry/ 

Column D. Measured retention index (Measured RI). 

Column E. Retention index measured from an in-house library of authentic reference standards 

(Reference RI). 

Column F. Measured retention time (Measured RT). 

 

Columns G, M, W, AG, AQ. Mean of absolute peak area (abundance) expressed as counts per seconds 

(cps) of five biological replicates (plants) at 0 dpi. 

Columns H, N, X, AH, AR. Standard error of absolute peak area (abundance) expressed as cps of five 

biological replicates at 0 dpi. 

 

Columns I, O, Y, AI, AS. Mean of absolute peak area (abundance) expressed as cps of five biological 

replicates at 6 dpi. 

Columns J, P, Z, AJ, AT. Standard error of absolute peak area (abundance) expressed as cps of five 

biological replicates at 6 dpi. 

 

Columns K, Q, AA, AK, AU. Fold change (FC) values between 0 and 6 dpi for each genotype. Values 

are reported for significant changes (p ≤ 0.05 of Kruskal-Wallis test and FC fold change > 1.5). Coloured 

cells represent consistent statistical differences in the two experiments (green and orange for VOC with 

increased or decreased peak area, respectively). 

 



 

 

Columns L, R, AB, AL, AV. Asterisks indicated significant differences between 0 and 6 dpi for each 

genotype according to a Kruskal-Wallis test (p ≤ 0.05) with a fold change of VOC abundances greater 

than 1.5. Coloured cells represent consistent statistical differences in the two experiments (green and 

orange for VOC with increased or decreased peak area, respectively). 

 

Columns S, AC, AM, AW. Fold change (FC) values between of each resistant genotype against Pinot 

noir at 0 dpi. Values are reported for significant changes (p ≤ 0.05 of Kruskal-Wallis test and FC fold 

change > 1.5). Coloured cells represent consistent statistical differences in the two experiments (green 

and orange for VOC with increased or decreased peak area, respectively). 

 

Columns T, AD, AN, AX. Asterisks indicated significant differences of each resistant genotype against 

Pinot noir at 0 dpi according to a Kruskal-Wallis test (p ≤ 0.05) with a fold change of VOC abundances 

greater than 1.5. Coloured cells (green and orange for VOC with increased or decreased peak area, 

respectively) represent consistent statistical differences in the two experiments. 

 

Columns U, AE, AO, AY. Fold change (FC) values between of each resistant genotype against Pinot noir 

at 6 dpi. Values are reported for significant changes (p ≤ 0.05 of Kruskal-Wallis test and FC fold change 

> 1.5). Coloured cells represent consistent statistical differences in the two experiments (green and orange 

for VOC with increased or decreased peak area, respectively). 

 

Columns V, AF, AP, AZ. Asterisks indicated significant differences of each resistant genotype against 

Pinot noir at 6 dpi according to a Kruskal-Wallis test (p ≤ 0.05) with a fold change of VOC abundances 

greater than 1.5. Coloured cells represent consistent statistical differences in the two experiments (green 

and orange for VOC with increased or decreased peak area, respectively). 

 

 

 

 

 

Supplementary Table S3. Deconvoluted mass spectra of unknown compounds. Deconvoluted spectra 

were automatically generated using MetaboliteDetector software and the 20 most abundant ions are 

reported for each compound. Exceptions are unknown compounds 6 and 13, which exhibited less than 

20 ions in their deconvoluted spectra. The intensity of the base peak (the most intense peak of the mass 

spectrum) was set to 100% and the intensities of the other most abundant ions of each deconvoluted 

spectrum are expressed relative to the base peak ion. 
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MOTIVATION OF THE STUDY 

 Lysobacter spp. are key determinants of soil suppressiveness against 

phytopathogens and their production of non-volatile antimicrobial metabolites has been 

extensively demonstrated. However, the chemical composition and antagonistic 

properties of Lysobacter VOCs have only been poorly investigated until now. The VOC 

profiles of four Lysobacter type strains was studied by PTR-ToF-MS and HS-

SPME/GC-MS. Our results revealed that growth media significantly affect the chemical 

profile and the functional properties of the four Lysobacter type strains against P. 

infestans growth. Particularly, four Lysobacter spp. VOCs (2,5-dimethyl pyrazine, 2-

methoxy-3-methyl pyrazine, decanal and pyrrole) showed strong inhibitory activity 

against P. infestans.  
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A B S T R A C T

Bacterial volatile organic compounds (VOCs) play important ecological roles in soil microbial interactions.

Lysobacter spp. are key determinants of soil suppressiveness against phytopathogens and the production of non-

volatile antimicrobial metabolites has been extensively characterised. However, the chemical composition and

antagonistic properties of the Lysobacter volatilome have been poorly investigated. In this work, VOC emission

profiles of four Lysobacter type strains grown on a sugar-rich and a protein-rich medium were analysed using

solid-phase microextraction gas chromatography–mass spectrometry and proton transfer reaction-time of flight-

mass spectrometry. Lysobacter antibioticus, L. capsici, L. enzymogenes and L. gummosus type strains were

recognised according to their volatilome assessed using both headspace mass spectrometry methods

Moreover, the chemical profiles and functional properties of the Lysobacter volatilome differed according to

the growth medium, and a protein-rich substrate maximised the toxic effect of the four Lysobacter type strains

against Phytophthora infestans. Antagonistic (pyrazines, pyrrole and decanal) and non-antagonistic (delta-

hexalactone and ethanol) VOCs against Ph. infestans or putative plant growth stimulator compounds (acetoin and

indole) were mainly emitted by Lysobacter type strains grown on protein- and sugar-rich media respectively.

Thus nutrient availability under soil conditions could affect the aggressiveness of Lysobacter spp. and possibly

optimise interactions of these bacterial species with the other soil inhabitants.

1. Introduction

Microorganisms produce a wide variety of secondary metabolites,
including antibiotics, toxins, pigments and volatile organic compounds

(VOCs). Volatile organic compounds are molecules of high vapour
pressure and low molecular weight that readily diffuse through water-

and gas-filled pores in soil environments (Schmidt et al., 2015). VOCs
emitted by bacteria belong to different chemical classes (alcohols,

aldehydes, alkenes, benzenoids, ethers, lactones, ketones, terpenoids
and sulphur compounds) and are generated by complex metabolic

pathways (Audrain et al., 2015; Schmidt et al., 2015; Schulz and
Jeroen, 2007). Bacterial VOCs play essential ecological roles in com-

munications with soil microorganisms, nematodes, insects and plants

(Effmert et al., 2012; Kai et al., 2009). Notably, bacterial VOCs can

inhibit spore germination and mycelial growth of several phytopatho-
gens (De Vrieze et al., 2015; Kai et al., 2007; Weisskopf, 2013), promote

plant growth (Blom et al., 2011; Ryu et al., 2003) and induce plant
resistance (Lee et al., 2012; Ryu et al., 2004). The chemical composition

of the bacterial volatilome is defined by genetic determinants and can
be used as a chemotaxonomic marker in standardised conditions

(Peñuelas et al., 2014). However, composition and functional proper-
ties of the bacterial bouquet are influenced by the nutrient source

where bacteria are grown (Asari et al., 2016; Blom et al., 2011; Bruce
et al., 2003; Fiddaman and Rossall, 1994; Garbeva et al., 2014; Weise

et al., 2012), indicating metabolic changes in VOC production accord-
ing to nutrient availability and growth conditions in the soil (Insam and

Seewald, 2010).

Bacteria belonging to the Lysobacter genus are frequently found in
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soil and increased disease suppression of soil phytopathogens corre-
lated significantly with increased populations of L. antibioticus, L. capsici

and L. gummosus (Postma and Schilder, 2015; Postma et al., 2008). The
Lysobacter genus (Christensen and Cook, 1978) includes species that are

efficient antagonists of phytopathogens and potential candidates for
biological control of crop diseases (Hayward et al., 2010; Kobayashi

and Yuen, 2007). In particular, L. antibioticus DSM 2044T (ATCC
29479), L. enzymogenes DSM 2043T (ATCC 29487) and L. gummosus

DSM 6980T (ATCC 29489) were described as Lysobacter type strains by
Christensen and Cook (1978), and the antagonistic mechanisms of these

species have been extensively characterised (Folman et al., 2003, 2004;
Ko et al., 2009; Qian et al., 2009; Yu et al., 2007). For example, L.

antibioticus HS124 produced lytic enzymes and a toxic compound
against Phytophthora capsici (Ko et al., 2009). Likewise, the production

of lytic enzymes and antibiotics was shown for L. enzymogenes 3.1T8
(Folman et al., 2003, 2004), L. enzymogenes C3 (Yu et al., 2007) and L.

enzymogenes OH11 (Qian et al., 2009) against Fusarium graminearum,
Pythium aphanidermatum, Py. ultimum, Ph. capsici, Rhizoctonia solani and

Sclerotinia sclerotiorum. The antagonistic properties of L. gummosus were
associated with proteolytic degradation of biofilm (Gökçen et al., 2014)

and biosynthesis of antifungal metabolites (Meyers et al., 1985).
Furthermore, the type strains L. capsici DSM 19286T (YC5194) (Park

et al., 2008) and L. capsici AZ78 (Puopolo et al., 2014a,b, 2016)
produced secondary metabolites that inhibit the growth of phytopatho-

genic fungi (Botrytis cinerea, Colletotrichum gloeosporioides, F. oxysporum
and R. solani) and oomycetes (Ph. infestans, Plasmopara viticola and Py.

ultimum) respectively.
Although the production of extracellular lytic enzymes (proteases,

glucanases, chitinases and cellulases) and antimicrobial compounds
(pyrazines, tetramic acid-containing macrolactams and other antifungal

factors) has been widely characterised in Lysobacter spp. (Puopolo et al.,
2014a; Xie et al., 2012), the possible contribution of VOCs in

antagonistic processes has been poorly investigated. The limited studies

available (Sang et al., 2011; Zou et al., 2007) suggest a significant
potential for VOC-mediated antagonistic processes. In particular, the

VOCs emitted by L. gummosus KCTC 12132 and L. enzymogenes ISE13
inhibited mycelial growth of nematicidal fungi (Paecilomyces lilacinus

and Pochonia chlamydosporia) (Zou et al., 2007) and phytopathogenic
microorganisms (C. acutatum and Ph. capsici) (Sang et al., 2011)

respectively.
The aim of this study was to elucidate the antagonistic potential of

Lysobacter spp., based on a better understanding of the emission profiles
and functional properties of VOCs. Therefore, we used four Lysobacter

type strains (L. antibioticus DSM 2044T, L. capsici DSM 19286T, L.

enzymogenes DSM 2043T and L. gummosus DSM 6980T) as representative

of the biocontrol Lysobacter spp. (Hayward et al., 2010; Kobayashi and
Yuen, 2007; Postma and Schilder, 2015; Postma et al., 2008) and we

assessed both volatilome composition and antagonistic effects against
Ph. infestans, the causal agent of late blight of potato and tomato plants

(Fry, 2008). The VOCs produced by the type strains on two growth
media were analysed by solid-phase microextraction gas chromatogra-

phy–mass spectrometry (SPME/GC–MS) and proton transfer reaction-
time of flight-mass spectrometry (PTR-ToF-MS) to precisely analyse the

chemical composition and rapidly monitor the emission profiles,
respectively (Jordan et al., 2009b).

2. Materials and methods

2.1. Propagation of the Lysobacter type strains and the plant pathogenic

oomycete

The Lysobacter type strains L. antibioticus DSM 2044T, L. capsici DSM

19286T, L. enzymogenes DSM 2043T and L. gummosus DSM 6980T were
grown on Luria-Bertani Agar (LBA, Sigma-Aldrich, St. Louis, MO, USA)

for 72 h at 27 °C and cell suspensions of each strain were prepared by
flooding LBA dishes with 5 ml of sterile isotonic solution (0.85% NaCl).

Bacterial cells were scraped from the medium surface with a sterile
spatula and collected in a sterile 15 ml-tube. The resulting cell

suspensions were centrifuged (4300 × g for 15 min); pelleted cells
were suspended in sterile isotonic solution to a final optical density of

0.1 at 600 nm (OD600), corresponding to 1 × 108 cells/ml (Puopolo
et al., 2016).

The Ph. infestans isolate (kindly provided by M. Finckh and A. Butz,
University of Kassel, Germany) was grown on pea agar medium (PAM,

12.5% frozen peas and 1.2% agar in distilled water) at 17 °C, as
described by Puopolo et al. (2015).

2.2. Bacterial growth conditions for headspace analysis of volatile organic

compounds

For headspace VOC analysis, 5 ml of sterilised nutrient agar (NA,
Oxoid, Basingstoke, United Kingdom) or potato dextrose agar (PDA,

Oxoid) were poured into sterile 20 ml headspace vials (HS vials,
Supelco, Sigma-Aldrich) and they were left open under a laminar flow

for 2 h at room temperature to avoid condensation. Each HS vial was
then inoculated with 20 μl of the cell suspension of a Lysobacter type

strain (1 × 108 cells/ml) and left to dry under a laminar flow for 1 h at
room temperature. Each HS vial was tightly sealed with a sterilised

18 mm screw metal cap assembled with silicone/PTFE septa of 1.3 mm
(Supelco, Sigma-Aldrich). Additional HS vials containing non-inocu-

lated NA or PDA (Uninoculated) were used as controls to exclude VOCs
released from the culture medium in the absence of bacteria (Kluger

et al., 2013). HS vials were incubated at 25 °C for ten days to
accumulate VOCs before the headspace VOC assessment by SPME/

GC–MS and PTR-ToF-MS analysis. This time point was selected because
it showed the greatest antagonism of the Lysobacter type strains against

P. infestans.

The number of Lysobacter cells developed in each inoculated HS vial
was assessed one day after headspace VOC analysis (11 days after

inoculation). Each HS vial was flooded with 4 ml of sterilised isotonic
solution (0.85% NaCl) and bacterial cells were scraped from the

medium surface by vigorous vortexing for 30 s. The cell concentration
of the resulting suspension was assessed by converting the OD600

values, with OD600 = 0.1 corresponding to 1 × 108 cells/ml (Puopolo
et al., 2016), and the quantity of Lysobacter cells was then calculated for

each HS vial.

2.3. Headspace analysis of volatile organic compounds using solid-phase

micro extraction gas chromatography–mass spectrometry (SPME/GC–MS)

analysis

Headspace VOC analysis was carried out with SPME/GC–MS using
an Auto System XL gas chromatograph coupled with a Turbo Mass Gold

Mass spectrometer (Perkin Elmer, Norwalk, CT, USA). For measurement
automatisation and standardisation, the instrument was coupled with a

thermostated autosampler (CTC CombiPAL, CTC Analytics, Zwingen,
Switzerland) and HS vials were kept at 25 °C. After equilibration for

30 min, VOCs were extracted and pre-concentrated with solid phase
microextraction (SPME) using 2 cm PDMS/DVB/CAR fibre (Supelco,

Bellafonte, PA, USA), according to Endrizzi et al. (2012). The fibre
collected VOCs from the headspace for 30 min and desorbed them into

the GC injector for 5 min at 250 °C. The chromatographic separation
was performed via an HP-Innowax fused-silica capillary column (length

30 m, inner diameter 0.32 mm, film thickness 0.5 μm; Agilent Technol-
ogies, Palo Alto, CA, USA). The GC oven temperature programme was

the following: 40 °C for 3 min, raised from 40 °C to 220 °C at 4 °C/min,

220 °C for 1 min, increased from 220 °C to 250 °C at 10 °C/min and
250 °C for 1 min. The carrier gas was helium with a constant column

flow rate of 1.5 ml/min. The transfer line temperature was maintained
constant at 220 °C. Upon exiting the column, compounds were ionised

via electron impact at 70 eV and detected with a quadrupole mass
spectrometer with a mass/charge ratio (m/z) ranging from 30 to 300
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Thomson. Spectra analysis was carried out using TurboMass 5.4.0
software (Perkin Elmer, Norwalk, CT; USA). Mass measure parameters

were: background subtraction with a polynomial order of 1 and a below
curve of 33%, smooth mode with a peak width of 0.75 Da, minimum

peak width at half height of 4. Compound annotation was achieved by
comparing the spectra with the NIST-98/Wiley library (National

Institute of Standards and Technology, www.nist.gov) using a mass
spectrum similarity greater than 85%, and by matching retention

indices (RI) of authentic reference standards computed under the same
chromatographic conditions with the C7-C30 n-alkane series (Supelco,

Sigma-Aldrich) using a maximum tolerance of 4% RI deviation. The
VOC content of each sample was reported as the absolute peak area

obtained with the TurboMass 5.4.0 software. Five replicates (HS vials)
of L. enzymogenes and four replicates of L. antibioticus, L. capsici and L.

gummosus were used for each media.

2.4. Headspace analysis of volatile organic compounds using proton transfer

reaction-time of flight-mass spectrometry (PTR-ToF-MS)

Rapid headspace VOC analysis was carried out using a commercial

PTR-TOF 8000 instrument (Ionicon Analytik GmbH, Innsbruck,
Austria) (Jordan et al., 2009a). The instrument was coupled with an

adapted thermostated autosampler (MPS Multipurpose Sampler, Ger-
stel) and HS vials were kept at 25 °C. During VOC headspace measure-

ment, 40 sccm of zero air were injected into the HS vial through a
needle heated to 40 °C, and the outflow going through a second heated

needle (40 °C) was delivered via Teflon fittings to the PTR-ToF-MS. Zero

air was produced via a catalytic VOC scrubber (GCU unit, Ionicon
Analytik, Innsbruck, Austria). HS vials were measured in random order

and each measurement lasted for 3 min, with a waiting time of 5 min
between samples to avoid memory effects. The PTR-ToF-MS was

operated in H3O
+ primary ion mode. The following conditions were

set in the instrument drift tube: 2.3 mbar drift pressure, 480 V drift

voltage, 110 °C drift tube temperature, leading to an E/N value (E
corresponding to electric field strength and N to gas number density) of

about 120 Townsend (Td; 1 Td = 10−17 Vcm2). The primary and
product ions exiting the drift tube region were detected using a time-

of-flight (ToF) mass spectrometer operated with its standard configura-
tion (V mode). Each acquisition consisted of 350,000 channels with a

sampling time of 0.1 ns per channel of ToF acquisition, resulting in a
mass spectrum ranging up to m/z = 400. Each individual spectrum was

the sum of about 28,600 acquisitions lasting for 35 μs, resulting in a
time resolution of 1 s. Because the analysis time for each sample was set

to 3 min, 180 spectra were acquired for each vial during each
measurement.

PTR-ToF-MS spectra were processed according to the methodology
reported by Cappellin et al. (2011a), with slight modifications. As the

first data processing step, signal distortions related to detector dead
time were calculated using a correction approach based on Poisson

statistics, according to Cappellin et al. (2011b). Because the external
calibration provided by the acquisition software did not achieve

sufficient mass accuracy, internal mass calibration was carried out
according to Cappellin et al. (2011b) and a mass accuracy of greater

than 0.001 Th was obtained. Subsequent data processing of noise
reduction, baseline removal and peak intensity extraction were carried

out according to Cappellin et al. (2011b) using modified Gaussians to fit
spectral peaks. Headspace VOC concentrations, expressed as parts per

billion by volume (ppbv), were estimated from the integrated signal
over the 3 min of spectra acquisition using the formula described by

Lindinger et al. (1998), considering hydronium H3O
+ as primary ion

and a constant reaction rate coefficient of 2 × 10−9 cm3/s in the
calculations. This approach introduces a systematic deviation of up to

30% that can be accounted for if the actual rate coefficient is known
(Cappellin et al., 2012b). Four replicates (HS vials) of L. enzymogenes

and five of L. antibioticus, L. capsici and L. gummosus were grown on
PDA. Five replicates of L. capsici and four of L. antibioticus, L.

enzymogenes and L. gummosus were grown on NA.

2.5. Functional analysis of bacterial volatile organic compounds against

Phytophthora infestans

Split Petri dishes (92 mm of diameter) with two compartments and

ventilation cams (Sarstedt, Nümbrecht, Germany) were used to analyse
the effect of VOCs emitted by Lysobacter type strains on Ph. infestans

growth. Sterilised NA or PDA (5 ml) were poured into one half of the
split dish (Lysobacter-growth side) and 5 ml of sterilised PAM were

poured into the other half (Phytophthora-growth side). Once dried, 50 μl
of the cell suspension of the Lysobacter type strain (1 × 108 cells/ml)

were spread onto the Lysobacter-growth side of the split dish containing
NA or PDA using sterile spatulas. As a control, split dishes containing

non-inoculated NA or PDA (Uninoculated) on the Lysobacter-growth
side were used. Dishes were sealed with Parafilm tape (Beims, Neenah,

WI, USA) and incubated at 25 °C in the dark for 72 h. Subsequently, Ph.
infestans plugs (5 mm) were cut from the edge of ten-day-old colonies

grown on PAM, as described by Puopolo et al. (2016), and a plug was
placed at the centre of the Phytophthora-growth side of each split dish.

Inoculated dishes were sealed with Parafilm tape and mycelial growth
was evaluated by measuring the diameter (parallel to the edge of the

dish) of the Ph. infestans colony after seven days of incubation in the
dark at 20 °C, corresponding to ten days after Lysobacter spp. inocula-

tion. Each Ph. infestans plug exposed to VOCs of Lysobacter type strains
grown on NA or PDA was then transferred to fresh PAM dishes and the

colony diameter was measured after seven days of incubation in the
dark at 20 °C. Seven replicates (split dishes) were analysed for each

Lysobacter type strain and each growth medium and the functional
assay against Ph. infestans was carried out twice.

VOCs were selected according to their emission profiles; pure 2,5-

dimethyl pyrazine, 2-methoxy-3-methyl pyrazine, decanal, delta-hex-
alactone, ethanol and pyrrole were purchased (Sigma-Aldrich) and

tested against Ph. infestans. Sterilised PAM was poured into one half of a
split dish (Phytophthora-growth side) and a pure VOC was applied to a

filter paper disk placed into the other half (VOC side) at dosage of
20 mg per split dish corresponding to 190 mg/L (VOC-treated) of air

volume, which is a dosage compatible for VOC-mediated functional
assays (De Vrieze et al., 2015; Fernando et al., 2005). As control,

distilled water was applied to a filter paper disk into the VOC side of
control dishes. Each dish was sealed with Parafilm tape, incubated at

25 °C in the dark for 72 h and inoculated with a Ph. infestans plug
(5 mm) into the Phytophthora-growth side. The diameter (parallel to the

edge of the dish) of each Ph. infestans colony was measured after seven
days of incubation in the dark at 20 °C and the inhibition of Ph. infestans

growth (percentage) was calculated according to the following formula:
(growth in control dishes — growth in VOC-treated dishes)/(growth in

control dishes) × 100. Seven replicates (split dishes) were analysed for
each treatment and the experiment was carried out twice.

2.6. Statistical analysis

To obtain background-corrected headspace VOC concentration, the

background signal (the signal corresponding to the mean signal for
empty HS vials) was subtracted from VOC emission values of both

SPME/GC–MS and PTR-ToF-MS analysis. Emitted VOCs were identified
as peaks with a background-corrected headspace concentration sig-

nificantly greater than the corresponding signal for uninoculated HS
vials for at least one strain and growth medium, according to the

Kruskal-Wallis test with Bonferroni correction (p ≤ 0.05).

Volatile emission data of SPME/GC–MS and PTR-ToF-MS analysis
were analysed using in-house routines written in R (www.r-project.

org), including the Agricolae package (https://cran.r-project.org/web/
packages/agricolae/index.html) and Glmnet package (https://cran.r-

project.org/web/packages/glmnet/index.html). Data exploration with
principal component analysis (PCA) was carried out using in-house
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routines written in R, on normalised variables that were obtained by
subtracting the mean and dividing by the standard deviation, to obtain

more homogeneous variables and prevent variance from being con-
centrated in few variables, affecting the results of PCA (Afifi et al.,

2011).
Bacterial class prediction models based on VOC data were devel-

oped with both SPME/GC–MS and PTR-ToF-MS datasets, using the least
absolute shrinkage and selection operator (LASSO) method described

by Tibshirani (1996). Briefly, a linear model can be represented by the
following equation: Y = X× B+ E, where Y is the matrix of the

properties to be predicted (dependent variable), X is the matrix of the
measurements to be employed in the prediction (independent variable),

B is the matrix of regression coefficients to be estimated in the model
optimisation procedure and E is the matrix of residuals. In the LASSO

method, the model can be represented by the following equation:
Y = X × B+ E+ λ × |B|, which includes a penalisation term

(λ × |B|) of the absolute values of coefficient B, multiplied by a factor
λ, corresponding to the penalty coefficient to be optimised. During

model optimisation, the size of the penalty coefficient λ needs to be
optimised and cross-validation is used for this purpose (Tibshirani,

1996). Models for all possible λ values were calculated simultaneously
as an ordinary linear regression, as reported by Hastie et al. (2009). The

considered study was a multiclass problem (i.e. growth media and
strain classes) and a LASSO model for each class was therefore

developed to predict whether a sample belonged to the class (model
value 1) or not (model value 0). Performance evaluation of the

classification methods was carried out using a leave-one-out (LOO)
procedure and confusion matrices (Cappellin et al., 2012a; Westerhuis

et al., 2008).
VOC emission values, Ph. infestans colony diameters and Lysobacter

cell numbers (log10-transformed) were analysed using Statistica 13.1
software (Dell, Round Rock, TX, USA) and a Kruskal-Wallis test with

Bonferroni correction was applied to detect significant differences

(p ≤ 0.05) among Lysobacter type strains and growth media.

3. Results

3.1. Profiles of volatile organic compounds differed according to the

Lysobacter type strains and growth media

VOC emission profiles measured by SPME/GC–MS analysis varied in

Lysobacter type strains and growth media, with the first and sixth
principal components (explaining 36.7 and 3.8% of variance respec-

tively) of PCA analysis discriminating samples according to the growth
medium (Fig. 1A). Moreover, marked similarities of VOC emission

profiles occurred between HS vials belonging to the same Lysobacter

type strain, independently of the growth medium (Fig. 1B). Specifically,

the second and sixth principal components of PCA (explaining 18.6 and
3.8% of variance respectively) discriminated Lysobacter type strains,

and HS vials of the same type strain grown on the two media clustered
together.

A total of 77 VOCs were detected by the SPME/GC–MS analysis, and
the emission profiles of 70 of them differed according to the growth

medium and type strain (Fig. 2 and Table S1). No differences in
bacterial growth were found between PDA and NA, except for L.

antibioticus (Table 1), and VOC differences were mainly related to
bacterial metabolism rather than to the growth rate. Specifically, the

emission of 17 VOCs was higher for all Lysobacter type strains on PDA as
compared with NA (PDA-specific VOCs, Cluster 1, Table S1), such as 3-

methyl-2-buten-1-ol, 1-tridecanol, 1-tetradecanol, 1-pentadecanol, ac-

cording to the Kruskal-Wallis test with Bonferroni correction
(p ≤ 0.05). PDA-specific profiles were also found for three ketones

[delta-hexalactone (Fig. 3A), dihydro-5-pentyl-2(3H)-furanone and 2-
hexadecanone], an organosulfur compound (methyl thiolacetate), a

heterocyclic compound (indole; Fig. 3B) and five unknown compounds.
Likewise, higher emission of methyl 2-methyl butanoate, 4-methyl-1-

pentanol and (Z)-3-decen-1-ol was measured for all Lysobacter type

strains grown on PDA as compared with NA. The emission profiles of
PDA-specific VOCs differed for Lysobacter type strains, and the emission

of 1-tridecanol, 1-tetradecanol, 1-pentadecanol, delta-hexalactone, 2-

hexadecanone, methyl thiolacetate, five unknown compounds, 4-
methyl-1-pentanol and (Z)-3-decen-1-ol by L. enzymogenes was higher

as compared with the other type strains on PDA. Moreover, 3-methyl-2-
buten-1-ol and indole were emitted mainly by L. gummosus and L.

capsici respectively, and dihydro-5-pentyl-2(3H)-furanone was mainly

Fig. 1. Principal component analysis (PCA) of volatile organic compounds (VOCs)

emitted by Lysobacter type strains. PCA was based on VOCs measured using solid-phase

microextraction gas chromatography–mass spectrometry (SPME/GC–MS) for Lysobacter

antibioticus DSM 2044T (red), L. capsici DSM 19286T (blue), L. enzymogenes DSM 2043T

(black) and L. gummosus DSM 6980T (green) grown for ten days on nutrient agar

(triangles) or potato dextrose agar (circles). The percentage of variance explained by the

principal components (PC) is reported in brackets for PC1 and PC6 (A) or PC6 and PC2

(B).
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emitted by both L. gummosus and L. capsici.
The emission of 16 VOCs was higher for some Lysobacter type strains

on PDA as compared with NA (Cluster 2, Table S1). For example, the
emission of the n-undecanoic acid methyl ester was specific for three

type strains grown on PDA (L. capsici, L. enzymogenes and L. gummosus)

and it was not detected in other HS vials. These three type strains also
showed higher emission of 1-propanol, 2-furanmethanol and 3-methyl-

1-hexanol on PDA as compared with NA. The emission of 2-undecanol
and methyl isobutyrate was higher on PDA as compared with NA for

three type strains (L. antibioticus, L. capsici and L. enzymogenes) and two

Fig. 2. Profiles of volatile organic compounds (VOCs) emitted by Lysobacter type strains. Headspace VOC analysis was carried out using solid-phase microextraction gas

chromatography–mass spectrometry (SPME/GC–MS) for Lysobacter antibioticus DSM 2044T (La), L. capsici DSM 19286T (Lc), L. enzymogenes DSM 2043T (Le) and L. gummosus DSM

6980T (Lg) grown for ten days on nutrient agar (NA) or potato dextrose agar (PDA). For each compound, the intensity of the colour gradient and letters are based on a Kruskal-Wallis test

with Bonferroni correction (p ≤ 0.05) on VOC emission data (Table S1). Compounds were grouped based on their emission profiles into: VOCs with higher emission by all Lysobacter type

strains on PDA as compared with NA (Cluster 1), VOCs with higher emission by some Lysobacter type strains on PDA as compared with NA (Cluster 2), VOCs with higher emission by all

Lysobacter type strains on NA as compared with PDA (Cluster 3), VOCs with higher emission by some Lysobacter type strains on NA as compared with PDA (Cluster 4), VOCs with different

(Cluster 5) or consistent (Cluster 6) emission by Lysobacter type strains on both growth media.

Table 1

Number of Lysobacter type strain cells developed during volatile organic compound assessment.

VOC analysis1 Media2 Lysobacter type strain concentration3

L. antibioticus L. capsici L. enzymogenes L. gummosus

SPME/GC–MS PDA 7.75 ± 0.32× 109 ab 4.77 ± 0.38 × 109 bc 7.23 ± 0.49 × 109 ab 1.12 ± 0.03 × 1010 a

NA 7.72 ± 0.42× 108 c 5.82 ± 1.30 × 109 abc 5.86 ± 0.92 × 109 abc 4.14 ± 2.09 × 109 abc

PTR-ToF-MS PDA 6.80 ± 0.30× 109 ab 4.87 ± 0.66 × 109 bc 6.79 ± 0.18 × 109 ab 1.06 ± 0.08 × 1010 a

NA 1.40 ± 0.09× 109 c 5.02 ± 0.74 × 109 abc 5.09 ± 0.24 × 109 abc 4.01 ± 1.45 × 109 abc

1 Headspace analysis of the volatile organic compounds (VOCs) emitted by Lysobacter antibioticus DSM 2044T, L. capsici DSM 19286T, L. enzymogenes DSM 2043T and L. gummosus DSM

6980T was carried out using solid-phase microextraction gas chromatography–mass spectrometry (SPME/GC–MS) and proton transfer reaction-time of flight-mass spectrometry (PTR-

ToF-MS).
2 The Lysobacter type strains were grown for ten days at 25 °C on potato dextrose agar (PDA) or nutrient agar (NA) in headspace vials before VOC analysis.
3 Growth of the Lysobacter type strains was measured one day after VOC assessment (11 days after inoculation). Bacterial cells were collected from the headspace vials and the number

of Lysobacter cells for each vial was calculated by measuring optical density at 600 nm [optical density of 0.1 corresponds to 1 × 108 cells/ml according to Puopolo et al. (2016)]. Mean

and standard deviation values of Lysobacter cells from four to five replicates are presented for each type strain and growth media. For each headspace VOC analysis, different letters

indicate significant differences according to a Kruskal-Wallis test with Bonferroni correction (p≤ 0.05).
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type strains (L. antibioticus and L. enzymogenes) respectively. On PDA,
emission of 1-propanol by L. capsici and L. enzymogenes was higher as

compared with L. gummosus, while that of methyl isobutyrate by L.

antibioticus and L. enzymogenes was higher as compared with L. capsici

and L. gummosus. Five compounds (2-tridecanone, acetone, 2-butanol
and two unknown compounds) were emitted mainly by one PDA-grown

Lysobacter type strain. Specifically, L. enzymogenes was characterised by
the highest emission of 2-tridecanone and two unknown compounds,

Fig. 3. Profiles of selected volatile organic compounds (VOCs) emitted by Lysobacter type strains. Emission of delta-hexalactone (A), indole (B), 2,5-dimethyl pyrazine (C), pyrrole (D),

decanal (E) and 2-methoxy-3-methyl pyrazine (F) was measured using solid-phase microextraction gas chromatography–mass spectrometry (SPME/GC–MS) for L. antibioticus DSM 2044T,

L. capsici DSM 19286T, L. enzymogenes DSM 2043T and L. gummosus DSM 6980T grown for ten days on nutrient agar (NA) or potato dextrose agar (PDA). For each compound, mean and

standard error values of the absolute peak area from four to five replicates are reported for each Lysobacter type strain and growth medium. Different letters indicate significant differences

according to the Kruskal-Wallis test with Bonferroni correction (p ≤ 0.05). The structural formula is reported for each compound.
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while L. capsici was characterised by the most significant emission of 2-
butanol as compared with the other PDA-grown strains. Moreover,

higher emission of isoamyl alcohol and phenyl ethyl alcohol by L.

enzymogenes, ethanol by L. capsici and acetoin by L. antibioticus and L.

capsici was found on PDA as compared with NA.
All the Lysobacter type strains showed higher emission of ten VOCs

on NA as compared with PDA (NA-specific VOCs, Cluster 3, Table S1),
such as 2,5-dimethyl pyrazine (Fig. 3C), 2,6-dimethyl pyrazine, 2,4,6-

trimethyl pyridine, 1-(2-furanyl)-ethanone and an unknown compound,
with consistent emission profiles for all NA-grown Lysobacter type

strains. NA-specific profiles were also found for 2-butanone, pyrrole
(Fig. 3D), 2-methoxy-3-(1-methyl-propyl) pyrazine and two unknown

compounds. Emission of these VOCs differed for NA-grown Lysobacter

type strains: 2-butanone and pyrrole were mainly emitted by L. capsici,

while 2-methoxy-3-(1-methyl-propyl) pyrazine and two unknown com-
pounds were mainly emitted by L. enzymogenes, as compared with the

other NA-grown type strains.
The emission of 15 VOCs was higher on NA as compared with PDA

for some type strains (Cluster 4, Table S1), as in the case of 1-butanol
and 2-nonanone emission by L. antibioticus and L. gummosus respec-

tively. Dihydro-3-methyl-2(3H)-furanone, decanal (Fig. 3E) and an
unknown compound were specifically emitted by more than two

Lysobacter type strains grown on NA, with the highest emission by L.

enzymogenes. Emission of 3-methoxy-2,5-dimethyl pyrazine by L. capsici

and L. gummosus was higher on NA as compared with PDA, while its
emission by L. antibioticus and L. enzymogenes was comparable on NA

and PDA medium. Moreover, 2-methoxy-3-methyl pyrazine (Fig. 3F)
and 2-methoxy-6-methyl pyrazine were emitted exclusively by L.

enzymogenes, with lower and no emission by L. enzymogenes on PDA
respectively. Likewise, four unknown compounds (named from 13 to

16) were mainly emitted by NA-grown L. antibioticus and L. enzymo-

genes.

The emission profiles differed for Lysobacter type strains on both

media for 14 VOCs (Cluster 5, Table S1). For example, the emission of
methyl 2-methyl butanoate and methyl 3-methyl butanoate was higher

by L. antibioticus was higher as compared with the other type strains on
both growth media. On NA, the emission of 2-methyl-1-propanol by L.

antibioticus and L. enzymogenes was higher as compared with L. capsici

and 3-octanol emission by L. gummosus was higher as compared with L.

antibioticus. Moreover, 2-methoxy-3-(1-methylethyl) pyrazine was
mainly emitted by L. enzymogenes on both media and to a lower extent

by L. antibioticus on NA, while methyl isobutyl ketone was mainly
emitted by L. capsici as compared with L. antibioticus and L. gummosus

on PDA. Consistent emission of seven VOCs (2-pentanone, dimethyl
disulfide, 2-heptanone, 6-methyl-2-heptanone, 5-methyl-2-heptanol,

and two unknown compounds) was detected in Lysobacter type strains
and growth media (Cluster 6, Table S1) and they were possibly

produced by constitutive metabolic pathways.

3.2. Lysobacter type strains and their growth media can be recognised by

modelling the profiles of volatile organic compounds

Differences in VOC emission among Lysobacter type strains grown

on the two growth media were used to predict the medium on which
the bacteria were grown. Optimisation of the LASSO model corre-

sponded with a linear combination of the original variables (VOCs
annotated by SPME/GC–MS analysis) with a coefficient of zero, except

for the coefficient associated with the 2,4,6-trimethyl pyridine variable
(Table S1). This result highlighted that a simple univariate model, built

on the SPME/GC–MS emission data of 2,4,6-trimethyl pyridine alone,

was sufficient to predict the growth substrate on the basis of only one
bacterial VOC. The prediction performance was assessed with a LOO

procedure and the success rate of growth media prediction using LASSO
was 100%, meaning that the growth media could be predicted with

high level of accuracy (Table 2).
PTR-ToF-MS data (Table S2) confirmed the marked differences in

VOC emissions by Lysobacter type strains grown on PDA and NA. In
agreement with the SPME/GC–MS analysis, the growth of Lysobacter

type strains was comparable on PDA and NA (except for L. antibioticus;
Table 1). LASSO modelling based on PTR-ToF-MS data resulted in

prediction performance of the growth media comparable to that
obtained with SPME/GC–MS data and cross-validation using a LOO

procedure provided a prediction success rate of 100% (Table 2). The
LASSO procedure was able to predict growth media on the basis of only

two bacterial VOCs associated with peaks at m/z of 68.050 and 129.091
(Table S2). Although annotation of the compounds associated with

PTR-ToF-MS spectral peaks is difficult (Cappellin et al., 2011a), the
peak at m/z of 68.050 corresponds with the C4H6N

+ ion, which is

consistent with a fragment ion of 2,4,6-trimethyl pyridine reaction with
H3O

+.

LASSO modelling was used for Lysobacter type strain prediction on
the basis of VOC emission profiles. Since the medium prediction had a

100% success rate, the different growth media were modelled as
separate classes and the success rate of strain prediction was 97 and

90% with LASSO modelling based on SPME/GC–MS and PTR-ToF-MS
data respectively (Table 2). Specifically, HS vials belonging to L.

enzymogenes and L. antibioticus grown on both PDA and NA were
correctly classified by SPME/GC–MS analysis, as well as L. capsici and L.

gummosus grown on PDA. HS vials of L. gummosus were confused only
once with L. capsici when grown on NA. Likewise, all Lysobacter type

strains grown on PDA were correctly classified according to their
volatilome assessed with PTR-ToF-MS analysis. On NA, HS vials of L.

gummosus were confused only once with L. antibioticus and those of L.
enzymogenes were confused twice with L. capsici. The LASSO modelling

based on SPME/GC–MS and PTR-ToF-MS data associated non-zero
coefficients with 11 VOCs (Table S1) and 12 peaks (Table S2) to

distinguish Lysobacter type strains respectively, indicating that a linear
model built using only these compounds was sufficient to discriminate

the bacterial strains tested. Specifically, the emission profiles of methyl

2-methyl butanoate and methyl 3-methyl butanoate were characteristic
for L. antibioticus on PDA, while those of 2-butanol, methyl thiolacetate

and 3-methyl-2-buten-1-ol specified the emission of L. capsici, L.

enzymogenes and L. gummosus respectively. On NA, the volatilome of

L. antibioticus was characterised by the emission profiles of 2-furan-
methanol and unknown compound 14, and L. capsici, L. enzymogenes

and L. gummosus were specified by acetone, pyrazine (2-methoxy-3-
methyl pyrazine and 2-methoxy-6-methyl pyrazine) and 3-octanol

emission respectively.

3.3. Volatile organic compounds emitted by Lysobacter type strains grown

on nutrient agar and not on potato dextrose agar inhibit Phytophthora

infestans growth

VOCs emitted by L. antibioticus, L. capsici, L. enzymogenes and L.

gummosus grown on NA inhibited the mycelial growth of Ph. infestans
(Fig. 4A and 4B). Conversely, VOCs produced by the four Lysobacter

type strains grown on PDA did not affect Ph. infestans growth. When
transferred to new PAM dishes, the growth of Ph. infestans plugs

previously exposed to VOCs produced by NA-grown Lysobacter type
strains was compromised as compared with Ph. infestans plugs exposed

to uninoculated NA (Fig. 4C). Moreover, the growth of plugs exposed to
VOCs produced by PDA-grown Lysobacter type strains was comparable

(Kruskal-Wallis test, p > 0.05) with those exposed to uninoculated NA
and PDA (data not shown).

Functional assays demonstrated that pure 2,5-dimethyl pyrazine, 2-
methoxy-3-methyl pyrazine, decanal and pyrrole inhibited the Ph.

infestans growth (Table 3) and they were mainly emitted by the NA-
grown Lysobacter type strains. Conversely, pure delta-hexalactone and

ethanol, that were mainly emitted by the PDA-grown Lysobacter type
strains, did not significantly inhibit the Ph. infestans growth.
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4. Discussion

In the last decade, increasing attention has been paid to the
functional roles of bacterial VOCs in soil microbial interactions

(Effmert et al., 2012; Kai et al., 2009). Strains belonging to L.

antibioticus, L. capsici and L. gummosus play a major role in the soil

suppressiveness against R. solani (Postma and Schilder, 2015; Postma
et al., 2008) and strains belonging to L. enzymogenes are involved in the

biocontrol of several phytopathogens (Hayward et al., 2010; Kobayashi
and Yuen, 2007). The incidence of Lysobacter spp. in soil is influenced

by soil type, plant cover, seasonal factors and organic amendments
(Hayward et al., 2010; Postma et al., 2008), but little is known about

the ecological role of VOCs emitted by strains belonging to this genus.
Although the synthesis of non-volatile antimicrobial metabolites

against phytopathogens has been widely studied (Puopolo et al.,
2014a; Xie et al., 2012), the possible contribution of Lysobacter VOCs

to antagonistic processes has been poorly investigated (Sang et al.,
2011; Zou et al., 2007). In this work we analysed the VOC profiles

emitted by four Lysobacter type strains grown on PDA and NA using two
types of headspace analysis. The growth media had a different nutrient

composition: PDA (sugar-rich media) contained a high sugar content
(20 g/l glucose), while NA (protein-rich media) mainly contained

proteins (5 g/l peptone and 2 g/l yeast extract) with a low sugar
content (Fiddaman and Rossall, 1994). VOC emission by the Lysobacter

type strains changed radically according to the growth medium, and the

comparable growth rate on both media indicated that volatilome
differences were mainly related to metabolic changes instead of

biomass formation. The composition and functional properties of the
bacterial volatilome are known to be influenced by the growth substrate

(Asari et al., 2016; Blom et al., 2011; Bruce et al., 2003; Garbeva et al.,
2014; Weise et al., 2012), indicating metabolic adaptation of VOC

production according to nutrient availability in the soil (Insam and
Seewald, 2010). However, the composition of the bacterial bouquet is

defined by genetic determinants (Peñuelas et al., 2014) and can be used
to identify the four Lysobacter type strains grown on PDA with LASSO

modelling. Specifically, butanoates (methyl 2-methyl butanoate, methyl
3-methyl butanoate), 2-butanol, methyl thiolacetate and 3-methyl-2-

buten-1-ol specified the emission of L. antibioticus, L. capsici, L.

enzymogenes and L. gummosus on PDA respectively. On NA, 2-furan-

methanol and two pyrazines (2-methoxy-3-methyl pyrazine and 2-
methoxy-6-methyl pyrazine) discriminated the emission of L. antibioti-

cus and L. enzymogenes respectively. Interestingly, Lysobacter type
strains emitted some strain-specific VOCs independently of the growth

media. For example, L. antibioticus emitted higher amounts of two
methyl esters (methyl 2-methyl butanoate and methyl 3-methyl bu-

tanoate) as compared with the other type on both media.
The functional properties of the Lysobacter volatilome changed

radically according to the growth medium and the VOC-mediated
biocontrol effects of the four Lysobacter type strains against Ph. infestans

were enhanced on the protein-rich medium as compared with the
sugar-rich medium. Likewise, a protein-rich medium (tryptone soya

agar) increased the VOC-mediated antagonism of Serratia spp. against
five sapstain fungi as compared with a sugar-rich medium (malt extract

agar) (Bruce et al., 2003). In our experiments, higher emission of six
pyrazines [2,5-dimethyl pyrazine, 2,6-dymethyl pyrazine, 2-methoxy-3-

(1-methyl-propyl) pyrazine, 3-methoxy-2,5-dimethyl pyrazine, 2-meth-
oxy-3-methyl pyrazine and 2-methoxy-6-methyl pyrazine] was found

by NA-grown as compared with PDA-grown Lysobacter type strains and
two pure pyrazines (2,5-dimethyl pyrazine, 2-methoxy-3-methyl pyr-

azine) inhibited the Ph. infestans growth. Pyrazines are synthesised by
alanine, valine, leucine and isoleucine (Dickschat et al., 2005) and

addition of amino acids to the growth medium increased the bacterial

production of pyrazines (Beck et al., 2003; Bungert et al., 2001), in
agreement with higher emission by the NA-grown as compared with the

PDA-grown Lysobacter type strains. Pyrazines and related heterocyclic
compounds were involved in antimicrobial activities (Baldwin et al.,

2013; Beck et al., 2003). Specifically, 2,5-dimethyl pyrazine and 2-
ethyl-3,5-dimethyl pyrazine were emitted by a biocontrol strain of

Bacillus pumilus and pure 2,5-dimethyl pyrazine showed antagonistic
activity against Ph. infestans (De Vrieze et al., 2015) and Phaeomoniella

chlamydospora (Haidar et al., 2016). Likewise, the VOC-mediated
antimicrobial activity of the antagonist B. megaterium BP17 (Munjal

et al., 2016) and Pseudomonas putida BP25 (Sheoran et al., 2015) was
attributed to the emission of pyrazines, and four pure molecules (2,5-

Table 2

Confusion matrix for bacteria strain prediction based on the least absolute shrinkage and selection operator method (LASSO) with a leave-one-out (LOO) procedure based on solid-phase

microextraction gas chromatography–mass spectrometry (SPME/GC–MS) and proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS) data.

LASSO predicted class

PDA NA

L. antibioticus L. capsici L. enzymogenes L. gummosus L. antibioticus L. capsici L. enzymogenes L. gummosus

SPME/GC–MS data

Real class PDA L. antibioticus 4 0 0 0 0 0 0 0

L. capsici 0 4 0 0 0 0 0 0

L. enzymogenes 0 0 5 0 0 0 0 0

L. gummosus 0 0 0 4 0 0 0 0

NA L. antibioticus 0 0 0 0 4 0 0 0

L. capsici 0 0 0 0 0 4 0 0

L. enzymogenes 0 0 0 0 0 0 5 0

L. gummosus 0 0 0 0 0 1 0 3

PTR-ToF-MS data

PDA L. antibioticus 5 0 0 0 0 0 0 0

L. capsici 0 5 0 0 0 0 0 0

L. enzymogenes 0 0 4 0 0 0 0 0

L. gummosus 0 0 0 5 0 0 0 0

NA L. antibioticus 0 0 0 0 4 0 0 0

L. capsici 0 0 0 0 0 4 0 0

L. enzymogenes 0 0 0 0 0 2 2 0

L. gummosus 0 0 0 0 1 0 0 4

SPME/GC–MS and PTR-ToF-MS data were obtained from Lysobacter antibioticus DSM 2044T, L. capsici DSM 19286T, L. enzymogenes DSM 2043T and L. gummosus DSM 6980T grown on

potato dextrose agar (PDA) or nutrient agar (NA).

Columns represent the class predicted with the LASSO method based on SPME/GC–MS or PTR-ToF-MS data and rows represent the real class. Diagonal entries of the matrix correspond to

the number of samples correctly classified for each class and off-diagonal entries correspond to prediction errors.
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dimethyl pyrazine, 2-ethyl-3-methyl pyrazine, 2-ethyl pyrazine and 2-
methyl pyrazine) showed inhibitory activities against Ph. capsici,

Ralstonia solanacearum and Magnaporthe oryzae (Munjal et al., 2016).
As shown for pyrazine emission by Paenibacillus spp. (Rybakova et al.,

2016), three pyrazines [2-methoxy-3-(1-methyl-propyl) pyrazine, 2-
methoxy-3-methyl pyrazine and 2-methoxy-6-methyl pyrazine] were

species-specifically emitted, indicating the involvement of some spe-
cies-specific biosynthetic pathways.

All the Lysobacter type strains showed higher emission of 2,4,6-

trimethyl pyridine when grown on NA as compared to PDA and this
VOC was also produced by the antagonistic strains Collimonas fungivor-

ans Ter331 and C. pratensis Ter91 (Garbeva et al., 2014), suggesting its
contribution to bacterial biocontrol processes. Pyrrole was also emitted

by NA-grown Lysobacter type strains and inhibited the Ph. infestans

growth. Likewise, pyrrole derivatives exhibited antagonistic activity

towards phytopathogens, such as pyrrolnitrin [3-chloro-4-(20-nitro-30-
chlorophenyl) pyrrole], which is a broad spectrum antifungal metabo-

lite produced by several bacterial species (Saraf et al., 2014). The
emission of 1-butanol by L. antibioticus was higher on NA as compared

with PDA and the pure compound inhibited mycelial growth of F.

oxysporum and Moniliophthora perniciosa (Chaves-López et al., 2015).

Likewise, 1-butanol derivatives (3-methyl-1-butanol, 2-methyl-1-buta-

nol and 1-butanol, 3-methyl-acetate) inhibited the mycelial growth of
Py. ultimum, R. solani and S. sclerotiorum (Fialho et al., 2011; Strobel

et al., 2001), suggesting their contribution to the antagonistic activity
against phytopathogens. Dihydro-3-methyl-2(3H)-furanone and decan-

al were mainly emitted by the NA-grown L. enzymogenes and the last
one inhibited the Ph. infestans growth, indicating their potential

biocontrol activities as already shown for 3-(1-Hexenyl)-5-methyl-2-
(5H)-furanone (Paulitz et al., 2000) and decanal (Fernando et al.,

2005). Nine VOCs specifically emitted by the NA-grown Lysobacter type
strains were found as unknown substances and more sensitive chroma-

tographic techniques are required to better characterise these com-
pounds.

A blend of 17 VOCs was specifically emitted by all the Lysobacter

Fig. 4. Antagonistic activity of volatile organic compounds (VOCs) produced by

Lysobacter type strains against Phytophthora infestans. Lysobacter antibioticus DSM 2044T,

L. capsici DSM 19286T, L. enzymogenes DSM 2043T and L. gummosus DSM 6980T were

grown for 72 h at 25 °C on potato dextrose agar (PDA) or nutrient agar (NA) in split dishes

and uninoculated dishes were used as controls (Uninoculated). One plug of Ph. infestans

was placed on the other side of each dish containing the pea agar medium (PAM) and

colony diameter was measured seven days after incubation at 20 °C (A). Representative

pictures of Ph. infestans growth (lower side of each dish) in split dishes with NA and PDA

growth medium inoculated (L. antibioticus) or not (Uninoculated) with L. antibioticus

(upper side of each dish) (B). Each Ph. infestans plug exposed to VOCs emitted by

Lysobacter type strains grown on NA was then transferred to a fresh PAM dish and colony

diameter was measured seven days after incubation at 20 °C (C). Seven replicates (dishes)

were analysed for each treatment and the experiment was carried out twice. Mean and

standard error values of mycelium diameters obtained from 14 replicates pooled from two

experiments are presented for each bacterial strain and growth media. Different letters

indicate significant differences according to the Kruskal-Wallis test with Bonferroni

correction (p ≤ 0.05).

Table 3

Antagonistic activity of pure volatile organic compounds (VOCs) on Phytophthora infestans

growth.

Treatment Inhibition (%) of Phytophthora infestans growth

Control 0.00 ± 4.86 a

2,5-dimethyl pyrazine 93.66 ± 1.44 bc

2-methoxy-3-methyl pyrazine 97.03 ± 1.08 c

Decanal 94.52 ± 0.82 bc

delta-hexalactone 8.55 ± 3.59 a

Ethanol 29.33 ± 6.99 ab

Pyrrole 96.58 ± 0.96 c

Each pure VOC was applied to a filter paper disk in split dishes at dosage of 20 mg per

split dish corresponding to 190 mg/L of air volume (VOC-treated) and distilled water was

applied in control dishes (control). One plug of Ph. infestans was placed on the other side

of each dish containing the pea agar medium (PAM) and colony diameter was measured

seven days after incubation at 20 °C. The inhibition of Ph. infestans growth (percentage)

was calculated according to the following formula: (growth in control dishes — growth in

VOC-treated dishes)/(growth in control dishes) × 100. Seven replicates (split dishes)

were analysed for each treatment and the experiment was carried out twice. Mean and

standard error values of 14 replicates pooled from two experiments are presented for each

treatment. Different letters indicate significant differences according to the Kruskal-Wallis

test with Bonferroni correction (p≤ 0.05).

V. Lazazzara et al. Microbiological Research 201 (2017) 52–62

60



type strains grown on PDA and not on NA, such as three aliphatic
alcohols (1-tridecanol, 1-tetradecanol and 1-pentadecanol). In particu-

lar, 1-tridecanol and 1-tetradecanol showed no antifungal activity
against Saccharomyces cerevisiae (Kubo et al., 2003) and S. sclerotiorum

(Giorgio et al., 2015) respectively, in agreement with the absence of Ph.
infestans inhibition with VOCs emitted by the PDA-grown Lysobacter

type strains. Delta-hexalactone and ethanol were mainly emitted by the
PDA-grown Lysobacter type strains and they did not show antagonistic

activity against P. infestans. Likewise, ethanol was produced by two
Serratia spp. strains grown on the sugar-rich medium (malt extract agar)

and not on the protein-rich medium (tryptone soya agar) (Bruce et al.,
2004) and did not seem to be implicated in VOC-mediated biocontrol

processes (Bruce et al., 2003). Indole emission was detected from the
PDA-grown Lysobacter type strains and low dosages of this VOC

promoted Arabidopsis thaliana growth (Blom et al., 2011). Likewise,
acetoin, responsible for stimulation of A. thaliana growth (Ryu et al.,

2003), was mainly emitted by L. antibioticus and L. capsici on PDA, in
agreement with higher emission by B. amyloliquefaciens grown on a

sugar-rich medium (M9 agar supplemented with glucose) as compared
with protein-rich media (tryptic soy agar and Luria-Bertani agar) (Asari

et al., 2016).
In conclusion, specific VOCs of Lysobacter spp. were identified and a

tool for recognising four Lysobacter type strains in vitro was developed
according to VOC emission profiles, assessed using SPME/GC–MS or

PTR-ToF-MS analysis. The chemical profiles and functional properties
of Lysobacter VOCs differed according to the growth medium, suggest-

ing that appropriate nutrient sources should be preferred in dual culture
assays in order to maximise biocontrol efficacy against phytopathogens.

Bacterial VOC production in soil can differ according to community
composition and nutrient availability (Insam and Seewald, 2010),

suggesting a possible adaptation to the soil environment and inhabi-
tants. Although our results were obtained from in vitro-grown bacteria,

we hypothesized a possible scenario of Lysobacter VOCs that need

further validation under soil conditions. Particularly, protein sources
deriving from the lytic activities of phytopathogenic or saprophytic

fungi may stimulate the production of antimicrobial VOCs by Lysobacter

type strains (volatile pyrazines, pyrrole and decanal) to maximise

antagonism to soil microbial inhabitants, such as Ph. infestans. Con-
versely, an increase in sugar availability due to root exudates in the

rhizosphere (Jones et al., 2004) may change the volatilome of
Lysobacter type strains, possibly to increase the production of plant

growth stimulators (acetoin and indole) and non-antimicrobial com-
pounds (1-tridecanol, 1-tetradecanol, delta-hexalactone and ethanol) to

maximise beneficial interaction with the plant. However, further
studies are required to investigate the volatilome shift and properties

of Lysobacter spp. in soil conditions.
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